
Thus the time rate of change of the kth generalized  

momentum is given by Eqn(2.60) 
 
Finally, the equations of motion in terms of qk  : 
 

( ) k
k k

d T T Q
dt q q

∂ ∂
− =

∂ ∂

       1, 2, ,k n=       (2.61) 
 

: General form of Lagrange’s Equations of Motion 
 
 There is one equation corresponding to each qk. 
  



The system of equations represents a coupled system of  
 
ordinary equations governing the evolution of the  
 
dynamical system in terms of the n generalized  
 
coordinates.  ~ Finite D.O.F !  
 
 * Continuous system ( such as beam, plate and shell ):  
 

PDE !  
 
Alternatively, Lagrange’s equations of motion may be  
 



written in terms of the generalized momenta as  
 

( )k k
k

d Tp Q
dt q

∂
− =
∂ ,          1, 2, ,k n=   

 
This means that Newton’s Second Law (2.51) is  
 
transformed under a change of variables to generalized  
 
coordinates 1 2, , nq q q .  

 
Hence Newton’s Second Law is not invariant under an  



arbitrary change of variables. The extra term represents  
 
inertial effects induced by the coordinate  
 
transformations.  
 
Lagrange’s equations allow the formulation of the  
 
equations of motion, independent of the physical  
 
significance of the variables. 
 
Note that the dynamics of the system is thus  
 



characterized by the kinetic energy and the virtual work  
 
done by generalized forces.  
 
The hallmark of the Lagrangian formulation is that the  
 
energy contains the dynamic information.  
 
The use of generalized coordinates, compatible with the  
 
constraints, results in the minimum number of variables  
 
needed to completely describe the motion.  
 



Furthermore, for generalized coordinates adopted to the  
 
constraints, the forces of constraint do not contribute to  
 
the virtual work.  
 
Hence the reactions do not appear in the resulting  
 
equations of motion.  
 
 
Ex : a simple pendulum (Fig 2.11).  
 
Assume that a particle of mass m is attached to a massless 



rod that is free to rotate in a vertical plane  
 
about a frictionless pin.  
 
The motion of this single-degree-of-freedom system may  
 

be described by the generalized coordinate θ .  
 
The Kinetic energy of the system is given in terms of the  
 

generalized velocity θ  as 
 



21
2

T mv= 2 21
2

ml θ= 

 
 

From a previous example, the generalized force  
 
associated with the rotational coordinate of a pendulum  
 
was derived, based on virtual work, as 
 

sinQ mglθ θ= −  
 

The equation of motion based on the Lagrangian  



 
formulation is therefore represented by 

( )d T T Q
dt θθ θ

∂ ∂
− =

∂ ∂
 

That is,  
 

2( ) 0 sind ml mgl
dt

θ θ− = −

 
 

which can be set into the more familiar form 
 

sin 0g
l

θ θ+ =

 



 
The systematic approach of the Lagrangian formulation  
 
is evident in this example.  
 
The formulation is based on the Kinetic energy and the  
 
virtual work.  
 

Since the variable θ  is adopted to the constraint of  
 
circular motion, the equation of motion has been set up  
 



without need to consider the force of constraint acting on  
 
the particle.  
 
The constraint force is in fact the tension in the cable.  
  
Ex : 
  
Consider the two-degree-of-freedom system consisting  
 
of two carts coupled by linear elastic springs. ( Fig. 2.12) 
 
The generalized coordinates q1 and q2 represent the  
 



displacements of the carts from the unstretched  
 
configurations of the springs. The kinetic energy is  
 
readily formulated as  
 

1 1 2 2
1 1
2 2

T m q m q= + 

 
 

The generalized forces can be deduced by the method of  
 
virtual work.  
 



Then 
1 1 1 2 2 1( )Q k q k q q= − + − ,    2 2 2 1( )Q k q q= − −  

 
 
 
 

1
1 1

( )d T T Q
dt q q

∂ ∂
− =

∂ ∂

,       2
2 2

( )d T T Q
dt q q

∂ ∂
− =

∂ ∂

         (2.62) 
 
The equations of motion (2.62) may be simplified and put  
 
in standard form as 
 



1 1 1 2 1 2 2( ) 0m q k k q k q+ + − =  

2 2 2 1 2 2 0m q k q k q− + =  

 

In a Matrix Form ?  
 
