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Child law: space-charge-limited (SCL) flow

® The Child law states the maximum current density that can be carried by
charged particle flow across a one-dimensional extraction gap. The limit arises
from the longitudinal electric fields of the beam space-charge.

® |t is important because:

« The Child limit gives the maximum current density from a charged particle
extractor. Although the derivation applies to a specialized geometry, the
results provide good estimates for a variety of high power beam devices.

« The derivation of the Child law illustrates the calculation of a charged
particle equilibrium with self-consistent space-charge fields.
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Child law: space-charge-limited (SCL) flow

® Assumptions:

Particle motion is non-relativistic (eV, « myc?).

The source on the left-hand boundary supplies an unlimited flux of particles.
Restrictions of flow result entirely from space-charge effects.

The transverse dimension of the gap is large compared with d. The only
significant components of particle velocity and electric field are in the z
direction.

The transverse magnetic force generated by current across the gap is small
compared with the axial electric force. As a result, particles follow straight
line trajectories across the gap. This assumption is valid for ion beams, but
it is usually violated in high-current relativistic electron beam injectors.

Particles flow continuously — the electric fields and space-charge density at
all positions in the gap are constant.

lons are singly-charged.

Initial kinetic energy of particles at the emission surface is zero (or much
smaller than the applied voltage).

Particles are collisionless in the gap.
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Space-charge-limited (SCL) flow for an ideal diode

® The ion energy and flux conservation equations
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—Mu?(z) = —e¢(2)
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® Defining ( = z/d and ® = —¢/V,, we obtain

d" = a/Vd

Cathode

®
|
|
S

Jod?
q =

- €oVor/2eVy/M

2= 4/

G

D0, [ e e e v i s e S Wt W A W WA o S

4 Particle Accelerator Engineering, Spring 2021




Space-charge-limited (SCL) flow for an ideal diode

® The boundary conditions for space-charge-limited current:

®(0) = 0 o(1) = 1 o

—| =0
d<|,_,

® The possible solutions:

&(z} 0

/A

The potential variation is algmost

the same as the vacuum solution
with no contribution from space-
charge.

Low current density: sourge-limited current
_VO ___________________

Particles with low kinetic
energy are just able to
leave the source.

Space charge-limited current
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Space-charge-limited (SCL) flow for an ideal diode

® Multiplying by 20’
¢ = a/\D —> 20'd" = 2ad' /NP

® Integrating both sides from 0 to 1 and applying the boundary conditions gives:

(@)2=4a®d T O = Vagd/t > do/dV* =aad]
® Integrating the above equation, we obtain
®3/* = B/4A)V4al T— a=4/9
d(1) =1
® By definition,
Jod? 4
a = = —
60VO ZeVO/M 9

® Finally, we obtain the space-charge-limited current density

4 <2e>1/ A Child law:

Jo = 9%\ 2 Space-charge-limited current in a plane diode
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Space-charge-limited (SCL) flow for an ideal diode

® Potential, electric field and density within the gap @ Jo

p==n(3) 7

Enin=E(z=0)=0

s s 2, o A e e e e o e o o e g e ] LY

. 4V, (z>1/3
3d\d Emasz(Z=d)=4V0/3d Ny
negfloy Rt 1 (e 2 B2
9ed?\d 07 4250\ m 172 7 SN
0

® Assuming that an ion enters the gap with initial velocity u(0) = 0

dz z\2/3 . L L
- = Vo (E) where, v, is the characteristic ion velocity in the gap
ZeVO 1/2
® |on transit time across the gap Yo ="y
z(t) v0t>3 — 3d
_ | — T, =— —
d (3d L

7 Particle Accelerator Engineering, Spring 2021

N



Extractable ion current density in a plane diode
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SCL flow for an ideal diode: practical expression

