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A generalized force Qj contributes to Wδ  only if the corresponding  
 
generalized coordinate qj is given a virtual displacement. ( independent !) 

 

: Virtual work Wδ  of the actual forces for each individual variation of only   
 

the generalized coordinates at a time.  
 

Since the transformations are invertible, a single variation δ q j will induce a  
 
simultaneous variation of one or more of the physical coordinates. 

 
 A virtual displacement of a generalized coordinate in physical space ~ 
 

A combination of virtual displacements subjected to the constraints of  



 
the system.  

 
Generally, the corresponding virtual work done by the physical components of  
 

the forces can be computed and set equal to Q(i) δ q(i).  
 
Example: Figs.2.9, 2.10 
 
Consider a spring-loaded cart ( Fig.2.4 ) with a swinging pendulum  
 
attached to it.  
 

This system has two degrees of freedom.  Chosen x  and θ  as generalized  
 
coordinates. 
 

Since x  and θare independent variables, 



 
x xδ = δ ,   δθ = 0                   (2.34) 

 

And                     0xδ = ,   δθ = δθ                  (2.35) 
 
are two sets of admissible virtual displacements.  
 
Now compute the corresponding virtual work done by the external forces under  
 
each of the designated virtual displacements :  
 

If 0xδ ≠  and δθ = 0   

sW F xδ = − δ                        (2.36) 
 

If 0xδ = and 0δθ ≠   (Fig. 2.10), 
 



 
sinW mgl θ θδ = − δ              (2.38)   

 

sinQ mglθ θ∴ = − (torque)               (2.39) 
 
 

Then for an arbitrary combination of virtual  
 
displacements, the total virtual work is 
 

sinW kx x mgl θ θδ = − δ − δ                (2.40) 
 

Note :  
 
Physical interpretation of a generalized force depends on the significance of the  
 
related generalized coordinate.  



 
Once a given set of generalized coordinates are specified, the generalized forces  
 
can in principle always be determined, regardless of the physical interpretation  
 
of the generalized coordinates.  
 
~ Holonomic systems, the computation of generalized forces is very simple. :  
 

Virtual work done by holonomic constraint forces under a set of arbitrary  
 
virtual displacements compatible with the constraints is equal to zero.  

 
 
Therefore, in the computation of generalized forces, only the applied forces need  
 
to be considered. 

 
 



This results in a considerable benefit in the formulation of the equations of motion  
 
in terms of the generalized coordinates. 
 
Special consideration may be given to conservative forces.  Suppose that all the  
 
forces acting on a system of N particles are conservative. Each physical force is  
 
derivable from a potential function.  

 
Suppose: a single potential function:  

 

1 1 1 2 2 2 ,( , , , , , , , , )N N NV V x y z x y z x y z=            (2.41)        
 
The force on the i-th particle may be obtained as 
 

i iF V= −∇                                (2.42)                  
 



 
Where the gradient i∇  denote the operator 
 

ˆ ˆ ˆi+ j ki
i i ix y z

∂ ∂ ∂
∇ = +

∂ ∂ ∂                                   

 
Substituting the physical components of the forces (2.42) into Equation (2.31)  
 
results in the characterization of the virtual work as the negative of the variation  
 
of the potential function : 
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∂ ∂ ∂
δ = − δ + δ δ = −δ

∂ ∂ ∂∑                (2.44) 

 
Thus the virtual work done by a collection of conservative forces, under specified  
 
virtual displacements, is given as the negative of the variation of potential energy.  



Principle of Virtual Work: 
  
A conservative system is in static equilibrium iff the  

 
total potential energy of the system is stationary 
 

0Vδ =                (2.45)                                    
 
Thus the virtual work done by a collection of conservative 
forces, under specified virtual 
 
displacements, is given as the negative of the variation of  
 



potential energy.  
 
Principle of Virtual Work: 
  
A conservative system is in static equilibrium iff the  

 
total potential energy of the system is stationary 
 

0Vδ =             (2.45)                                       
Suppose : Single potential function   

 

1 1 1 2 2 2 ,( , , , , , , , , )N N NV V x y z x y z x y z=                      
 



 Force on i-th particle may be obtained as 
 

i iF V= −∇             (2.42)                                       
 

in here  
 

ˆ ˆ ˆi+ j ki
i i ix y z

∂ ∂ ∂
∇ = +

∂ ∂ ∂  ≡   
                               

Substitute Eqn.(2.42) into Wδ  : Eqn.(2.31) ,   
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V V VW x y z V
x y z=

∂ ∂ ∂
δ = − δ + δ δ = −δ

∂ ∂ ∂∑                (2.44) 
 



:  Virtual work done by conservative forces ~ 
 

 Negative of the variation of potential energy.  
 
