
 The position of a particle of mass m is given by the  

Cartesian coordinates ( , y, z).x  Assuming a potential 

energy function  2 2 21 ( )
2

V k x y z= + +  and a constraint 

described by the equation  

2 3 4 5 0x y z+ + + =     find  

(a) Differential equation of motion. 

(b) Velocity of the moving constraint. 

 

Sol)  

Kinetic energy in Cartesian coordinate system : 

    
2 2 21 m( )

2
L T V

T x y z= + +

= −

  

  

 

*Rheonomic system : 2dx+3dy+4dz+5dt=0 : Elimination ?  

                                    Integrable ? 

(a) Equations of motion 
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(b) Velocity of the moving constraint 
(1) 2 (2) 3 (3) 4× + × + ×   
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 Holonomic system (Gravity: g) 
23y x=  : 6 0 : 6 0xx y xdx dy− = − =    

Elimination (x) 

2 21 ( )
2

V mgy

T m x y= +

=

 

  

 

(a) Equations of motion for x, y 

1

m

j ji
ji i

d L L c
dt q q

λ
=

 ∂ ∂
− = ∂ ∂ 

∑


  

  Constraint  : one 

1 1,x ymx my mgλ λ= + =   

 From the constraint eqn: 

 

     23y x= : 6 0 :x x yδ δ− =  

     1 16 , 1x ya x a= = −   

1 16 ,mx x my mgλ λ= + = −   

 

(b) Find the maximum constraint force  

for 0(0) 0, (0)y y y= =   



2 2 2 2 2 2
1 1 1 1 1 1 1 1( ) ( ) 36 1

0!!!

x y x yC a a a a x

dC
dt

λ λ λ λ= + = + = +

=   

(12 1)oC mg y= +   

 

 

INTEGRALS OF MOTION 
 
Up to now: Concern on formulating 
the eqs of motion.  
 
Lagragian formuation :  
A systematic way to apply Newton’s  
laws of motion using generalized  
coordinates.  

 
What is the next step ?   
Actually analyze the dynamics based 



on the eqns of motion. 
 
~ Eqns consist of a system of n ODE, 

each of the 2nd order!  
 
~ Typically nonlinear.  

 
Except, the eqns of motion are linear.   
Eqns of motions are sometimes 
linearized based on the small displace-
ments assumptions.  
 
This may have some utility in stability 
analysis, but linearization typically 
destroys the applicability of the eqns 
of motion. 
 



Generally, eqns of motion are too 
complicated !  
 
 by integration based on 

elementary methods.  
 
For specified initial conditions, the 
eqns of motion are usually integrated 
numerically.  

 
Example, Runge-Kutta algorithms : 
good accuracy.  
 
Drawback is that the resultant 
numerical solution is only valid for 
one set of initial conditions. 
 
Aim of analytical mechanics ?  



 
~Analysis of the eqns of motion 
themselves, without actually solving 
the system of eqns.  
 

Such qualitative analysis was 
introduced in Chapter 1 with the 
energy analysis of conservative 
systems.  
 
Conservative systems are disting-
uished by conservation of total 
mechanical energy.  
 
- Allowed the partial integration of 
eqn of motion.  
This concept is readily extended to 
general systems.  



 
Suppose that a certain combination of 
the generalized coordinates and 
velocities remains invariant during the  
evolution of the system. : If there 
exists some function  
 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t  
   

 
that remains constant over time, then  
 

1 2 1 2( , , , ; , , , ; )n nG q q q q q q t C=  
           

(2.74) 
 
or equivalently 

0dG
dt

=  



 
The relation (2.74) is called an integral 
of the motion.  
 

C is called a constant of motion.   
~ An integral of motion represents a 
quantity that is conserved during the 
motion.  
 
There are only first derivatives in an 
integral of motion, so each integral of 
motion  
~ a partial integration of the original 
system : used as reduction of the order 
of the system.  
 
Lagrange’s eqns represent n second-



order (partial) diff. eqns. ~  
Ideally, the solution of Lagrange’s 
equations consists of finding 2n 
integral of motion (2.74), each 
containing only the generalized 
coordinates.(?) 
 
 This is typically not possible, but 
certain systems do admit some 
integrals of motion. 
 
For example, in a conservative system, 
the total mechanical energy is an 
invariant of the system.  
 

(q,q, )    (q)   =   constT t V+  
 



is an integral of the motion. Value of 
the constant of motion is determined 
by initial conditions.  
 
