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Electric and magnetic fields of a sheet beam

⚫ Sheet beam (infinite in 𝑦and 𝑧directions, particle motion in parallel to 𝑧axis)

⚫ Beam-generated 𝐸field

⚫ Beam-generated 𝐵field

𝜕𝐸𝑥

𝜕𝑥
=

𝑞𝑛(𝑥)

𝜖0
𝐸𝑥 𝑥 =

𝑞

𝜖0
න

0

𝑥

𝑛(𝑥′)𝑑𝑥′

𝜕𝐵𝑦

𝜕𝑥
=𝜇0𝑗𝑧(𝑥)

𝐵𝑦 𝑥 =𝜇0𝑞𝑣𝑧න
0

𝑥

𝑛(𝑥′)𝑑𝑥′

𝑗𝑧 𝑥 =𝑞𝑛𝑥𝑣𝑧

𝐵𝑦=𝜖0𝜇0𝑣𝑧𝐸𝑥=
𝑣𝑧

𝑐2𝐸𝑥

𝐸𝑥 𝑥 =
𝑞𝑛0

𝜖0
𝑥 𝐵𝑦 𝑥 =𝜇0𝑞𝑛0𝑣𝑧𝑥=

𝑞𝑛0𝑣𝑧

𝜖0𝑐2 𝑥

𝜙𝑥 =𝜙0 −
𝑞𝑛0

2𝜖0
𝑥2

⚫ Paraxial beam approximation holds if

Δ𝜙𝑚𝑎𝑥=
𝑞𝑛0

2𝜖0
𝑥0

2≪ 𝑚0𝑣𝑧
2/2𝑞

⚫ For uniform density distribution, 𝑛𝑥 =𝑛0(−𝑥0≤𝑥≤𝑥0)

⚫ Electric potential
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Envelope fields and forces

⚫ Often it is unnecessary or impossible to understand the details of particle motion 

over the full cross section of a beam. Instead, we use an envelope equation that 

describes the balance of forces only at the periphery, or envelope, of a beam.

⚫ If 𝑣𝑧is almost constant, the current per unit length of a sheet beam is

⚫ Then, envelope electric and magnetic fields are

⚫ The beam-generated electric and magnetic forces acting on the envelope of a 

sheet beam are

⚫ The ratio of magnetic to electric force

𝐽=2𝑞𝑛0𝑣𝑧𝑥0=2𝑞𝑛0𝛽𝑐𝑥0

𝐸𝑥0=
𝑞𝑛0

𝜖0
𝑥0=

𝐽

2𝜖0𝛽𝑐
𝐵𝑦0=𝜇0𝑞𝑛0𝑣𝑧𝑥0=

𝜇0𝐽

2

𝐹𝑥0(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)=𝑞𝐸𝑥0=
𝑞𝐽

2𝜖0𝛽𝑐
𝐹𝑥0𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐=−𝑞𝑣𝑧𝐵𝑦0=−

𝑞𝛽𝑐𝜇0𝐽

2

𝐹𝑥0𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝐹𝑥0(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)
=−𝛽2

For non-relativistic particles (such as ions) the beam 

magnetic force is usually negligible. In contrast, magnetic 

forces are important for relativistic electron beams.
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Transverse force on sheet beams by self-generating forces

⚫ The electric and magnetic forces acting on the envelope of a sheet beam 

carrying a current per unit length (along 𝑦) of 𝐽(A/m) is:

⚫ The total beam-generated force on the envelope:

𝐹𝑋=𝛾𝑚0 𝛽𝑐2𝐾𝑥

𝐹𝑥0(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)=𝑞𝐸𝑥0=
𝑞𝐽

2𝜖0𝛽𝑐
𝐹𝑥0𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐=−𝑞𝑣𝑧𝐵𝑦0=−

𝑞𝛽𝑐𝜇0𝐽

2

𝐾𝑥≡
𝑞𝐽

2𝜖0𝑚0𝛽𝛾𝑐
(generalizedperveance)
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Envelope equation for sheet beams

⚫ The beam envelope follows an equation of motion of the form:

