FORCES OF CONSTRAINT

Lagrangian formalism :
Generalized coordinate Minimum set of Eqns
Part of the advantage : Constraint forces do no virtual
work under a set of virtual displacements compatible
with the constraints. Generally,
Constraints reduce the number of degrees of freedom.

The constraint forces do not appear in the eqns of
motion : Symmetry of a system ?
~Holonomic systems can be described in terms of
independent generalized coordinates free of constraints.
\sim Non-holonomic constraints cannot be reduced to
independent generalized coordinates.

Eqns of motion must be augmented by the Constraints
$\sim>$ Forces of constraint are also established.
*Constraint forces in holonomic systems may also be analyzed.
: Constraints are enforced by reacting forces in the directions normal to the constraint surfaces

Physically, a constraint must be imposed in the form of
forces or moments. ~ > Constraints with additional
generalized forces acting on the system. These forces
depend on the motion and cannot be found prior to
solving the eqns of motion.
: Should be solved simultaneously
Problems with or without constraint?
\sim Holonomic constraint can in principle be replaced
by a reacting constraint force. - Additional dof may be introduced onto the problem by adding generalized
coordinates (superfluous coordinates) corresponding to
the violation of the constraints.
The generalized forces associated with the superfluous
coordinates are the forces of constraint.

In case, original coordinates and the extra coordinates

are considered as independent, then the resulting
eqns of motion will contain the constraint forces.
These forces will only be in the eqns associated with the
superfluous coordinates. After the eqns of motion are set
up, the superfluous coordinates are set to constant values.

Setting up the problem this way results in eqns involving
the constraint forces and also gives the values of these
forces necessary to enforce the given constraints.
For non-holonomic constraints, the eqns of motion are
formulated using Lagrange multiplier method.

Suppose : n generalized coordinates $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{\boldsymbol{n}}$
is restricted(?) by a non-holonomic constraint:

$$
A_{1} d q_{1}+A_{2} d q_{2}+\cdots+A_{n} d q_{n}+A_{0} d t=0
$$

Since the variations take place without increment in
time, $\delta t=0$, the resulting eqn of constraint for the
virtual displacements becomes

$$
\begin{equation*}
A_{1} \delta q_{1}+A_{2} \delta q_{2}+\cdots+A_{n} \delta q_{n}=0 \tag{2.69}
\end{equation*}
$$

Geometrically, Eqn (2.69) defines a direction orthogonal
to the virtual displacement δq.
Thus the constraint force is a scalar multiple of the vector
$\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. This scalar is a function of time $\lambda(t)$.
Total generalized force acting on the generalized
coordinate q_{k}, including applied and reacting forces, is

$$
Q_{k}+\lambda A_{k}
$$

The resulting eqns of motion for non-holonomic systems
are:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{k}}\right)-\frac{\partial T}{\partial q_{k}}=Q_{k}+\lambda A_{k}, \quad k=1,2, \ldots, n \tag{2.70}
\end{equation*}
$$

Eqns (2.70) together with (2.69) represent $n+1$ equations
in $n+1$ unknowns, including the Lagrange multiplier.
These eqns are solved simultaneously. In addition to
solving for the generalized coordinates, the solution gives
the component of the reacting constraint force.

Generalization: System is subjected to \boldsymbol{J} non-holonomic

 constraints given by$$
\begin{equation*}
A_{j 1} \dot{q}_{1}+A_{j 2} \dot{q}_{2}+\cdots+A_{j n} \dot{q}_{n}+A_{j 0}=0 \tag{2.71}
\end{equation*}
$$

or equivalently as

$$
A_{j 1} d q_{1}+A_{j 2} d q_{2}+\cdots+A_{j n} d q_{n}+A_{j 0} d t=0
$$

where j ranges from 1 to the number of such constraints
J. Coefficients $A_{j k}$ may be functions of the
generalized coordinates and time. Introduce J Lagrange multipliers, $\lambda_{j}(t)$, one for each constraint eqn (2.71).
~ Total generalized force driving the \boldsymbol{k}-th generalized
coordinate is

$$
Q_{k}+\sum_{j=1}^{J} \lambda_{j} A_{j k}
$$

Thus, eqn of motion for each generalized coordinate $\boldsymbol{q}_{\boldsymbol{k}}$:

$$
\begin{equation*}
\int\left[\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{k}}\right)-\frac{\partial T}{\partial q_{k}}=Q_{k}+\sum_{j=1}^{J} \lambda_{j} A_{j k}\right] \delta q_{k} \tag{2.72}
\end{equation*}
$$

The set of eqns (2.72) together with the J eqns of
constraint (2.71) constitute $n+J$ eqns in $n+J$ unknowns.
These eqns must be solved simultaneously for the
generalized coordinates and the J Lagrange multipliers
$\lambda_{j}(t)$. The generalized constraint force reacting on the
coordinate q_{k} :

$$
R_{k}=\sum_{j=1}^{J} \lambda_{j} A_{j k}
$$

Method of Lagrange multipliers may also be applied to systems with holonomic constraints.

