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History of Nuclear Engineering
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Nuclear system engineering

® Reactor physics

Boltzmann neutron transport equation
OV (7, E.Q) + 2. (F.E)p(F, E,Q) = j jz:s QY > Q. E'— E)p(7, E'.Q)dE'dQ)' + 4L 2(EYw(F)+s"(7,E)
QE' 4

Navier-Stokes equation

opv
ot

+V - (pvv)==-Vp +V . T + pg

sgeudocol% .
ar: Tem, ool
"a87z

— 3269

316.6

4 Introduction to Nuclear Engineering, Fall 2020 @ Fiay

UNIVERSITY



Nuclear system engineering

® Thermo-hydrodynamics

Hydrodynamic equations
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Fusion & plasma engineering

® Fusion plasma physics: Magneto-hydrodynamics or kinetics
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Fusion & plasma engineering

® Fusion reactor engineering

4 Core Plasma: Blanket: Super Cond. Magnet:
Plasma Physics, NeLHFoR—EREe Electrical Eng.
Control Eng. Material Eng. Htra Low Temp. Tech.

Heating Device:
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Fusion & plasma engineering

® Plasma applications

RESEARCH TOPICS
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Radiation engineering

® Radiation biology and medical application
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Radiation engineering

® Radiation source and particle accelerator
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Radiation engineering

® Radiation detection and measurement

0 ————5——7+——+———7+———+—+—71— 70
NE213 scintillation detector d-d neutron d-t neutrory
S000 4 1 —_—)
4000 - i, [ Y
% 3000 [ %
8.2m from & S [ ©
magnetic axis %
O 1000 7 - 10
0 0
0 1 2 4 5 9 10

Time (S)

= Radiation shield = Linearity with conventional NFM = Neutron and gamma ray discrimination

TR 100
200k 0.3 |
1 i 190
175k—- 025 ..
150k 5- 70
] 0.2 |
& 125k 5 ;
< 100k o i
~ 0.15; 50
0‘2 1 \E |
75Kk = ; 40
g2 ] C 01
sk | 30
25k - 0.05| £0
04 10
0 2k 4k 6k 8k 10k 12k 0 5000 10000 15000 20000
ot (ADC channels)
Neutron flux monitor (CPS) ota

11 Introduction to Nuclear Engineering, Fall 2020 (RS o

UNIVERSITY




Syllabus of Nuclear Engineering 2

® Radiation engineering

>
>
>
>
>

Radiation and radioactivity

Radiation interaction with matter
Radiation source technology

Detection and measurement of radiation
Radiation dose and hazard assessment

® Plasma engineering

>
>
>
>

Basic concepts of plasmas

Plasma and sheath

Plasma source technology

Plasma applications and related issues

® Fusion engineering

>

Fusion energy

» Various fusion concepts

> Tokamaks

>

Issues in fusion nuclear technology

12
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Textbooks and references

® Radiation engineering
» J. Turner, Atoms, Radiation, and Radiation Detection, Wiley (2007)
> Arthur Beiser, Concepts of Modern Physics (6" ed.), Mc-Graw Hill (2003)

» A. Waltar, Radiation and Modern Life: Fulfilling Marie Curie’s Dream, Prometheus
Books (2004)

» C. Grupen and M. Rodgers, Radioactivity and Radiation, Springer (2016)
> Arthur Beiser, Concepts of Modern Physics (6" ed.), Mc-Graw Hill (2003)

» N. Tsoulfanidid and S. Landsberger, Measurement and Detection of radiation, CRC
Press (2015)

® Plasma engineering
» F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer (2016)

® Fusion engineering

» G. McCracken and P. Stott, Fusion: The Energy of the Universe, Elsevier (2005)
» F. Chen, An Indispensable Truth, Springer (2011)
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Classification of radiation

® Radiation: transportation of mass and energy through space

Non-ionizing lonizing \\

radiation radiation Aloha
o o
B Beta
X-ra
X VA
Gamma
2
Light Intermediate Heavy L8
charged charged charged Photon Neutron n eutron
particle particle particle
Electon Higare wo2e || Bramssvaning” ([ remma _ ‘
; Caon-izion | |, Sammaray Epithermal Paper Thin plates Lead, iron, and Water,
gt Neon20lon | |G ton| | " Feut made of wood, other thick SEHEEE B,
aluminum, etc. metal plates
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Directly and Indirectly lonizing Radiation

® Directly lonizing Radiation: Comprises charged particles (electrons, protons, a-
particles, heavy ions) that deposit energy in the absorber through a direct one-
step process involving Coulomb interactions between the directly ionizing
charged particle and orbital electrons of the atoms in the absorber.

® [ndirectly lonizing Radiation: Comprises neutral particles (photons such as x-
rays and y-rays, neutrons) that deposit energy in the absorber through a two-
step process as follows:

> In the first step a charged particle is released in the absorber (photons
release either electrons or electron/positron pairs, neutrons release protons
or heavier ions).

» In the second step, the released charged particles deposit energy to the
absorber through direct Coulomb interactions with orbital electrons of the
atoms in the absorber.

17
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Photons

® A photon is regarded as a quantum of excitation in the underlying
electromagnetic field.

E=hv=— p=—=% 1eV~1240 nm
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Low LET and High LET Radiation

The ionization density produced by ionizing radiation in tissue depends on the

linear energy transfer (LET) of the ionizing radiation beam.