𝑑

𝑑𝑡
𝛾𝑚0

𝑑𝑋

𝑑𝑡
=

𝑑

𝑑𝑡
𝛾𝑚0𝛽𝑐𝑋′ =𝑚0𝛽𝑐2𝛾𝛽𝑋′′+𝛾𝛽′𝑋′+𝛾′𝛽𝑋′ = 𝐹𝑋

𝛾𝛽′+𝛽𝛾′=𝛾′/𝛽
⚫ We obtain the following equation:

𝛾𝑚0 𝛽𝑐2 𝑋′′+
𝛾′

𝛾𝛽2𝑋′ =−𝑋𝑚0𝑐2 𝛾′′−
𝑞2𝐵𝑧

2 0,𝑧

𝛾𝑚0
𝑋+𝛾𝑚0 𝛽𝑐2𝐾𝑥+𝜖𝑥

2
𝛾𝑚0 𝛽𝑐2

𝑋3

⚫ Finally, we obtain the envelope equation for sheet beams:

𝑋′′=−
𝛾′

𝛾𝛽2𝑋′−
𝛾′′

𝛾𝛽2𝑋−
𝑞𝐵𝑧

𝛾𝑚0𝛽𝑐

2

𝑋+𝐾𝑥+
𝜖𝑥

2

𝑋3

Decrease in the envelope 

angle by beam acceleration

Focusing by electrostatic 

lens

Focusing by magnetic lens

Defocusing by beam-generated 

forces

Emittance force
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Transverse force on cylindrical beams by self-generating 

forces

⚫ Cylindrical beam (radius 𝑟0, particle motion in parallel to 𝑧axis)

⚫ Beam-generated 𝐸field

⚫ Beam-generated 𝐵field

⚫ For total beam current

⚫ The beam-generated electric and magnetic forces acting on the envelope of a 

cylindrical beam are

⚫ The ratio of magnetic to electric force

𝐸𝑟 𝑟 =
𝑞

2𝜋𝜖0𝑟
න

0

𝑟

2𝜋𝑟′𝑛(𝑟′)𝑑𝑟′

𝐵𝜃 𝑟 =
𝜇0𝑞𝑣𝑧

2𝜋𝑟
න

0

𝑟

2𝜋𝑟′𝑛(𝑟′)𝑑𝑟′ 𝐵𝜃=
𝑣𝑧

𝑐2𝐸𝑟

𝐹𝑟0(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)=
𝑞𝐼

2𝜋𝜖0𝛽𝑐𝑟0
𝐹𝑟0𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐=−

𝑞𝛽𝐼

2𝜋𝜖0𝑐𝑟0

𝐹𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝐹𝑟(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)
=−𝛽2

𝐼=𝑞𝑣𝑧න
0

𝑟0

2𝜋𝑟′𝑛(𝑟′)𝑑𝑟′

𝑐=
1

𝜖0𝜇0
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Space charge expansion (transverse) of a drifting beam

⚫ The beam-generated electric and magnetic forces at the envelope are

⚫ The motion of envelope particles in the combined fields follows the equation:

⚫ For the condition of constant energy (𝛽and 𝛾are constant)

⚫ The beam-generated forces cause beam expansion — a converging beam 

reaches a minimum value of envelope radius (𝑅𝑚) at 𝑧=0and then expands.

𝐹𝑅(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)=
𝑞𝐼

2𝜋𝜖0𝛽𝑐𝑅
𝐹𝑅 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐=−

𝑞𝐼𝛽

2𝜋𝜖0𝑐𝑅

𝑑

𝑑𝑡
𝛾𝑚0

𝑑𝑅

𝑑𝑡
=

𝑞𝐼

2𝜋𝜖0𝛽𝑐𝛾2

1

𝑅

𝑑2𝑅

𝑑𝑧2=
𝑞𝐼

2𝜋𝜖0𝑚0 𝛽𝛾𝑐3

1

𝑅
=

𝐾

𝑅

𝑑

𝑑𝑡
=𝛽𝑐

𝑑

𝑑𝑧

𝐾≡
𝑞𝐼

2𝜋𝜖0𝑚0 𝛽𝛾𝑐3(generalizedperveance)

𝑑𝑅

𝑑𝑧
= 2𝐾ln( Τ𝑅𝑧 𝑅𝑚)= 2𝐾ln(𝜒) 𝜒= Τ𝑅𝑧 𝑅𝑚
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Space charge expansion (transverse) of a drifting beam

⚫ The variation of envelope radius with distance from the neck is given by

⚫ Application: find the maximum distance that a relativistic electron beam can 

propagate across a vacuum region.

