
It should be note:   
 
This system is not conservative, since work must be done  
 
in order to maintain the constant speed of the cart.  
 
Hence the total mechanical energy is not conserved.  
 
The integral of motion (2.79) represents conservation of  
 
the energy as computed by an observer riding on the cart. 
 
The Jacobi energy integral is one type of invariant of  
 



motion associated with conservative systems. Certain  
 
forms of the Lagrangian admit other integ-rals of motion.  
 
These results when the Lagrangian does not contain some  
 
of the gene-ralized coordinates. 
 
IGNORABLE COORDINATES 
 

Lagrangian system (n dof) and generalized coordinates  
 

1 2, , , nq q q .      
 



 Suppose : There are m coordinates 1, ,n m nq q− +  , do not  
 
appear in the Lagrangian, but the corresponding  
 
generalized velocities do.  
 

1 2 1 2( , , , ; , , , ; )n m nL L q q q q q q t−=   
   

 
Eqns of motion for the first n m−  coordinates are 
 

( ) 0,          1, 2, ,
k k

d L L k n m
dt q q

∂ ∂
− = = −

∂ ∂


  
 



and the eqns for the remaining m coordinates are  
 

( ) 0,          1, ,
i

d L i n m n
dt q

∂
= = − +

∂




             (2.80) 
 
Eqn (2.80) : Last m coordinates 1, ,n m nq q− +   do not  
 
appear in the Lagrangian.  
 
Define it as ignorable coordinates or cyclic coordinates.  
 
Or inactive coordinates. 
 



Anyway, for 1, ,i n m n= − +  , eqns (2.80) can be as 
 

i
i

L C
q
∂

=
∂       (2.81)           

 
~ Generalized coordinates and velocities : conserved,  
 
 Eqns (2.81) are also referred to as conservation eqns. 

 
Potential function V does depend on generalized velocities,  
 

0
i

V
q
∂

=
∂   



 
then, 
 

i i

L T
q q
∂ ∂

=
∂ ∂ 

 
 
Thus the integrals of motion (2.81) can be  
 

..(2.82)i ip C=                                                     
 
: Generalized momenta conjugate to the ignorable  
 
coordinates are conser-ved. ~ The individual conservation  
 



eqns may be physically interpreted based on the physical  
 
significance of each ignorable coordinate. 
 
The striking result :  

 
Eqns of motion corresponding to the ignorable  
 
coordinates have been partially integrated.  

 
 n m−  eqns remain to be analyzed.  
 
 
 



Moreover, Eqns (2.81) do not contain any ignorable  
 
coordinates.   So (2.81) or (2.82) can be solved for  
 
the generalized velocities of the ignorable coordinates  
 

1, ,n m nq q− + 
  with remaining coordinates.  

 
: For only n m−  eqns of motion in the non-ignorable  
 
generalized coordinates 1 2, , , n mq q q − .   

 
Remaining eqns of motion contain the constants iC , but  



 
these are determined from initial conditions.   
 
~ Analysis of the system reduces to the analysis of only  
 

n m−  degrees of freedom. 
 
A more systematic approach for the elimination of  
 
ignorable coordinates is to eliminate the ignorable  
 
variables before the eqns of motion are formulated.  
 
Introduce a new function of the generalized coordinates  



 
and velocities.  
 
As above, the m conservation eqns associated with each  
 
of the ignorable coordinates, 

 
,             1, ,i

i

L C i n m n
q
∂

= = − +
∂





                   (2.83) 
 
are solved for 1, ,n m nq q− + 

  in terms of the remaining  
 
coordinates and the constants iC .  
 



Routhian function is defined as, 
 

1

n

i i
i n m

R C q L
= − +

= −∑   
 
: Generalized velocities iq  are replaced by the  
 
expressions obtained by solving Eqns (2.83) for iq .  
 
The result is a function in the non-ignorable coordinates 

 
 :Partial derivatives of the Routhian function w.r.t the  
 



Non-ignorable coordinates and velocities, then  
 

,           1, 2, ,

,           1, 2, ,

k k

k k

R L k n m
q q
R L k n m
q q

∂ ∂
= − = −

∂ ∂
∂ ∂

= − = −
∂ ∂





 

                 (2.85) 

 
Substitution eqn (2.85) into Lagrange’s eqns for non-  
 
ignorable coordinates results in the n m−  eqns of motion 
 

( ) 0,           1, 2, ,
k k

d R R k n m
dt q q

∂ ∂
− = = −

∂ ∂




                (2.86) 
 



Once again, ignorable coordinates have been effectively  
 
eliminated to reduce the problem to a mere n m−  d.o.f 
 
- Reduced system of n m−  eqns contains the m constants  
 
of motion 1, ,n m nC C− +  .  

