Anomalous strength behavior by dislocation locking

2017.04.24

ESPark Research Group II Hwan Kim

Introduction

• General yield stress behavior of pure metal depending on temperature

- $\tau = \tau * + \tau_{\mu}$
- Yield stress anomaly is occurred by two mechanism;
 - 1) one is cross slip related mechanism
 - 2) and the other is diffusion related mechanism.

tensile strength, MPa

Ordered structure precipitation

 \bigcirc

(b)

В

Α

- Ni-based superalloy shows constant yield stress until 800°C ۲
- FCC matrix + $L1_2$ precipitation ullet
- To improve engine efficiency, operating temperature must be increased

D. Hull, D. J. Bacon, Introduction to Dislocation, 2011

- For L1₂ structure, $\frac{1}{2}$ <110> dislocation is Burgers vector like FCC structure
- {111} plane has a larger APB energy than {100} plane; second-nearest order
- Thus, the perfect dislocation consists of two ½<110> superpartial dislocations joined by an APB

D. Hull, D. J. Bacon, Introduction to Dislocation, 2011

Yamaguchi, Progress in Materials Science, 1990

- Perfect screw dislocation will be dissociated two partial dislocation connected by APB.
- If one of the superpartials is not dissociated, it can glide on a {100} plane.
- When cross slip onto {100} planes occurs, glide of the dislocation on {111} plane is restricted.
- When temperature increases, cross slip onto {100} planes also increases.
- This mechanism is known as Kear-Wilsdorf lock.
- Ni₃Al, Ni₃Ga, Ni₃Si, Co₃Ti ...

Diffusion controlled dislocation locking

- The friction stress on mobile dislocations increases with increasing temperature
- The friction stress increases for decreasing dislocation velocity, because there is more time for diffusion on slow dislocations (Negative strain rate sensitivity)

- Activation energies for creep

Alloy	Structure	$\Delta H(\mathrm{kJ} \mathrm{mol}^{-1})$	$\Delta H/RT_{\rm m}$	n	
CuZn	Ordered	160	17	3.5	
CuZn	Disordered	97	10	3.5	
FeCo-V	Ordered	689	47	4.6	
FeCo-V	Disordered	395	27	4.6	

- Fracture toughness

- Diffusion of solute atoms onto dislocation cores can be dislocation locking mechanism
- Relaxation of the atomic structure of the APB ribbons
- Change of APB planes by climb
- Creep and Fracture toughness can be improved by ordering phase

O. N. Senkov, Entropy, 2016 AlMo_{0.5}NbTa_{0.5}TiZr 2500 ····●···· AlMo_{0.5}NbTa_{0.5}TiZr IN 718 _ **Ordered** B2 2000 ---- Mar-M247 ······ Haynes 230 Yield Strength (MPa) 1500 1000 Disordered bcc 500 0 300 600 1200 0 900 1500 Temperature (°C)

Region	Al	Mo	Nb	Та	Ti	Zr
Overall APT reconstruction ¹	17.6	10.1	21.0	10.6	20.9	19.6
Cuboidal precipitates ²		15.6	31.8	21.9	17.2	9.5
Thin matrix channels between precipitates ²		11.7	25.8	15.2	19.2	15.8
Large long matrix channel ²		5.5	14.2	4.0	24.1	25.9
Large gap in cuboidal row ²		7.7	13.7	3.7	24.1	24.1

 1 Statistical error < 0.01 at.%; 2 Statistical error < 0.1 at.%.

High Entropy Superalloy

AlMo_{0.5}NbTa_{0.5}TiZr 2500 AlMo_{0.5}NbTa_{0.5}TiZr IN 718 Ordered B2 2000 - Mar-M247 Yield Strength (MPa) ······ Haynes 230 1500 1000 Disordered bcc 500 0 300 600 900 1200 1500 0 Temperature (°C)

- Ordered B2 matrix + Disordered bcc precipitation
- A high volume fraction of the heterophase boundaries between the phases impedes the deformation flow
- Dynamic strain aging affects high temperature yield strength

Conclusion

- High temperature materials must have precipitations which inducing yield stress anomaly phenomena
- Ni-based superalloys: cross slip controlled dislocation locking mechanism
- BCC or B2 phase: Diffusion controlled dislocation locking mechanism
- In refractory alloys, high temperature stable phase must be investigated