⚫ The quantity 𝐹(𝜒)/𝜒attains a maximum value of 1.085 at 𝜒=2.35. The 

maximum propagation distance is 𝐿𝑚𝑎𝑥=1.53𝑅0/ 𝐾if we adjust the entrance 

envelop angle to 𝑅0
′=−1.31𝐾.

𝑧=(𝑅𝑚/ 2𝐾)𝐹(𝜒)
𝐹𝜒 =න

1

𝜒 𝑑𝑦

ln𝑦𝑅(𝑧)= 2𝐾𝑧𝜒/𝐹(𝜒)

𝐿=2𝑅0𝐹(𝜒)/𝜒/ 2𝐾

e.g.) Suppose we have a 100 A, 500 keV

electron beam (γ = 1.98, β = 0.863) with an 

initial radius of 0.02 m.

The generalized perveance is K = 2.3ě10-3.

The propagation distance is Lmax = 0.63 m for 

an injection angle of -63 mrad (-3.6ô).
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Value of function 𝑭(𝝌)

𝐹(emittance)

𝐹(self−field)
=

𝜖2

𝐾𝑅2≈
∆𝑅′2

𝐾
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Beam-generated electrostatic potential in downstream

⚫ Beams extracted from a one-dimensional, space-

charge-limited extractor cannot propagate an 

indefinite distance in vacuum. The space-charge of 

the beam creates electric fields — depending on the 

geometry of the propagation region, the fields may be 

strong enough to reverse the direction of the beam.

⚫ If the spacing between the anode and collector 

exceeds 2𝑑, the electrostatic potential causes 

electron reflection. The reflection plane, where the 

potential reaches −𝑉0, is called a virtual cathode.

⚫ Hence, beams generated by a one-dimensional 

space-charge-limited extractor cannot propagate a 

distance greater than twice the extraction gap width.
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Space-charge effects can strongly influence the transport 

of a high-current beam injected into a vacuum region

⚫ The theoretical description of high-current beam propagation can become 

complex when we address the full three-dimensional problem.

⚫ Figure illustrates some of the interactive processes that can take place when a 

cylindrical beam enters a transport tube through an anode mesh. Some of the 

particles travel forward while others are reflected at a virtual cathode — all 

particles are subject to transverse space-charge deflections.

Incident laminar beam properties: 0.01 m 

radius, 100 keV energy, 700 A current, 

uniform current density
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Longitudinal transport limits for magnetically-confined 

electron beams

⚫ Assume a cylindrical relativistic electron beam in a transport pipe with a strong 

axial magnetic field. The magnetic field allows electrons to move only in the axial 

direction— we say that electrons are tied to the field lines.

⚫ In the downstream region far from the entrance mesh (𝑧≫ 𝑟𝑤), we assume that 

the cylindrical beam is axially uniform; therefore, axial variations of electric and 

magnetic field are small. In this region, the space-charge potential is a function 

of radius only, 𝜙(𝑟). The conservation of total energy gives

Monoenergetic electrons 

with 𝛾=1+𝑒𝑉0/𝑚𝑒𝑐2

Uniform current density 

𝑗𝑧 𝑟,𝑧 =𝑗0, so that 𝐼0=𝑗0(𝜋𝑟0
2)

𝛾𝑟 =1+
𝑒𝑉0

𝑚𝑒𝑐2+
𝑒𝜙𝑟

𝑚𝑒𝑐2

𝐸𝑟= Τ𝜌0 2𝜖0 𝑟, (0≤𝑟≤𝑟0)

⚫ For uniform density inside the downstream beam and −𝑒𝜙≪ 𝑒𝑉0,

𝐸𝑟= Τ𝜌0 2𝜖0 (𝑟0
2/𝑟), (𝑟0≤𝑟≤𝑟𝑤)
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Longitudinal transport limits for magnetically-confined 

electron beams: the maximum potential

⚫ The electrostatic potential on the axis (maximum value)