 
Finally, the ignorable coordinates of Routhian  
 
 

...(2.87)i
i

Rq
C
∂

=
∂

                                                         
 



: Constant iC  in (2.87) is considered arbitrary until  
 
the initial conditions are invoked. ~ Eqn (2.87) can be  
 
integrated as 
 

0

( ) ,        1, , , , , , (2.88)
t

i t
i

Rq t d i n m n
C

τ∂
= = − +

∂∫   
 
Routhian Function :  
 
A particle moving in a plane under to a central force  
 



derivable from a potential function ( )V r .  
 
~ Conservative ! and a Lagrangian expression  
 
in polar coordinates as 

 
 

2 2 21 ( ) ( )
2

L m r r V rθ= + −

  
- θ  is ignorable ; conjugate momentum is constant,  

 
2p mr Cθ θθ= =  

 



>> Angular momentum of the particle is conserved.  
 

Furthermore, the Routhian function:  
 

2 2 2
2 2

1 1( , , ) { ( ) ( )}
2 2

C CR r r C C L C mr mr V r
mr mr

θ θ
θθ θθ= − = × − + −



   
   

>> 
2

2
2

1( , , ) ( )
2 2

CR r r C mr V r
mr
θ

θ = − + + 

 
 
: Cyclic Coordinate is Removed !: Single DOF !! 
 



Thus, Eqn becomes (2.86) for k=1…n-m as 
 

      

2

3 '( ) 0....(2.89)Cmr V r
mr

θ− + =

                                         
 
Note : Eqn (2.89) denotes an entire family! of des  
parameterized by the constant Cθ .  
Cθ , : Conserved angular momentum >> Eqn(2.89) for  
 

( )r t   : Non-linear >> Numerical solution! 
 
* Jacobi energy function : Additional integral of motion.  
 



 Energy integral from the Routhian function R   
 
      Eq.(2.89) * dr ~  
 

2
'

3( '( ) 0) ....(2.89)Cmr V r dr
mr

θ− + =
  

   >> 
2

2
02

1 ( )
2 2

Cmr V r E
mr
θ+ + =           (2.90) 

 
In this case, denote conservation of total mechanical  
energy.  
 



Furthermore, since the ignorable coordinate θ  has been  
 
suppressed, the KE associated with θ  can be combined  
 
with the actual PE, ( )V r , to define an effective potential: 
 

2

eff 2 ( )
2
CV V r
mr
θ= +  

 
Hence, construct the phase curves based on Eqn (2.90)  
 



2
0 0

1 ( ) ( 2( ( )) / :
2

......!

eff eff
drmr V r E r E V r m
dt

dt

+ = − > = = −

> =





 
 
and then the solution  
 

0
0

0 eff2
r

r

m drt t
E V

− =
−∫  

 

Also,  2

C
mr

θθ =
  

 
thus 



 

0
02( )

t

t

Ct d
mr

θθ τ θ= +∫  
 
: Motion of the system has been entirely solved ! 
 
STEADY MOTION 
 
An important and interesting class of motion :  
 
 Ignorable coordinate related to steady motion.  
 
This type of motion : when the generalized velocities and  
 



conjugate momenta of the non-ignorable coordinates are  
 
zero.  
 
That is, 0....(2.91)k kq p= =

 

 
 
 >>  
 
for the 1,2, ,k n m= −  of non-ignorable coordinates.  
This means that each of the non-ignorable coordinates  
 
has a constant value.  
 



>> Routhian becomes only a function of the constants of  
 

motion 1, ,n m nC C− +   and does not depend on time t.  
 
Hence, generalized velocities of the ignorable coordinates  
 
are constant. : solution for the ignorable coordinate  
 
results in  
 

( ) const,      1, ,i iq t v t i n m n= + = − +   
 
Hence the characterization of steady motion. These  



 
constant values of the non-ignorable coordinates are not  
 
completely arbitrary. Conditions on the non-ignorable  
 
coordinates qk are obtained from the equations of motion  
 
(2.86). Conditions for steady motion are obtained by  
 
substituting 
 

0     and     0k kq q= =   
 



into the eqns of motion (2.86).  It is actually more  
 
convenient to first insert the conditions (2.91) into the  
 
Routhian.  Eqns of motion, and hence the conditions  
 
for steady motion, become 
 

0,             1, 2, , ....(2.92)
k

R k n m
q
∂

= = −
∂

                                 
 
Eqns (2.92) are solved for the constant values qk0  
 
corresponding to steady motion.  