Recall that a holonomic constraint $f\left(q_{1}, \ldots . q_{n}, t\right)=$ const
may be converted to differential form as

$$
\frac{d f}{d t}=\frac{\partial f}{\partial q_{1}} \frac{d q_{1}}{d t}+\frac{\partial f}{\partial q_{2}} \frac{d q_{2}}{d t}+\cdots+\frac{\partial f}{\partial q_{n}} \frac{d q_{n}}{d t}+\frac{\partial f}{\partial t}=0
$$

This is the same form as a non-holonomic constraint
(2.71), with the coefficients

$$
A_{j k}=\frac{\partial f}{\partial q_{k}}
$$

$$
A_{j 0}=\frac{\partial f}{\partial t}
$$

Thus holonomic systems with constraints can also be analyzed, as well as systems having constraints of both
types.

As an example, (p.120) : Consider the dynamics of a
particle constrained to slide on a frictionless wire. This
wire is in the shape of a parabola that is rotating about
its axis of symmetry with constant angular velocity
Cylindrical coordinates are intrinsic to this problem.
There is only one degree of freedom, namely the position
of the mass on the wire. The two constraints are $z=b r^{2}$,
where \boldsymbol{b} is some constant, and $\dot{\theta}=\omega$. These constraints
are holonomic, which imply constraints of the form (2.71)
aS

$$
\lambda_{1}(\delta z-2 b r \delta r)=0 \text { and } \lambda_{2} \delta \theta=0
$$

The coefficients in (2.71) are seen in matrix form as

$$
\left[\begin{array}{cc}
-2 b r & 01 \\
0 & 10
\end{array}\right]\left(\begin{array}{l}
\delta r \\
\delta \theta \\
\delta z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Hence there will be two Lagrange multipliers - one for each constraint. The Lagrangian of the system is

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)-m g z
$$

The equations of motion are

$$
\begin{aligned}
& m \ddot{r}-m r \dot{\theta}^{2}=-2 b \lambda_{1} r \\
& \frac{d}{d t}\left(m r \dot{\theta}^{2}\right)=\lambda_{2} \\
& m \ddot{z}+m g=\lambda_{1}
\end{aligned}
$$

Now since $\dot{\theta}=\omega$, there are four unknowns $r(t), z(t), \lambda_{1}(t)$, and $\lambda_{2}(t)$: Three eqns of motion and the constraint eqn $z=b r^{2}$.

Eliminating the multiplier $\lambda_{1}(t)$ results in the equation

$$
\ddot{r}-r \omega^{2}=-2 b r(\ddot{z}+g)
$$

Differentiation of the constraint $z=b r^{2}$ results in

$$
\ddot{z}=2 b \dot{r}^{2}+2 b r \ddot{r}
$$

and so we end up with the single differential equation for
$r(t)$ as

$$
\begin{equation*}
\ddot{r}\left(1+4 b^{2} r^{2}\right)+4 b^{2} r \dot{r}^{2}=r\left(\omega^{2}+2 b m g\right) \tag{2.73}
\end{equation*}
$$

The entire analysis reduces to the solution of Eqn (2.73).
The coordinate $z(t)$ is obtained from the constraint
eqn. The two Lagrange multipliers are also given in terms of r and z from the eqs of motion.

Finally, the torque required to maintain the uniform
rotation is

$$
\lambda_{2}=2 m \omega \dot{r}
$$

And the components of the reacting constraint force
exerted by the wire on the mass are

$$
R_{r}=-2 b \lambda_{1}(t) r(t) \text { and } R_{z}=\lambda_{1}(t)
$$

Practice !!

INTEGRALS OF MOTION

Up to now: Concern on formulating the eqs of motion.
Lagragian formalism for a systematic way to apply

Newton's laws of motion using generalized coordinates.
What is the next step? Actually analyze the dynamics
based on the eqns of motion.
\sim Eqns consist of a system of \boldsymbol{n} O.D.E, each of the $2^{\text {nd }}$ order! ~ Typically nonlinear.

Except, the eqns of motion are linear, Eqns of motions
are sometimes linearized based on the small displace-
ments assumptions.
This may have some utility in stability analysis, but
linearization typically destroys the applicability of the
eqns of motion.

Generally, eqns of motion are too complicated !
\rightarrow by integration based on elementary methods.
For specified initial conditions, the eqns of motion are
usually integrated numerically.
Example, Runge-Kutta algorithms : good accuracy.
Drawback is that the resultant numerical solution is only
valid for one set of initial conditions.