⚫ Integrating and utilizing 𝐼0=𝜌0𝜋𝑟0
2𝛽𝑐

⚫ The maximum potential in volts

𝑒𝜙0 =𝑒න
0

𝑟𝑤

𝐸𝑟𝑑𝑟=
𝑒𝜌0𝜋𝑟0

2

2𝜋𝜖0
න

0

𝑟0 𝑟

𝑟0
2𝑑𝑟+න

𝑟0

𝑟𝑤 1

𝑟
𝑑𝑟

𝑒𝜙0 =
−𝑒𝐼0

4𝜋𝜖0𝛽𝑐
1+2ln

𝑟𝑤
𝑟0

𝜙0 =
−30𝐼0[𝐴]

𝛽
1+2ln

𝑟𝑤
𝑟0

A current of 10 kA is typical of high power linear 

induction accelerators. It is shown that the 

corresponding space-charge potential is high, 

nearly 1 MV.

For this reason, induction linac injectors operate 

at high voltage (V0 > 2 MV).
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Longitudinal transport limits for magnetically-confined 

electron beams: the maximum current

⚫ To find space-charge limit, we must find the value of peak potential in the range 

0≤𝜙≤𝑉0that gives the highest value of 𝐼0for a given 𝛾.

⚫ For a narrow beam (𝑟0≪ 𝑟𝑤), the conservation of energy implies that

⚫ We obtain

⚫ The current becomes maximum at 𝛾=𝛾0
1/3

𝑒∆𝜙≅𝑚𝑒𝑐2(𝛾0−𝛾)≅
𝑒𝐼0

4𝜋𝜖0𝛽𝑐
1+2ln

𝑟𝑤
𝑟0

Injection energy of electrons Maximum potential difference by space charge

𝑒𝐼0
4𝜋𝜖0𝑚𝑒𝑐3 1+2ln

𝑟𝑤
𝑟0

=
𝛾0−𝛾 𝛾2−1

𝛾

𝐼𝑚𝑎𝑥=
4𝜋𝜖0𝑚𝑒𝑐3/𝑒

1+2ln𝑟𝑤/𝑟0
𝛾0

2/3
−1

3/2
≈

17.1[𝑘𝐴]

1+2ln𝑟𝑤/𝑟0
𝛾0

2/3
−1

3/2

e.g.) Consider the propagation of a 0.01 m radius beam in a 0.03 m radius pipe. The injection energy 

of 1.5 MeV corresponds to γ0 = 3.94. The space-charge-limiting current is 9.2 kA. At this value, the

space-charge potential of the beam is 1.2 MV — the beam propagates with an average kinetic

energy of 0.3 MeV (γ = 1.58).
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Annular beam can carry more current than solid beam

⚫ Longitudinal space-charge effects can be reduced, in principle, by using beams 

with nonuniform current density. An annular beam can carry more current in 

equilibrium than a solid beam.

𝐼𝑚𝑎𝑥=
4𝜋𝜖0𝑚𝑒𝑐3/𝑒

2ln𝑟𝑤/𝑟𝑜
𝛾0

2/3
−1

3/2
≈

17.1[𝑘𝐴]

2ln𝑟𝑤/𝑟𝑜
𝛾0

2/3
−1

3/2

e.g.) Consider the propagation of a 0.09 m outer radius beam in a 0.1 m radius pipe. The injection 

energy of 1.5 MeV corresponds to γ0 = 3.94. The space-charge-limiting current is 148 kA (note that 

9.2 kA for the narrow solid beam).