 
One way to consider the situation is that 
 
Non-ignorable coordinates are effectively in equilibrium,  
 
while the motion is maintained in a steady manner by  
 
conservation of momenta of the ignorable coordinates. 

 
Once the conditions for steady motion are established,  
 
the next important consideration is the stability of these  
 
motions. That is, what happens to the steady solutions  



 
under small disturbances? The nature of the motion near  
 
the steady solutions is analyzed by setting 
 

0( ) ( )k k kq t q s t= +  
 
These expressions are substituted into the Routhian  
 
(2.84), which gives 

 
1 2 1 2( , , , , , , , )n m n mR R s s s s s s− −= 

  
   

 



Localized eqns of motion about the steady motion are  
 

( ) 0,             1, 2, ,
k k

d R R k n m
dt s s

∂ ∂
− = = −

∂ ∂

 





 
 
For small disturbances about steady motion, these  
 
Eqn may be linearized, and then using standard methods 
 
to characterize the stability of steady solution 
 
 
Ex: A spherical pendulum (Fig. 2.16).  
 



Using the spherical angles φ  and θ , the Lagrangian : 
 

2 2 2 21 ( sin ) cos
2

L ml mglφ θ θ θ= + +   
 
>> Coordinate φ  is ignorable ~ conjugate momentum 

 
2 2sin ....(2.93)p ml Cφ φ θ= =                                           

 
: An integral of motion.  
 
 
The analysis is reduced to a single degree of freedom  
 



with the Routhian function 
 

2
2 2

2 2

1( , , ) cos
2 sin 2

CR C ml mgl
ml

θ θ θ θ
θ

= − −   
 
and therefore the eqn of motion,  
 

2
2

2 3

cos sin 0
sin

Cml mgl
ml

θθ θ
θ

− + =                    (2.94) 
 
Spherical pendulum is a conservative system, and then  
 
an effective potential: 
 



2

eff 2 2 cos ....(2.95)
2 sin

CV mgl
ml

θ
θ

= −                                    
 

Eqn of motion (2.94) can be equivalently written as  
 

2 eff 0dVml
d

θ
θ

+ =  
 
Condition for steady motion : 
 

2

2 3

cos sin 0
sin

C mgl
ml

θ θ
θ
− =  

 
or 



 
2 2 3 4cos sinC m glθ θ=  

 
From the conservation of angular momentum (2.93), the  
 
condition for steady motion reduces to  
 

2
0 0secl gφ θ=                                             

(2.96) 
 
So if the initial conditions 0φ  and 0θ  satisfy (2.96), the  
 
angle θ  and the angular velocity φ  will remain constant  



 
and the tip of the pendulum will execute uniform circular  
 
motion. To investigate the stability of perturbations from  
 
this steady motion, we set 
 

0 ( )s tθ θ= +  
 
and substitute into the eqn of motion (2.94). After  
 
linearization based on small values of ( )s t , we obtain the  
 



DE for the perturbation: 
 

0 0(3cos sec ) 0gs s
l

θ θ+ + =  
 
The stability may also be determined by analyzing the  
 
effective potential Veff (2.95) in the neighborhood of 0θ θ= . 
 
 
 
 
 
 



LAGRANGE’S EQUATIONS FOR IMPULSIVE 
FORCES 
 

Principle of Impulse and Momentum >>  
 
Generalized in the Lagrangian formalism.  
 
During impact : Very large forces are generated  
 
over a very small time interval. ~ Not a practical matter  
 

to record these forces over the very small time  
 
>>> Instantaneous form of Newton’s Second Law is of 



little use in impact problems.  
 
>>> Eqns of motion are integrated over the time  
 

interval of impact.  
 

0

0

F̂= F( )
t t

t
t dt

+∆

∑∫  
 
By the Principle of Impulse and Momentum,   
 
velocities change by a finite amount over the time  
 
interval t∆ .  As long as the time interval is taken  



 
infinitesimally small, the displacements do not change  
 
and hence remain continuous.  
 
Therefore, Impulsive force ~ Finding velocity change 
immediately after the impact.. without displacement 
change 
 
Integrating Lagrange’s eqns of motion for holomic 
systems over the time interval between 1 0t t= and  
 

2 0t t t= + ∆ , we have 
 



2 2 2

1 1 1

,         1, 2, ,
t t t

kt t t
k k

d T Tdt dt Q dt k n
dt q q
 ∂ ∂

− = = ∂ ∂ 
∫ ∫ ∫ 



                 
(2.97) 

 
Now letting 0t∆ → ,  
 

2 1

ˆ          1, 2, ,k
k k

T T Q k n
q q
∂ ∂

− = =
∂ ∂



 

                            
(2.98) 

 
Second term on the left-hand side of Eqn (2.97) vanishes,  
 
since the generalized coordinates are continuous and the  
 



generalized velocities remain bounded during the impact. 
The integral on the right-hand side of Eqn (2.97) is the  
 
generalized impulse ˆ

kQ .  
 