CONSERVATIVE SYSTEMS 
 
Lagrange’s equations of motion represent a unified  
 
approach to deriving the governing equations of a  
 
dynamical system.  



 
Equations (2.61) are completely general, in that they  
 
apply generically to all mechanical systems.  
 
The governing equations are based on the total Kinetic  
 
energy of a system and the generalized forces derived by  
 
the method of virtual work.  
 
Only generalized forces directly affecting the generalized  
 
coordinates contribute to the virtual work.  



 
Lagrange’s equations of motion may also be expressed in  
 
several alternate forms, depending on the nature of the  
 
generalized forces.  
 
For a conservative system, there exists a potential  
 
function in terms of the generalized coordinates 
 

1 2( , , , )nV V q q q=   
 



from which the generalized forces can be derived as 
 

k
k

VQ
q
∂

= −
∂                               (2.63) 

 
Substituting the generalized force (2.63) into  
 

( )
k k k

d T T V
dt q q q

∂ ∂ ∂
− =

∂ ∂ ∂

                         (2.64) 
 

Since the potential function only depends on the  
 
generalized coordinates,… 
 



Thus  
( )

k k

T T V
q q
∂ ∂ −

=
∂ ∂   

 
Rewriting Lagrange’s equations (2.64) results in  
 

( ) ( ) 0
k k

d T V T V
dt q q
 ∂ − ∂ −

− = ∂ ∂   
 

This version of the equation has a particularly simple  
 
form. The scalar quantity in the parentheses is defined as  
 



the ~ 
 
Lagrangian function: 
 

( , , ) ( , , ) ( )L q q t T q q t V q= −   
 
It is a function of the generalized coordinates and  
 
velocities.  
 
The Lagrangian represents the difference between the  
 
total Kinetic energy and the total Potential energy of a  



 
conservative system.  
 
The equations of motion (2.61) can thus be written as 

 

( ) 0
k k

d L L
dt q q

∂ ∂
− =

∂ ∂

 
 
which is the standard form of Lagrange’s equations of  
 
motion for conservative systems.  
 
A formulation based on the Lagrangian is convenience  



 
that allows by-passing the determination of generalized  
 
forces from the method of virtual work.  
 
It is interesting to note that for a conservative system all  
 
the dynamics are characterized by a single scalar  
 
function, the Lagrangian of the system.  
 
The Lagrangian function simplifies the equations of  
 
motion and often aids in the understanding of the  



 
dynamics of the system. 
 
 
 
Practices ! 
 

1. A particle of mass m is suspended by a massless wire  
 
of  length  cos ..( 0)r a b t a bω= + > >   to  form a  
 
spherical pendulum. Find the equation of motion. 
 



Sol)  T ~ p.102,Eqn.(2.24), V = cosmgr θ  
 
 2 DOF : ,θ φ  : governing eq.:  

 
Paffian form of constraint ? Linearize : 
 
Incase : r = constant ? 
 

2.A particle of mass m can slide without friction on  
 

the inside of a small tube which is bent in the form  
 

of a circle of radius r. The tube rotate about a vertical  



 
diameter with a constant angular velocity ω .  
 
Write the equation of motion. 
 

21 ( )
2

T m rθ θ
•

=  
 

21 ( sin )
2

T m rω ω θ=  
 
V = cosmgr θ  
 



Sol) T= 2 2 2 21 ( sin )
2

mr θ ω θ
•

+ , V= cosmgr θ , L=T-V 
 

 
3.A particle of mass m can slide on a smooth wire  

 
having the form 23y x=  , where the gravity acts in the  
 
direction of the negative y-axis.  
 
Obtain the equations of motion. 

 
   Sol) T=

2 21 ( )
2

m x y
• •

+ , V= mgy with 23y x=  
         



Eliminate : y ~ Finally, 
 

  
4.Text : p.120 

  
 
  Elevator !! 