𝐸𝑟= Τ𝜌0 2𝜖0 ((𝑟2−𝑟𝑖
2)/𝑟),(𝑟𝑖≤𝑟≤𝑟𝑜)

⚫ The electric field

𝐸𝑟= Τ𝜌0 2𝜖0 ((𝑟𝑜
2−𝑟𝑖

2)/𝑟),(𝑟𝑜≤𝑟≤𝑟𝑤)

⚫ The maximum space charge potential

𝑒𝜙𝑚𝑎𝑥=
𝑒𝐼0

4𝜋𝜖0𝛽𝑐
1−2𝑟𝑖

2ln
Τ𝑟𝑜 𝑟𝑖

𝑟𝑜
2−𝑟𝑖

2 +2ln
𝑟𝑤
𝑟𝑜

⚫ The maximum current for a thin annular beam (𝑟𝑜/𝑟𝑖→1)

𝐼0=𝜋(𝑟𝑜
2−𝑟𝑖

2)𝜌0𝛽𝑐
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Paraxial ray equation

⚫ In a cylindrical system, symmetry permits only certain components of electric 

and magnetic field:

1. axial and radial components of the applied electric field,

2. radial electric field resulting from space-charge,

3. axial and radial magnetic field components generated by axi-centered 

circular coils, and

4. beam-generated toroidal magnetic field.

⚫ In the paraxial limit, we can relate the radial components of applied fields to the 

axial field by:

⚫ Particles gain azimuthal velocity when they move through the radial magnetic 

fields of a solenoidal lens. For forces with cylindrical symmetry, the canonical 

angular momentum is a constant of particle motion:

𝐸𝑟 𝑟,𝑧 ≈−
𝑟

2

𝜕𝐸𝑧

𝜕𝑧
𝑟=0

𝐵𝑟 𝑟,𝑧 ≈−
𝑟

2

𝜕𝐵𝑧

𝜕𝑧
𝑟=0

𝛾𝑚0𝑟𝑣𝜃+𝑞𝑟𝐴𝜃=𝑃𝜃=constant
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Paraxial ray equation

⚫ We can derive the following equation for axial variation of the envelope of a 

cylindrical beam:

𝑅′′=−
𝛾′

𝛾𝛽2𝑅′−
𝛾′′

2𝛾𝛽2𝑅−
𝑞𝐵𝑧

2𝛾𝑚0𝛽𝑐

2

𝑅+
𝜖2

𝑅3+
𝑞𝜓0

2𝜋𝛾𝑚0𝛽𝑐

2
1

𝑅3+
𝐾

𝑅

Decrease in the envelope 

angle by beam acceleration

Electrostatic focusing from 

radial components of 

applied electric fields

Magnetic focusing from 

applied solenoidal fields

Emittance force

Defocusing by beam-

generated forces

Non-zero angular momentum

𝜓0=න
0

𝑅𝑠

2𝜋𝑅𝐵𝑧 𝑅,𝑍𝑠𝑑𝑅

𝑑

𝑑𝑡
𝛾𝑚0

𝑑𝑅

𝑑𝑡
−𝛾𝑚0

𝑣𝜃
2

𝑅
=𝑞𝐸𝑟+𝑣𝜃𝐵𝑧 +𝜖𝑟

2
𝛾𝑚0𝑣𝑧

2

𝑅3
+

𝑞𝐼

2𝜋𝜖0𝛽𝑐𝛾2

1

𝑅
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Example: limiting current for paraxial beams with a uniform 

solenoid field

⚫ Radial force balance for a cylindrical, paraxial electron beam in a uniform 

solenoid field 𝐵0.

𝑅′′=−
𝑞𝐵0

2𝛾𝑚0𝛽𝑐

2

𝑅+
𝜖2

𝑅3+
𝐾

𝑅
=0

𝐾=
𝛼2

𝑅2−
𝜖2

𝑅2=
𝑒𝐼

2𝜋𝜖0𝑚0 𝛽𝛾𝑐3

⚫ The acceptance 𝛼is defined as the allowed beam emittance for a given 

envelope radius when there are no beam-generated forces, i.e. 𝐾=0:

𝛼2=
𝑞𝐵0

2𝛾𝑚0𝛽𝑐

2

𝑅4

⚫ Using the expression for the generalized perveance, we obtain the matched 

beam current:

𝐼=
𝜋𝜖0𝑒𝑐

2𝑚0
𝛽𝛾𝐵0𝑅2 1−

𝜖2

𝛼2

⚫ If there is no emittance, the beam-generated forces exactly balance the focusing 

force of the axial magnetic field. Here, particle flow is laminar and the allowed 

current has a maximum value.


