
FORCES OF CONSTRAINT 
 
Lagrangian formalism :  
 
Generalized coordinate  Minimum set of Eqns 
 
Part of the advantage : Constraint forces do no virtual  
 
work under a set of virtual displacements compatible  
 
with the constraints. Generally, 
 
Constraints reduce the number of degrees of freedom.  
 



The constraint forces do not appear in the eqns of  
 
motion : Symmetry of a system ? 
 
~Holonomic systems can be described in terms of  
 
independent generalized coordinates free of constraints.  
 
~ Non-holonomic constraints cannot be reduced to  
 
independent generalized coordinates.  
 
 
 



Eqns of motion must be augmented by the Constraints  
 
~> Forces of constraint are also established. 
 
*Constraint forces in holonomic systems may also be  
 
analyzed. 

 
 : Constraints are enforced by reacting forces in the  
 

directions normal to the constraint surfaces  
 
 
 



Physically, a constraint must be imposed in the form of  
 
forces or moments. ~ > Constraints with additional  
 
generalized forces acting on the system. These forces  
 
depend on the motion and cannot be found prior to  
 
solving the eqns of motion.  
 
: Should be solved simultaneously  

 
  Problems with or without constraint ? 
 



~ Holonomic constraint can in principle be replaced  
 
by a reacting constraint force. - Additional dof may be  
 
introduced onto the problem by adding generalized  
 
coordinates (superfluous coordinates) corresponding to  
 
the violation of the constraints.  
 
The generalized forces associated with the superfluous  
 
coordinates are the forces of constraint.  
 



In case, original coordinates and the extra coordinates  
 
are considered as independent, then the resulting  
 
eqns of motion will contain the constraint forces. 
 
 These forces will only be in the eqns associated with the  
 
superfluous coordinates. After the eqns of motion are set  
 
up, the superfluous coordinates are set to constant values.  
 
 
 



Setting up the problem this way results in eqns involving  
 
the constraint forces and also gives the values of these  
 
forces necessary to enforce the given constraints.  
 
For non-holonomic constraints, the eqns of motion are  
 
formulated using Lagrange multiplier method.  
 
Suppose : n generalized coordinates 1 2, , , nq q q  
 
is restricted(?) by a non-holonomic constraint: 



 
1 1 2 2 0 0n nA dq A dq A dq A dt+ + + + =  

 
Since the variations take place without increment in  
 
time, 0tδ =  , the resulting eqn of constraint for the  
 
virtual displacements becomes  
 

1 1 2 2 0n nA q A q A qδ δ δ+ + + =                 (2.69) 
 
Geometrically, Eqn (2.69) defines a direction orthogonal  
 



to the virtual displacement qδ .  
 
Thus the constraint force is a scalar multiple of the vector  
 

1 2( , , , )nA A A .   This scalar is a function of time ( )tλ .  
 
Total generalized force acting on the generalized  
 
coordinate qk, including applied and reacting forces, is 
 
                     k kQ Aλ+  
 
The resulting eqns of motion for non-holonomic systems 



are: 
 

( ) k k
k k

d T T Q A
dt q q

λ∂ ∂
− = +

∂ ∂

,     1,2, ,k n=     (2.70) 
 

Eqns (2.70) together with (2.69) represent n + 1 equations  
 
in n + 1 unknowns, including the Lagrange multiplier.  
 
These eqns are solved simultaneously. In addition to  
 
solving for the generalized coordinates, the solution gives  
 
the component of the reacting constraint force.  



Generalization: System is subjected to J non-holonomic  
 
constraints given by 
 

1 1 2 2 0 0j j jn n jA q A q A q A+ + + + =  
                (2.71) 

 
or equivalently as 
 

1 1 2 2 0 0j j jn n jA dq A dq A dq A dt+ + + + =  
 
where j ranges from 1 to the number of such constraints  
 
J. Coefficients jkA  may be functions of the 



generalized coordinates and time.   Introduce J 
Lagrange  
 
multipliers, ( )j tλ , one for each constraint eqn (2.71).  
 
~ Total generalized force driving the k-th generalized  
 

coordinate is 

1

J

k j jk
j

Q Aλ
=

+∑  
 
Thus, eqn of motion for each generalized coordinate qk  :  
 



1

J

k j jk k
jk k

d T T Q A q
dt q q

λ δ
=

  ∂ ∂
− = +  ∂ ∂  

∑∫


    (2.72) 
 
The set of eqns (2.72) together with the J eqns of  
 
constraint (2.71) constitute n + J eqns in n + J unknowns.  
 
These eqns must be solved simultaneously for the  
 
generalized coordinates and the J Lagrange multipliers  
 

( )j tλ .  The generalized constraint force reacting on the  
 



coordinate qk :  

1

J

k j jk
j

R Aλ
=

=∑  
 
Method of Lagrange multipliers may also be applied  
 
to systems with holonomic constraints.  
 
Recall that a holonomic constraint 1( ,.... , )nf q q t const=   

 
may be converted to differential form as  
 

1 2

1 2

0n

n

dqdq dqdf f f f f
dt q dt q dt q dt t

∂ ∂ ∂ ∂
= + + + + =
∂ ∂ ∂ ∂

  



 
This is the same form as a non-holonomic constraint  
 
(2.71), with the coefficients 
 

jk
k

fA
q
∂

=
∂           0j

fA
t

∂
=
∂  

 
Thus holonomic systems with constraints can also be  
 
analyzed, as well as systems having constraints of both  
 
types. 