A conservative system is a special case 
of a Lagrangian system.  
 
~ Eqs of motion for a Lagrangian 
system : 
 
 

( , , ) ( , , )[ ] 0
k k

d L q q t L q q t
dt q q

∂ ∂
− =

∂ ∂
 

         (2.75) 

 
Total time derivative of (q,q, )L t  is 
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* Lagrange’s Eqns (2.75) we have 
 

k k

L d L
q dt q

 ∂ ∂
=  ∂ ∂   

 
this means 
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Therefore  



1
..(2.76)

n

k
k k

d L Lq L
dt q t=

 ∂ ∂
− = − ∂ ∂ 

∑ 



                                   

 
Dimension of L is energy, the quantity 
in the parentheses is known as the 
Jacobi energy function 
 

1
(q,q, )

n

k
k k

Lh t q L
q=

∂
= −

∂∑ 



 

 
Eqn (2.76) can be written : 
 

dh L
dt t

∂
= −

∂  

~ If the Lagrangian does not contain 
time t explicitly,  

 



then the Jacobi energy function is 
invariant during the motion. ~  
 
Energy function = an integral of the 
motion  

 
 

1
cosnt

n

k
k k

Lq L h
q=

∂
− = =

∂∑ 



 

 
Generally : Energy integral into a 
more familiar form by referring to the 
kinetic energy expression as 
 

2 1 0L T T T V= + + −  
 

If V depends only on the generalized 



coordinates, then 
 

2 1
1

2
n

k
k k

Lq T T
q=

∂
= +

∂∑ 



 

 
the Jacobi energy integral has  
 

2 0T T V h− + =   (2.77) 
      

 
It is important to note here that the 
Jacobi energy integral is not in 
general the total energy, since the term  
T1 is missing. It is still a constant of 
motion.  
 
Without moving coordinates,



1 0 0T T= = ,  energy integral is the              
total energy ~ Conservation of total  
mechanical energy: 

 
T V h+ =  

 
~Kinetic energy is purely quadratic in 
the generalized coordinates are called 
natural systems. 
 
The cart-pendulum system is a 
natural system, ~  
 
Jacobi energy integral is the total 
energy of the system.  
 
 



As a modification of this example,  
 
Suppose :  
 
Motion of the cart ~  

A constant speed 0x v= for 1 DOF 
for the pendulum, θ .  
 
Kinetic energy :  
 

2 2 2
0 0

1 1( ) cos
2 2

T m M v ml mv lθ θ θ= + + +   

 
Potential energy : 
 

 cosV mgl θ= − .  



 
Then, Lagrangian :  
 

2 2 2
0 0

1 1( ) cos cos
2 2

L m M v ml mv l mglθ θ θ θ= + + + +   

 
 Kinetic energy is not purely 

quadratic, but  
 
Eqn (2.77) still gives the Jacobi energy 
integral as 

 
2 2 2

0
1 1 ( ) cos : (2.78)
2 2

ml m M v mgl hθ θ− + + =                             

 
Constant h is specified with initial 
conditions !  
 



Setting 0t t=  in Eqn (2.78), then 
 

2 2 2
0

1 1 ( ) cos
2 2

o oh ml m M v mglθ θ= − + +

 
 
Hence Eqn (2.78) may also be written 
as 
 

2 2 2 2
0 0

1 1cos cos
2 2

ml mgl ml mglθ θ θ θ− = −   

 
Eqns (2.78) and (2.79) : Equivalent 
forms of the energy  
 
integral for the system.  
 



It should be note:   
 
This system is not conservative, since 
work must be done  
 
in order to maintain the constant 
speed of the cart.  
 
Hence the total mechanical energy is 
not conserved. The integral of motion 
(2.79) represents conservation of the  
energy as computed by an observer 
riding on the cart. 
 
The Jacobi energy integral is one type 
of invariant of motion associated with 
conservative systems. Certain forms 



of the Lagrangian admit other 
integrals of motion.  
 
These results when the Lagrangian 
does not contain some of the 
generalized coordinates. 
 
IGNORABLE COORDINATES 
 

Lagrangian system (n dof) and 
generalized coordinates 
 

1 2, , , nq q q .      
 
 Suppose : There are m coordinates 

1, ,n m nq q− +  ,  
 



do not appear in the Lagrangian, 
but the  
 

corresponding generalized 
velocities do.  
 