® |n practice,

3/2
_ _g(? )1 Vo 2 V,: extraction voltage [V]
]z 5.45 %10 (A d? (A/Cm ) d: gap distance [cm]
z: ion charge
V03/2 A: ion mass in amu
Jo=234%x1052—  (4/cm?)

d2

® The extractable currents from a round aperture with a radius a are given by

1/2 5
Izéne E 4 VE"/2
079" %\ M d) °
Z\1/2 7\ 2
I, =1.71 % 1077 (Z) (—) /ALY

a 2
I, =735x%x10"° (E) /AN )
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Space-charge-limited flow with multiple ion species

® Assuming that the multiple ion species with mass M;, charge q; = z;e, and J;, the
Poisson’s equation is given by

- 12 - 12 M, 1 | M,
B eojpj_ on]] 2q;V eojt 2q.V

® The reduced relationship is given by

M N, M i i
j;_za,ﬁ W]

® For plasma ion sources, the proportion of the extracted current of different
species is not the same as that of the ion density of the different species in the
plasma:

]] = 04n]Z]€\/2Z]kTe/M] X leZj ’Z]/M]

® Total current density for the SCL emission is given by

3/2

Z: \V n;zj
_ ;| I 2 R v
] =5.45x10 E 1 ’Aj 7 (A/cm*) Hj Y 7
J
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High-voltage sheath: SCL flow between plasma and
negatively-biased electrode

® Foraplasma J, =enjugp

4 (28)1/2 ‘/03/2
enSuB - _EO

9 M s2
e Child law sheath _ V2 T\ 20\ _VE (20)
ild law shea s= o, T, =3 s\
® Potential, electric field and density within the sheath
o v (x>4/3 o 4V, <x>1/3 _4eVy <x>—2/3
- 0\ 35 \s T 9% s2\s
® Assuming that an ion enters the sheath with initial velocity u(0) = 0
dx x\2/3 . L L
=70 (_> where, v, Is the characteristic ion velocity in the sheath
t ” 2eV, 1/2
® |on transit time across the sheath Vo = ( MO>
3 3s
@ — (Uit) —> T, = —
S 3s Vo
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Space-charge-limited flow with an initial injection energy

® \We can extend the one-dimensional Child limit to describe acceleration gaps
where particles enter with a non-zero energy. The results have application to the
gaps of high-current multistage accelerators and the flow of electrons through
grid-controlled devices like vacuum triodes.

® Because of their initial energy, particles can cross the gap even if the electric
field at the entrance is negative.

® The solution is as following: "4 o) = dp(@d) _
4 276 1/2 VO3/2 dz
= — _— F -
Jo 9 €o <m0 > dz (X) 7
incident particles
® The correction factor is g mo, Ty
2
1 3/4 (-To/e)
F(X) = XS/Z (1 - _> +1 Exiting parlicies
X Tg-i'E’ff’g
_ . {—Tgfe—?g}
X = ¢2/(¢1 ¢2) ¢1:¢(Z:0)=—T0/e ¢2:¢(Z=d)=—TO/e—VO
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Space-charge-limited flow with an initial injection energy

® The solution reduces to the standard Child law when the injection energy
approaches zero (y = 1).

® The function F(y) grows rapidly for increasing y.

® The figure emphasizes that the longitudinal space-charge limit drops rapidly as
particles accelerate. For example, the space-charge limit in a post-acceleration
gap that doubles the energy of particles (y = 2) is 7.2 times the Child limit.

1004

4 <ZZe>1/ 2y

= — S F ]
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3
v = 0P =To/€+Vo “ 10
b1 — P Vo
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Space-charge-limited flow in spherical geometry

The quantity R; is the source radius, R, is the collector radius, and r represents
a radial position between the two. We can find two types of solutions: inward
flow (R; > R.) and outward flow (R; < R.).

For convenience we treat a steady-state flow of positive non-relativistic particles
with mass m,. We take the source potential equal to zero while the collector has
bias voltage —V,.

