
LAGRANGE’S EQUATIONS FOR IMPULSIVE 
FORCES 
 

Principle of Impulse and Momentum >>  
 
Generalized in the Lagrangian formalism.  
 
During impact : Very large forces are generated  
 
over a very small time interval. ~ Not a practical matter  
 

to record these forces over the very small time  
 
>>> Instantaneous form of Newton’s Second Law is of 



little use in impact problems.  
 
>>> Eqns of motion are integrated over the time  
 

interval of impact.  
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By the Principle of Impulse and Momentum,   
 
velocities change by a finite amount over the time  
 
interval t∆ .  As long as the time interval is taken  



 
infinitesimally small, the displacements do not change  
 
and hence remain continuous.  
 
Therefore, Impulsive force ~  
 
Finding velocity change immediately after the impact.. 
without displacement change 
 
Integrating Lagrange’s eqns of motion for holomic 
systems over the time interval between 1 0t t= and  

2 0t t t= + ∆ , we have 
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Second term on the left-hand side of Eqn (2.97) vanishes,  
 
since the generalized coordinates are continuous and the  
 
generalized velocities remain bounded during the impact. 



The integral on the right-hand side of Eqn (2.97) is the  
 
generalized impulse ˆ

kQ .  
 
The impulsive form of Lagrange’s eqns (2.98) can also be  
 

ˆ ,          1, 2, ,k kp Q k n∆ = =                   (2.99) 
 
relating the change in generalized momentum pk to the  
 
applied generalized impulse ˆ

kQ .  Since the generalized  
 
momenta are polynomials in the generalized velocities,  



 
there is no need to solve any differential equations to  
 
obtain the velocities immediately after impact. 
 
Computation of the generalized impulses is formally  
 
identical to finding generalized forces. At any instant, the  
 
virtual impulsive energy acquired by the system under  
 
virtual displacements compatible with the constraints is 
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As with generalized forces, the independent degrees of  
 
freedom are incremented one at a time to determine the  
 
individual contributions to Ŵδ . 
 
 
Ex: A four-bar linkage constrained to slide smoothly  
 

along the the x-direction  



 
(Fig. 2.17). The system has two degrees of freedom and as  
 
generalized coordinates we can take the location of the  
 
center of mass, 1x , and the angle θ . We assume that the  
 
mechanism is at rest when an impulse F̂  is suddenly  
 
applied, at point A, in the x-direction.  
 
Solving this problem by vector methods involves  
 



calculation of the linear and angular momenta of the  
 
system and invoking the momenta are easily derived  
 
from the kinetic energy of the system.  
 
The generalized impulses are formally computed as if  
 
they were generalized forces. 
 
The kinetic energy of the system is  
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The generalized momenta conjugate to 1x  and θ ,  
 
respectively, are 
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Similar to computing virtual work, we consider the  
 
independent virtual displacements 
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The virtual impulsive energy becomes 
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in which the generalized impulses are 
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Since the system starts from rest, substitution of the  
 
above into Lagrange’s equations for implusive systems  
 
(2.99) results in the acquired generalized velocities 
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Practice 1  
 A horizontal rod of mass m and length 2L falls under 
gravity and strakes a knife edge loaded one half of the way 
from the center to end of the rod. It’s velocity just before 
impact is v . Coefficient of restitution between rod and 
knife edge is e. 
 

a. Velocity of the center of mass 
b. Angular velocity immediately after the rod strikes the 

ground. 



 
Sol: Assume the impulse is applied at the impact. 
 
 

Total enegy at any instant : 
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Change of generalize Momentum: 
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Practice 2 
 
Rinked pair of rode on a smooth horizontal plane 
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m Mass of each bar

F Sharp blow at the right end
x y Coordnates of the link
I Moment of inertia wrt the center of mass of each rod


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At the instance when impulse acts, 1 0θ − >   
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So   
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Therefore 
 



 

 
The virtual displacement of the right end point  
 
( Hitted by F



) is 
 

22cy y aδ δ δθ= +   
 
The virtual work statement is 
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There are the velocities resulting from the impact ! 
 
 



 
 
 
 
ELECTROMECHANICAL ANALOGIES 
 
The Lagrangian formalism is based on energy and 
therefore has applicability that goes far beyond simple 
mechanical systems (Fig. 2.18). A very practical extension 
of the theory is to electrical circuits and combined 
electromechanical systems. A direct application of 
Lagrangian’s equations to electrical circuits is based on 
the parameters given in Table 2.1. Energy carried by an 
inductor coil is 


