
LAGRANGIAN SYSTEMS  
 
Most dynamics problems ~  Holonomic !  
 
 (: Not all systems are conservative ) 
 
 A conservative force - Derivable from a potential energy  
 
 (Depending only on the spatial coordinates of a system)  
 
- Lagrangian can be constructed and the dynamics of  

 
the system is contained in the Lagrangian. 

 



But there may still be a scalar function from which the  
 
generalized components of a force may be derived.  
 
Suppose  :  

 
A scalar function ( , , )V q q t  for a generalized force Qk as 

 
 in Text ! 
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~ We call ( , , )V q q t  as a generalized potential function.  
 
 
Substituting the generalized force (2.65), then 
 
Lagrange’s equations (2.61) results in  
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Now, we can still define a Lagrangian function in terms  
 



of the kinetic energy of the system and the generalized  
 
potential function as ( , , ) ( , , ) ( , , )L q q t T q q t V q q t= −    

 
By setting all terms to the left-hand side,  
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: Identical to Lagrange’s eqns for conservative systems.  
 
Note : Unless the potential function depends only on the  
 



generalized coordinates, the system governed by  
 
Equation (2.67) is not conservative.  

 
 
Holonomic systems derivable from a generalized poten-  
 
tial function ( , , )V q q t  are known as Lagrangian systems. 
 
A well-known example of a velocity-dependent potential  
 
- A charged particle in an electromagnetic field. 
 
 The force on the particle is given by 
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: e  - charge carried by the particle,  
 

φ   scalar potential,   
 
A  vector potential of the field.  

 
The electromagnetic force field is derivable from the  
 
generalized potential  
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Not all systems are Lagranian, although all generalized  
 
forces ~ Conservative or Non-conservative  
 
: Depending on the nature of the actual forces acting on a  
 
system.  

 
The virtual work done by a generalized force Qk under a  



 
virtual displacement kqδ  can be considered  
 

cons nc
k k k kQ q W Wδ δ δ= +  

 
Resultant generalized force associated with a generalized  
 
coordinate qk can thus be spilt into two contributions: 
 

cons nc
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Using conservative component such as potential function,  



 
Then, each generalized force may be decomposed as  
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Construct the Lagrangian function L T V= −  and  
 
formulate Lagrange’s equations of motion, in hybrid  
 
form, as 
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Here nc

kQ represent generalized forces not derivable from 
 
 a potential function.  
 
 

 
 
 
 



DISSIPATIVE SYSTEMS 
 
Are all forces derivable from a potential function ? 
 
~ Forces due to dissipation of energy :  

 
friction force is non-conservative,  

 
Nevertheless, some non-conservative generalized forces  
 
may still be derivable from yet another scalar function. 
  
 
 



 Components proportional to the velocities of the  
 
particles  

 
 

iix x iF c x= −  ,         iiy y iF c y= −  ,         iiz z iF c z= −   
 

 
The virtual work done by these dissipative forces  
 
under a set of virtual displacements is 
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Generalized forces associated with the dissipation forces  
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… 

 
 
Now, define a scalar function for generalized velocities  
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Thus the dissipative generalized forces in terms of D : 
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D : Rayleigh’s Dissipation Function  

 
Finally, the most general form of Lagrange’s equations of  
 
motion as 
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where L T V= −  : Lagrangian, D : Dissipation function 



 
 *

kQ : Generalized force not derivable from a 
potential function or a dissipation function.  

 
 

Note : Rayleigh’s dissipation function ~ one-half the  
 
rate at dissipated energy : average loss of power in a  
 
non-conservative system. 
  
 
 



Ex : A simple spring-mass system as in Fig.2.13 
 

Additional loading with a viscous damper, a harmonica- 
 
lly applied forcing function  
 
Lagrangian of the system ?  L T V= −  
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L mq kq= −  
 

The dissipation function for viscous damper: 
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D cq=   
 
Another generalized force ~ applied harmonic force  
 
Substituting into Eqn (2.68) : 
 

( ) ( ) cos f
d mq kq cq A t
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which can be put into standard form as  
 

cos fmq cq kq A tω+ + =   
 



Ex: Simple pendulum with pin friction as in Fig 2.14 
 
 Assume : Pin exerts a resisting moment proportional to  
 

the angular velocity of the pendulum: 
 

fM νθ= −   
 
Instantaneous rate of energy loss  
 

fP M θ= 

 
 

Dissipation function (average power lost) is  
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Since * 0Qθ = , the equation of motion is 
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FORCES OF CONSTRAINT 
 
Lagrangian formalism:Highlighted by two main features  
 
It has been demonstrated ! 