 
As an example, (p.120) : Consider the dynamics of a  
 
particle constrained to slide on a frictionless wire. This  
 
wire is in the shape of a parabola that is rotating about  
 
its axis of symmetry with constant angular velocity   
------------------------------------------------------------------------ 
Cylindrical coordinates are intrinsic to this problem.  
 
There is only one degree of freedom, namely the position  
 



of the mass on the wire. The two constraints are 2z br= ,  
 
where b is some constant, and θ ω= . These constraints  
 
are holonomic, which imply constraints of the form (2.71)  
 
as  
 

1 2( 2 ) 0  and 0z br rλ δ δ λ δθ− = =  
 

The coefficients in (2.71) are seen in matrix form as  
 



0
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Hence there will be two Lagrange multipliers – one for  
 
each constraint. The Lagrangian of the system is  
 

2 2 2 21 ( )
2

L m r r z mgzθ= + + −

   
 

The equations of motion are  
 



2
1

2
2
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2
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Now since θ ω= , there are four unknowns ( )r t , ( )z t , 1( )tλ , and  
 

2 ( )tλ . : Three eqns of motion and the constraint eqn 2z br= .  
 
Eliminating the multiplier 1( )tλ  results in the equation 
 

2 2 ( )r r br z gω− = − +   
 



Differentiation of the constraint 2z br=  results in 
 

22 2z br brr= +   
 
and so we end up with the single differential equation for  
 

( )r t  as 
 

2 2 2 2 2(1 4 ) 4 ( 2 )r b r b rr r bmgω+ + = +              (2.73) 
                     
The entire analysis reduces to the solution of Eqn (2.73).  
 
The coordinate ( )z t  is obtained from the constraint  



 
eqn.  The two Lagrange multipliers are also given in  
 
terms of r and z from the eqs of motion.  
 
Finally, the torque required to maintain the uniform  
 
rotation is 
 

2 2m rrλ ω=   
 
And the components of the reacting constraint force  
 



exerted by the wire on the mass are 
 

1 12 ( ) ( )   and   ( )r zR b t r t R tλ λ= − =  
 

Practice !! 
  
 
INTEGRALS OF MOTION 

 
Up to now: Concern on formulating the eqs of motion.  
 
Lagragian formalism for a systematic way to apply  
 



Newton’s laws of motion using generalized coordinates.  
 
What is the next step ?  Actually analyze the dynamics  
 
based on the eqns of motion. 

 
~ Eqns consist of a system of n O.D.E, each of the 2nd  
 

order! ~ Typically nonlinear.  
 
Except, the eqns of motion are linear, Eqns of motions  
 
are sometimes linearized based on the small displace-  
 



ments assumptions.  
 
This may have some utility in stability analysis, but  
 
linearization typically destroys the applicability of the  
 
eqns of motion. 
 
Generally, eqns of motion are too complicated !  
 
 by integration based on elementary methods.  

 
For specified initial conditions, the eqns of motion are 
 



usually integrated numerically.  
 
Example, Runge-Kutta algorithms : good accuracy.  
 
Drawback is that the resultant numerical solution is only  
 
valid for one set of initial conditions. 
 
Aim of analytical mechanics ?  
 
~Analysis of the eqns of motion themselves,  
 
without actually solving the system of eqns.  
 



Such qualitative analysis was introduced in Chapter 1  
 
with the energy analysis of conservative systems.  
 
Conservative systems are distinguished by conservation  
 
of total mechanical energy.  
 
- Allowed the partial integration of eqn of motion.  
 
This concept is readily extended to general systems.  
 
Suppose that a certain combination of the generalized  
 



coordinates and velocities remains invariant during the  
 
evolution of the system. : If there exists some function  
 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t  
   that remains constant over  

 
time, then  
 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t C=  
                  (2.74) 

 
or equivalently 

0dG
dt

=  
 



The relation (2.74) is called an integral of the motion.  
 
C is called a constant of motion.  ~ An integral of motion  
 
represents a quantity that is conserved during the motion.  
 
There are only first derivatives in an integral of motion,  
 
so each integral of motion ~ a partial integration of the  
 
original system : used as reduction of the order of the  
 
system.  
 



Lagrange’s eqns represent n second-order (partial) diff.  
 
eqns. ~ Ideally, the solution of Lagrange’s equations  
 
consists of finding 2n integral of motion (2.74), each  
 
containing only the generalized coordinates.(?) 
 
 This is typically not possible, but certain systems do  
 
admit some integrals of motion. 
 
For example, in a conservative system, the total  
 



mechanical energy is an invariant of the system.  
 

(q,q, )    (q)   =   constT t V+  
 
is an integral of the motion. Value of the constant of  
 
motion is determined by initial conditions.  
 
A conservative system is a special case of a Lagrangian  
 
system.  
 
~ Eqs of motion for a Lagrangian system : 
 



 
( , , ) ( , , )[ ] 0

k k

d L q q t L q q t
dt q q

∂ ∂
− =

∂ ∂
 
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Total time derivative of (q,q, )L t  is 
 

1 1
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* Lagrange’s Eqns (2.75) we have 
 



k k

L d L
q dt q

 ∂ ∂
=  ∂ ∂   

 
this means 
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Therefore  

1
..(2.76)

n

k
k k

d L Lq L
dt q t=
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Dimension of L is energy, the quantity in the parentheses  
 
is known as the Jacobi energy function 
 

1
(q,q, )

n

k
k k

Lh t q L
q=

∂
= −

∂∑ 



 
 
Eqn (2.76) can be written : 
 

dh L
dt t

∂
= −

∂  
 
~ If the Lagrangian does not contain time t explicitly,  



 
then the Jacobi energy function is invariant during the  
 
motion. ~ Energy function is an integral of the motion  
 
with  

 

1
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