The impulsive form of Lagrange’s eqns (2.98) can also be  
 

ˆ ,          1, 2, ,k kp Q k n∆ = =                       (2.99) 
 
relating the change in generalized momentum pk to the  
 
applied generalized impulse ˆ

kQ .  Since the generalized  
 



momenta are polynomials in the generalized velocities,  
 
there is no need to solve any differential equations to  
 
obtain the velocities immediately after impact. 
 
Computation of the generalized impulses is formally  
 
identical to finding generalized forces. At any instant, the  
 
virtual impulsive energy acquired by the system under  
 
virtual displacements compatible with the constraints is 
 



1

ˆˆ
n

j j
j

W Q qδ δ
=

=∑  
 
As with generalized forces, the independent degrees of  
 
freedom are incremented one at a time to determine the  
 
individual contributions to Ŵδ . 
 
Ex: A four-bar linkage constrained to slide smoothly  
 

along the the x-direction  
 



(Fig. 2.17). The system has two degrees of freedom and as  
 
generalized coordinates we can take the location of the  
 
center of mass, 1x , and the angle θ . We assume that the  
 
mechanism is at rest when an impulse F̂  is suddenly  
 
applied, at point A, in the x-direction.  
 
Solving this problem by vector methods involves  
 
calculation of the linear and angular momenta of the  
 



system and invoking the momenta are easily derived  
 
from the kinetic energy of the system.  
 
The generalized impulses are formally computed as if  
 
they were generalized forces. 
 
The kinetic energy of the system is  
 

2 2 2
1

82
3

T mx mb θ= + 

  
 

The generalized momenta conjugate to 1x  and θ ,  



 
respectively, are 
 

2
1 1

164 ,        
3xp mx p mbθ θ= = 

  
Similar to computing virtual work, we consider the  
 
independent virtual displacements 
 

1 1 1 1,  0    and    0,x x x xδ δθ δ θ θ δθ→ + = = → +  
 
The virtual impulsive energy becomes 
 



1 1
ˆ ˆˆ

x xW Q Qθδ δ δθ= +  
 
in which the generalized impulses are 
 

1
ˆ ˆ

xQ F= ,      
ˆ ˆ2 sinQ b Fθ θ=

 
 

Since the system starts from rest, substitution of the  
 
above into Lagrange’s equations for implusive systems  
 
(2.99) results in the acquired generalized velocities 
 

1

ˆ

4
Fx
m

= ,       
3sin ˆ
8

F
mb
θθ =  



 
Practice !  
  
A horizontal rod of mass m and length 2L falls under 
gravity and strakes a knife edge loaded one half of the way 
from the center to end of the rod. It’s velocity just before 
impact is v . Coefficient of restitution between rod and 
knife edge is e. 
 

a. Velocity of the center of mass 
b. Angular velocity immediately after the rod strikes the 

ground. 
 

Sol: Assume the impulse is applied at the impact. 



 
 

Total enegy at any instant : 
2 2 21 1( )

2 2
c cT m x y Iθ= + +
  

 
 
Virtual work of impulse :   1 ˆ ˆ ˆˆ ( )

2 c cc x c y cW F y L Q x Q y Qθδ δ δθ δ δ δθ= + = + +  
  

 ~ 
1ˆ ˆ ˆˆ ˆ0, ,
2c cx yQ Q F Q LFθ= = =

 
 
 
Change of generalize Momentum: 
 



 

2

( ) 0 (1) : 0

ˆ( ) ( ) (2)
1ˆ( ) (3) : ( )

2 3

.. (4)
2 2

2 ˆ(4) : ( ) (3) ...

6: (4 ).. (1 )
7 7

c c c

c

c c

c

c

m x m x x

m y m y v F
LI I F I mL

L LAnd y ev y ev

ev y F
L

vy e v e v
L

θ θ

θ θ

θ

θ

∆ = = − − − =

∆ = + = −

∆ = = − − − =

+ = >>>> = − − −

= − − −− > =

= − = +

  

 

 

   

 

 

 

  
ELECTROMECHANICAL ANALOGIES 
 



The Lagrangian formalism is based on energy and 
therefore has applicability that goes far beyond simple 
mechanical systems (Fig. 2.18). A very practical extension 
of the theory is to electrical circuits and combined 
electromechanical systems. A direct application of 
Lagrangian’s equations to electrical circuits is based on 
the parameters given in Table 2.1. Energy carried by an 
inductor coil is 
 