 
Part of the advantage: Constraint forces do no virtual  
 
work under a set of virtual displacements compatible  
 
with the constraints.  
 
Constraints reduce the number of degrees of freedom.  
 
The constraint forces themselves do not appear in the  
 
equations of motion : Symmetry of a system ?? 
 
Holonomic systems can be described by a set of  



 
independent generalized coordinates free of constraints.  
 
Systems with non-holonomic constraints cannot be  
 
reduced to independent generalized coordinates.  
 
 
 
The equations of motion must be augmented by the  
 
Constraints ~> Forces of constraint are also established. 
 
Constraint forces in holonomic systems may also be  



 
analyzed. 
 
 Only realize that constraints are enforced by reacting  
 
forces in the directions normal to the constraint surfaces  
 
 
 
Physically, a constraint must be imposed in the form of  
 
forces or moments. Thus we associate constraints with  
 
additional generalized forces acting on the system.  



 
These forces depend on the motion and cannot be found  
 
prior to solving the equations of motion. 
 
 
Each holonomic constraint can in principle be replaced  
 
by a reacting constraint force.   Additional degrees of  
 
freedom may be introduced onto the problem by adding  
 
generalized coordinates corresponding to the violation of  
 



the constraints.  
 
These additional coordinates are called superfluous  
 
coordinates. The generalized forces associated with the  
 
superfluous coordinates are the forces of constraint. If  
 
the original coordinates and the extra coordinates are 
 
considered as independent then the resulting equations of  
 
motion will contain the constraint forces.  
 



 

1.(5)(a) Systematically state the advantages & drawback of the ‘Newtonian Dynamics’ and 

‘Analytical Dynamics’.                         

  (5) (b) Explain, ‘Actual’ and ‘Virtual’ displacements with a diagram. 

  (5) (c) Explain with a physical meaning, ‘Lagrange’s equation is invariant under a  

coordinate transformation for system.’ 

 

2.  Given a system with generalized coordinates 1 2,q q  and the constraint equation. 
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Determine whether the constraint is holonomic or not. 

 

3. A position of a particle of mass m is given by the Cartesian coordinates ( , , ).x y z  



Assuming a potential energy function 2 2 21 ( )
2

V k x y z= + +  and a constraint described by the 

equation 2 3 4 5 0,x y z+ + + =    Find, 

(5)(a) Differential equations of motion. 

(20)(b) Velocity of the moving constraint. 

 

4. Consider the motion of a particle of mass m which is constrained to move on the surface of a 

cone of half-angle α  and which is subject to a gravitational force g. Let the axis of the cone 

correspond to the z axis− and let the apex of the cone be located at the origin as in the Figure. 

(5)(a) For general system, state the categories of constraints. 

(5)(b) Obtain the constraint for this problem. And, choose a category in (a). 

(10)(c)Obtain Lagrange’s equation for radius r, and determine general solution. 

 

 
 



1. (5)(a) Draw arbitrary two curves for t  and t t+ ∆ .   State ‘actual force’ and 
 ‘virtual force’ acting on a body, and state brief comments for each force. 

   (10)(b) Lagrangian dynamics considers all forces acting on a body as a whole using scalar 
quantities T and V.  Explain this concept using equations of motion for particles. 

   
2.  Fig.1 shows absolute coordinate system X-Y-Z, and a body-fixed coordinate  

system x-y-z to describe a point P. Using a body fixed coordinate system, express : 
 
(3)(a) Absolute velocity  

 
(12)(b)Absolute acceleration and indicate the direction of each vector components.  

 
3.  A block of mass m is attached a cord of original length L and is rotating about a thin hub 

as shown in Fig.2. Find the constraint force if 
  
(10) (a) the cord is not wrapping around the hub. 
  
(15) (b) the cord is wrapping around the hub. 
 
 
 



4. As shown in Fig. 3, a particle m moves in the fixed plane x,y under the influence of the  
 
attractions 1 2,C x C y− − from the coordinate axes and a force rµ  perpendicular to the radius  
 
vector and proportional to the distance from the origin O  which point is again the only  
 
equilibrium position. All quantities should be based on ,x y coordinate system.  

 
(5) (a) Obtain potential energy of the forces. 

 
(10) (b) Obtain differential equations of motion for a particle. 
 
5. Under the gravity field g, consider a particle of mass m which is constrained to move on the  

 
surface of a cone of half-angle α as in Fig.4. 
 
(5)(a) Express constrain equation. Also, obtain T and V. 
 
(10)(b) Derive Lagrange equation of motion for r. 
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(15) 7.Using two systems as in Fig.5,. show that ‘Lagrangian system is invariant under 

coordinate transformation’.  
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