 
Principle of Virtual Work: (MINI ? MAX ?) 
 

0Vδ =                                                    
 
Principle of Stationary Potential Energy ~  
 
Necessary and sufficient condition for static equilibrium  
 



of a conservative system. 
 
 
 
Transforming to generalized coordinates : 
 
Total P.E. of a conservative system as  
 

1 2( , , , )nV V q q q=                       (2.46) 
 
Consequently, the variation of the P.E. function in terms  
 

of jqδ  is : Eqn(2.47) 



 
or 
 

1
,
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VW q V q
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∂
δ = − δ ≡ − δ

∂∑  ( for j=1..n)        (2.48) 
 
For a conservative system : 
 
Generalized forces ~ also derivable from a potential  
 
function in terms of the generalized coordinates qj .  
 
That is,  



j
j

VQ
q
∂

= −
∂                         (2.49) 

 
Therefore the determination of generalized forces for  
 
conservative systems is very easy (?)  
 
Using transformation of coordinates   
 
~ As a final step in the derivation of equations of motion  

 
After the change of variables has been consummated, we  
 
will only need to keep the final result. 



 
LAGRANGE’S EQUATIONS OF MOTION 
 
Up to now, we consider the connection between physical  
 
variable and generalized coordinates based on the  
 
geometric configuration of a system ( admissible !).  
 
Especially, generalized coordinates compatible with the  
 
constraints make the kinematics much more manageable  
 
for holonomic systems 



 
 
We are now in a position to make the transition between  
 
vector mechanics and analytical mechanics.  
 
 
Instead of using free - body diagrams :  
 
Based on the variation of energy and the minimum  
 
number of coordinates needed to characterize the  
 
dynamics of the system ( always possible ?).  



 
 
: Lagrangian dynamics !! 

 
Kinetic energy, potential energy, and virtual work are all  
 
scalar quantities. Thus, the transformation of these  
 
quantities is rather straightforward.  
 
Based on a system qj instead of the physical coordinates ri.  
 
- A unified approach in a way that is independent of any  
 



particular coordinate system or set of generalized  
 
coordinates. 

 
For a system of N particles subjected to only holonomic  
 
constraints. The more general case will be considered later.  
 
Assume a system with n degrees of freedom and that  
 
there is a transformation : 

 
For the i th particle in a vector form as 
  



    mi ai = Fi                    (2.50) 
 

or 
pi

i
d F
dt

=                                (2.51) 
 

: linear momentum of the i-th particle as 
 

p ri i im=                                 (2.52) 
 

Find out how the equations of motion transform under  
 
the transformation to generalized coordinates.  
 



(..)d
dt  ? :  
 
Generalized momentum corresponding to the k th  
 
generalized coordinate is given by 

 
( ) ( )k k
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d d Tp p
dt dt q

∂
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                      (2.53) 
 

By definition, the total kinetic energy of the system is 
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then the generalized momentum pk  as 
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             (2.55) 
 
Remember the chain rule : 
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Then take derivative wrt kq  : 
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                    (2.57) 
 

Thus, each component pk can be expressed as Eqn.(2.58) 
 
 
Taking the total time derivative of Eqn (2.58) and  
 
applying the product rule to the terms in the summation  
 

( Remember : ( )d x y x y x y
dt

• • • ••

= +  ) 
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Remind the terms in the first summation as  
 
the Newton’s Second Law 
 

i i ixm x F=         i i iym y F=       i i izm z F=  

 



Thus the terms can be rewritten as 
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where the right-hand side ~ generalized force Qk  given by 
the transformation equations.  
 
To interpret the second summation terms in Eqn(2.59),  
 
note that  
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Thus the time rate of change of the kth generalized  

momentum is given by Eqn(2.60) 
 
Finally, the equations of motion in terms of qk  : 
 



( ) k
k k

d T T Q
dt q q

∂ ∂
− =

∂ ∂

       1, 2, ,k n=       (2.61) 
 

: General form of Lagrange’s Equations of Motion 
 
 There is one equation corresponding to each qk. 
  
The system of equations represents a coupled system of  
 