1 2 1 2( , , , ; , , , ; )n m nL L q q q q q q t−=   
   

 
Eqns of motion for the first n m−  
coordinates are 
 

( ) 0,          1, 2, ,
k k

d L L k n m
dt q q

∂ ∂
− = = −

∂ ∂


  
 

and the eqns for the remaining m 
coordinates are  
 



( ) 0,          1, ,
i

d L i n m n
dt q

∂
= = − +

∂




             
(2.80) 

 
Eqn (2.80) : Last m coordinates 

1, ,n m nq q− +   do not  
 

appear in the 
Lagrangian.  
 
Define it as ignorable coordinates or 
cyclic coordinates.  
 
Or inactive coordinates. 
 
Anyway, for 1, ,i n m n= − +  , eqns (2.80) 
can be as 



 

i
i

L C
q
∂

=
∂                                 
(2.81) 

 
~ Generalized coordinates and 
velocities : conserved,  
 
 Eqns (2.81) are also referred to as 

conservation eqns. 
 
Potential function V does depend on 
generalized  
 
velocities,  
 



0
i

V
q
∂

=
∂   

 
then, 
 

i i

L T
q q
∂ ∂

=
∂ ∂ 

 

 
Thus the integrals of motion (2.81) can 
be  
 

..(2.82)i ip C=                                                     
 
: Generalized momenta conjugate to 
the ignorable  
 
coordinates are conserved. ~ The 



individual  
 
conservation eqns may be physically 

interpreted based  
 
on the physical significance of each 
ignorable  
 
coordinate. 

 
The striking result : Eqns of motion 
corresponding to the  
 
ignorable coordinates have been 
partially integrated.  
 
 n m−  eqns remain to be analyzed.  



 
Moreover, Eqns (2.81) do not contain 
any ignorable  
 
coordinates.   So (2.81) or (2.82) can 
be solved for  
 
the generalized velocities of the 
ignorable coordinates  
 

1, ,n m nq q− + 
  with remaining 

coordinates.  
 
: For only n m−  eqns of motion in the 
non-ignorable  
 
generalized coordinates 



1 2, , , n mq q q − .   
 
Remaining eqns of motion contain the 
constants iC , but  
 
these are determined from initial 
conditions.   
 
~ Analysis of the system reduces to the 
analysis of only  
 

n m−  degrees of freedom. 
 
A more systematic approach for the 
elimination of  
 
ignorable coordinates is to eliminate 



the ignorable  
 
variables before the eqns of motion are 
formulated.  
 
Introduce a new function of the 

generalized coordinates  
 
and velocities.  
 
As above, the m conservation eqns 

associated with each  
 
of the ignorable coordinates, 

 
,             1, ,i

i

L C i n m n
q
∂

= = − +
∂





                   



(2.83) 
 
are solved for 1, ,n m nq q− + 

  in terms of 
the remaining  
 
coordinates and the constants iC .  
 
Routhian function is defined as, 
 

1

n

i i
i n m

R C q L
= − +

= −∑   

 
: Generalized velocities iq  are 

replaced by the  
 
expressions obtained by solving Eqns 

(2.83) for iq .  



 
The result is a function in the non-

ignorable coordinates 
 
?? 
 
:Partial derivatives of the Routhian 
function w.r.t the  
 
Non-ignorable coordinates and 

velocities, then  
 

,           1, 2, ,

,           1, 2, ,

k k

k k

R L k n m
q q
R L k n m
q q

∂ ∂
= − = −

∂ ∂
∂ ∂

= − = −
∂ ∂





 

                 

(2.85) 
 



Substitution eqn (2.85) into 
Lagrange’s eqns for non-  
 
ignorable coordinates results in the 
n m−  eqns of motion 
 

( ) 0,           1, 2, ,
k k

d R R k n m
dt q q

∂ ∂
− = = −

∂ ∂




                
(2.86) 

 
Once again, ignorable coordinates 
have been effectively  
 
eliminated to reduce the problem to a 
mere n m−  d.o.f 
 
- Reduced system of n m−  eqns 



contains the m constants  
 
of motion 1, ,n m nC C− +  .  

 
Finally, the ignorable coordinates of 
Routhian  
 
 

...(2.87)i
i

Rq
C
∂

=
∂

                                                         

 
: Constant iC  in (2.87) is considered 
arbitrary until  
 
the initial conditions are invoked. ~ 
Eqn (2.87) can be  
 



integrated as 
 

0

( ) ,        1, , , , , , (2.88)
t

i t
i

Rq t d i n m n
C

τ∂
= = − +

∂∫                                

 
 

 

 

 

 