The LET is defined as the mean amount of energy that a given ionizing radiation

imparts to absorbing medium (such as tissue) per unit path length and is used in
radiobiology and radiation protection to specify the quality of an ionizing radiation

beam.

The LET is measured in keV/pum with 10 keV/um separating the low LET

(sparsely ionizing) radiation from the high LET (densely ionizing) radiation.

Low LET radiation LET (keV /pum) High LET LET (keV/pm)
x-rays: 250 kVp 2 Electrons: 1 keV 12.3

~-rays: Co-60 0.3 Neutrons: 14 MeV 12

x-rays: 3 MeV 0.3 Protons: 2 MeV 17

Electrons: 10 keV 2.3 Carbon 1ons: 100 MeV | 160

Electrons: 1 MeV 0.25 Heavy ions 100-2000

19
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Chadwick’s paper (Nature, 1932)

Possible Existence of a Neutron

It has been shown by Bothe and others that
beryllium when bombarded by a-particies of polon;um
i iatd i ., which
has an absorption coefficient in lead of about 0-3 (em.)-.
Recently Mme. Curie-Joliot and M. Joliot found,
when measuring the ionisation produced by this
beryllium radiation in a vessel with a thin wmdow,
that the ionisation increased when matter containing
hydrogen was placed in front of the window. The
effect appeared to be due to the ejection of protons
i 1t maxim of nearly 3 x 10° cm.
per sec. They suggested that the transference of
energy to the proton was by a process similar to the
Compton effect, and estimated thatthe beryllium radia-
tion had a guantum energy ol oU x 10" electron volts.
1 have mmade some experiments using the valve
ecounter to examine the properties of this radiation
excited in berylliumm. The valve counter consists of
a small ionisation chamber connected to an amplifier,
and the sudden production of ions by the entry of a
particle, such as a proton or a-particle, is recorded
by the deflexion of an oscillograph. These experi-
ments have shown that the radiation ejects particles
from hydrogen, helium, lithium, beryliium, carbon,
air, and argon. The particles ejected from hydrogen
behave, as regards range and ionising power, like
protons with speeds up to about 3-2 x 10° em. per sec.
The particles from the other elements have a large
ionising power, and appear to be in each case recoil
atoms of the elements.

Po source

Be

target material

— [ ----- | | ----- >
—> B ----- > | | ----- >
o)—> B ----- > | ----- >
Beryllium Lead
(a)
5.7-MeV
protons
o)y < ] ----- > *—>
o—> [ ----- > o
@— pos [N > *——>
Beryllium Paraffin
(b)
55 MeV

FUNVUNS *——>
A o >
A o >

Gamma rays

(c)

1o an amplifier

5.7 MeV

Oo—> *——>
O o——>
O— e >
Neutrons

(d)
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Chadwick’s paper (Nature, 1932)

If we ascribe the ejection of the proton to a Compton
recoil from & quantum of 52 x10% electron volts,
then the nitrogen recoil atom amnsing by a similar
process should have an energy not greater than about
400,000 volts, should produce not more than about
10,000 ions, and have a range in air at N.T.P. of
about 1-3 mm. Actually, some of the recoil atoms
in nitrogen produce at least 30,000 ions. In col-
laberation with Dr. Feather, I have ohserved the
recoil atoms in an expansion chamber, and their
range, estimated visually, was sometimes as much
as 3 mm. at N.T.P.

These results, and others I have obtained in the
course of the work, are very difficult to explain on
the assumption that the radiation from beryllium
is & quantum radiation, if energy and momentum
are 10 be conserved in the collisions. The difficulties
disappear, however, if it be assumed that the radia-
tion consists of particles of mass 1 and charge 0, or
neutrons. The capture of the a-particle“%)y the
Be® nucleus may be supposed to result in the
formation of a C!? nueleus and the emission of the
neutron. From the energy relations of this process
the velocity of the neutron emitted in the forward
direction may well be about 3 x10% em. per sec. 9 12
The collisions of this neutron with the atoms through 4B e+ a— 6C +n
which it passes give riso to the recoil atoms, and the
observed energies of the recoil atoms are in fair
agreement with this view. Moreover, I have aob-
gserved that the protons sjected from hvdrogen by the
radiation emitted in the opposite direction to that of
the exciting «-particle appear to have a much smaller
range than those ejected by the forward radiation.

21 Introduction to Nuclear Engineering, Fall 2020 @ SEOUL

MATIOMAL
UNIVERSITY



The Sun’s energy

are heated so much they turn into a
‘plasma’ state, where electrons no longer
orhit the protons in the atoms’ nudei. The
“freed’ nudlei then fuse to form helium
atoms and neutrons, This fusion process
unleashes vast bursts of energy.
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What is a plasma?

Heat / Energy

i

2
S
v
Hot Hotter

Cold » Warm
Solid (ice) Liquid (water) Gas (Steam) Plasma
0°C 100°C ?°C

JG03.419-14¢

® A Plasma is quasi-neutral gas of charged and neutral particles which exhibits
collective behavior. (Francis F. Chen)
® Plasma is a gas in which a certain portion of the particles are ionized. (Wikipedia)
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Semiconductor manufacturing

Samsung Announces the Exynos 9825 SoC: First
Inm EUV Silicon Chip

by Andrei Frumusanu on August 6, 2019 9:30 PM EST
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