Aim of analytical mechanics?
~Analysis of the eqns of motion themselves,
without actually solving the system of eqns.

Such qualitative analysis was introduced in Chapter 1
with the energy analysis of conservative systems.
Conservative systems are distinguished by conservation
of total mechanical energy.

- Allowed the partial integration of eqn of motion.

This concept is readily extended to general systems.
Suppose that a certain combination of the generalized
coordinates and velocities remains invariant during the
evolution of the system. : If there exists some function
$G\left(q_{1}, q_{2}, \ldots, q_{n} ; \dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{q}_{n} ; t\right)$ that remains constant over
time, then

$$
\begin{equation*}
G\left(q_{1}, q_{2}, \ldots, q_{n} ; \dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{q}_{n} ; t\right)=C \tag{2.74}
\end{equation*}
$$

or equivalently

$$
\frac{d G}{d t}=0
$$

The relation (2.74) is called an integral of the motion.
C is called a constant of motion. \sim An integral of motion
represents a quantity that is conserved during the motion.
There are only first derivatives in an integral of motion,
so each integral of motion \sim a partial integration of the
original system : used as reduction of the order of the
system.

Lagrange's eqns represent \boldsymbol{n} second-order (partial) diff.

 eqns. ~ Ideally, the solution of Lagrange's equationsconsists of finding $2 n$ integral of motion (2.74), each
containing only the generalized coordinates.(?)
This is typically not possible, but certain systems do
admit some integrals of motion.

For example, in a conservative system, the total
mechanical energy is an invariant of the system.

$$
T(\mathrm{q}, \dot{\mathrm{q}}, \mathrm{t})+V(\mathrm{q})=\text { const }
$$

is an integral of the motion. Value of the constant of
motion is determined by initial conditions.
A conservative system is a special case of a Lagrangian
system.
\sim Eqs of motion for a Lagrangian system :

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{\partial L(q, \dot{q}, t)}{\partial \dot{q}_{k}}\right]-\frac{\partial L(q, \dot{q}, t)}{\partial q_{k}}=0 \tag{2.75}
\end{equation*}
$$

Total time derivative of $L(q, \dot{q}, t)$ is

$$
\begin{aligned}
& \frac{d L}{d t}=\sum_{k=1}^{n} \frac{\partial L}{\partial q_{k}} \dot{q}_{k}+\sum_{k=1}^{n} \frac{\partial L}{\partial \dot{q}_{k}} \ddot{q}_{k}+\frac{\partial L}{\partial t} \\
& \left(\sim L, q_{k} \bullet \dot{q}_{k}+L, \dot{q}_{k} \bullet \ddot{q}_{k}+\frac{\partial L}{\partial t} \cdot \text { for } . k=1 . . n\right)
\end{aligned}
$$

* Lagrange's Eqns (2.75) we have

$$
\frac{\partial L}{\partial q_{k}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{k}}\right)
$$

this means

$$
\begin{aligned}
\frac{d L}{d t} & =\sum_{k=1}^{n} \frac{\partial L}{\partial \boldsymbol{q}_{k}} \dot{\boldsymbol{q}}_{k}+\sum_{k=1}^{n} \frac{\partial L}{\partial \dot{\boldsymbol{q}}_{k}} \ddot{\boldsymbol{q}}_{k}+\frac{\partial L}{\partial t} \\
& =\sum_{k=1}^{n} \frac{d}{d t}\left(\dot{\boldsymbol{q}}_{k} \frac{\partial L}{\partial \dot{\boldsymbol{q}}_{k}}\right)+\frac{\partial L}{\partial t}
\end{aligned}
$$

Therefore

$$
\frac{d}{d t}\left(\sum_{k=1}^{n} \dot{q}_{k} \frac{\partial L}{\partial \dot{q}_{k}}-L\right)=-\frac{\partial L}{\partial t} . .(2.76)
$$

Dimension of L is energy, the quantity in the parentheses
is known as the Jacobi energy function

$$
h(\mathrm{q}, \dot{\mathrm{q}}, t)=\sum_{k=1}^{n} \dot{q}_{k} \frac{\partial L}{\partial \dot{q}_{k}}-L
$$

Eqn (2.76) can be written :

$$
\frac{d h}{d t}=-\frac{\partial L}{\partial t}
$$

\sim If the Lagrangian does not contain time t explicitly,
then the Jacobi energy function is invariant during the motion. ~ Energy function is an integral of the motion with

$$
\sum_{k=1}^{n} \dot{\boldsymbol{q}}_{k} \frac{\partial L}{\partial \dot{\boldsymbol{q}}_{k}}-L=\boldsymbol{h}=\mathrm{cosn} \mathrm{t}
$$