The Poisson equation has the following form for a
spherically symmetric potential:

id r2d¢ :_ﬂ
r2dr dr €o

related to ¢ by:

v = \/—Zeqb/mo
In equilibrium, the radial current I is constant at all
radii. This condition implies that the space-charge p = I
density is related to the velocity by 4mtr2v

14

Particle Accelerator Engineering, Spring 2021




Space-charge-limited flow in spherical geometry

® \We obtain the following self-consistent form for the Poisson equation:

i TZ d_¢ _ I my
dr dr dtey |—2ed

® Ve define the dimensionless potential and radius as

) T
o =—— R =—-
VO RS

® The Poisson equation becomes

d dd A I my
— | R~ | =——= 4= 3/2
dR dr NI ArreyV, 2e

® The boundary conditions:

PR=1)=0 ®(R =R,/R;) = 1 =

R=1
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Space-charge-limited flow in spherical geometry

® Langmuir and Blodgett [Phys. Rev. 24, 49 (1924)] developed a well-known
numerical solution. They assumed the following form for the electrostatic
potential:

94
®(R)3/? = T a(R)? a(R): Langmuir function

® Defining the variable y = In R, a can be obtained by solving the equation:

N (L RPN
adyz dy ady B

® The series solution for «a:

a =y —03y*+0.075y° — 0.0143182y* + 0.0021609y > — ---

® The total current:

4e ’Ze 47TV3/2
I = 90 — a(; a = a(R./Rs)
0

16 Particle Accelerator Engineering, Spring 2021




Table: Langmuir function

Table 6.1. Langmuir function versus normalized radius — converging beam Table 6.2. Langmuir function versus normalized radius — diverging beam
R = r/R, of R = r/R, o R = r/R, o R = r/R, of
1.0000 0.0000 0.1923 8.636 1.0 0.0000 6.5 1.385
0.9524 0.0024 0.1852 9.135 1.05 0.0023 7.0 1.453
0.%091 0.00%9%6 0.178¢6 10.01 1.1 0.0086 7.5 1.516
0.8696 0.0213 0.1724 10.73 1.15 0.0180 8.0 1.575
0.8333 0.0372 0.lee7 11.46 1.2 0.0299 8.5 1.630
0.8000 0.0571 0.1538 13.35 1.25 0.0437 9.0 1.682
0.76592 0.0809 0.1429 15.35 1.3 0.0591 9.5 1.731
0.7407 0.1084 0.1333 17.44 1.35 0.0756 10 1.777
0.7143 0.139%6 0.1250 19.62 1.4 0.0931 12 1.938
0.6897 0.1740 0.1176 21.89 1.45 0.1114 14 2.073
0.6667 0.2118 0.1111 24.25 1.5 0.1302 16 2.189
0.6250 0.2968 0.1053 26.68 1.6 0.1688 18 2.289
0.5882 0.394 0.1000 29.19 1.7 0.208 20 2.378
0.5556 0.502 0.0833 39.98 1.8 0.248 30 2.713
0.5623 0.621 0.0714 51.86 1.9 0.287 40 2.944
0.5000 0.750 0.0625 0d.74 2.0 0.326 50 3.120
0.47e2 0.888 0.0556 78.56 2.1 0.364 60 3.2¢61
0.4545 1.03¢ 0.0500 93.24 2.2 0.402 70 3.380
0.4348 1.193 0.0333 178.2 2.3 0.438 80 3.482
0.41¢e7 1.358 0.0250 279.6 2.4 0.474 g0 3.572
0.4000 1.531 0.0200 395.3 2.5 0.509 100 3.652
0.384¢6 1.712 0.0167 523.6 2.6 0.543 120 3.788
0.3704 1.901 0.0143 663.3 2.7 0.576 140 3.903
0.3571 2.098 0.0125 813.7 2.8 0.608 160 4,002
0.3448 2.302 0.0111 974.1 2.9 0.639 180 4,089
0.3333 2 0.0100 1144 3.0 0.669 200 4.166
0.3125 2.954 0.0083 1509 3.2 0.727 250 4.329
0.2941 3.421 0.0071 1907 3.4 0.783 300 4,462
0.2778 3.913 0.0063 2333 3.6 0.836 350 4.573
0.2632 4.429 0.0056 2790 3.8 0.88¢ 400 4,669
0.2500 4.968 0.0050 3270 4.0 0.934 500 4,829
0.2381 5.528 0.0040 4582 4.2 0.97% 600 4.960
0.2273 6.109 0.0033 6031 4.4 l1.0z22 800 5.165
0.2174 6.712 0.0029 7610 4.6 1.063 1000 5.324
0.2083 7.334 0.0025 9303 4.8 1.103 1500 5.610
0.2000 7.976 0.0020 13015 5.0 1.141 2000 5.812

5.2 1.178 5000 6.453
5.4 1.213 10000 6.933
5.6 1.247 30000 7.693
5.8 1.280 100000 B.523
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Bipolar flow

® The term bipolar flow refers to the simultaneous space-charge-limited flow of
ions and electrons emitted from opposite sides of an acceleration gap.

® Charge conservation for ions and electrons:

n.(¢) = j_e Te Electron
’ € 2egp Seovrg lon source
Eb=ﬁ ,_.b_—_u'u
Ji m;
ni(¢) = (—)
¥ e 2e(Vy — ) e
® |n terms of dimensionless variables: it -
¢ z
b =— /] = —
Vo d
o v

® The Poisson equation:

dzcb_A 1 1 ji |my 4 jod?
dz* \/6 vi—© je me €0 Ze/meVOB/Z
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Bipolar flow

® Multiply both sides by 2" and integrating the equation from 0 to Z gives the
expression:

d¢2—4A\/6 Jioe oLl ™
(E)‘ L= =D [

® The boundary conditions:

dod
dZ

dd

d(Z=0)=0 dZ=1)=1 =d_Z

Z=0

® The solution for space-charge-limited bipolar flow:

| 4ey (2 PV [3 2 do i
Je,bipolar = T(m_6> d2 Zfo \/q)l/z (- D)2 1‘
Jilje = JJMe/m; - Langmuir condition
® Or simply: / Enhancement factor
Jebipolar = 1.86 je chita Ji,pipotar = 1.86 Ji chita
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Double layer: bipolar flow between two plasmas
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Space-charge-limited flow of relativistic electrons

® Single gap electron extractors have been operated in the megavolt range (eV, >

mec?). These extractors are driven either by electrostatic pulsed power
generators or by stacked induction linac cavities.

Consider a one-dimensional gap with applied voltage V, and width d. If we set
the electrostatic potential ¢ equal to zero at the cathode, conservation of energy
gives the following expression for the relativistic gamma factor for electrons in
the extractor:

y(2) = 1+ ed(z)/mec?

For electron motion in the z direction, the axial velocity and electron density are
related to y by

v, = cJy? —1/y ne(y) = vje/(ecyv* — 1)

We obtain the one-dimensional Poisson equation:

ﬂ _ €je 14
dz*?  |€gmec®| [y2 —1
dy
B.C.s: ¥z=0)=1 y@z=d)=yy=1+eVy/myc? l =0
z=0

21
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Space-charge-limited flow of relativistic electrons

® The space-charge-limited current density for relativistic electrons:

. lfomeCBI G (¥o) Yo d¢

G =
ed? 2 (yO) . _ 1)1/4

\
~
N

10°
® Ultra-relativistic limit (eVy > m,c?):

d2¢ ene ~ je

2
dz €y €oC

_ 2€q9cV
|:> ]e — d2
® Non-relativistic limit (eV, « m,c?):

4 <2e>1/zvo3/2

T T

104

et (A)
T I\ TT1T

|

103

i T

Mme

je =§EO d2
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