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Motions of a charged particle in uniform electric field

⚫ Equation of motion of a charged particle in fields

𝑚
𝑑𝒗

𝑑𝑡
= 𝑞 𝑬(𝒓, 𝑡) + 𝒗 × 𝑩(𝒓, 𝑡) ,

𝑑𝒓

𝑑𝑡
= 𝒗(𝑡)

⚫ Motion in constant electric field

✓ For a constant electric field 𝑬 = 𝑬𝟎 with 𝑩 = 0,

✓ Electrons are easily accelerated by electric field due to their smaller 

mass than ions.

✓ Electrons (Ions) move against (along) the electric field direction.

✓ The charged particles get kinetic energies.

𝒓(𝑡) = 𝒓𝟎 + 𝒗𝟎𝑡 +
𝑞𝑬𝟎
𝟐𝑚

𝑡2
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Motions of a charged particle in uniform magnetic field

𝑚
𝑑𝒗

𝑑𝑡
= 𝑞𝒗 × 𝑩

𝑚
𝑑𝑣𝑥
𝑑𝑡

= 𝑞𝐵0𝑣𝑦

𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑞𝐵0𝑣𝑥

𝑚
𝑑𝑣𝑧
𝑑𝑡

= 0

𝑑2𝑣𝑥
𝑑𝑡2

= −𝜔𝑐
2𝑣𝑥 𝜔𝑐 =

𝑞 𝐵0
𝑚

⚫ Motion in constant magnetic field

⚫ For a constant magnetic field 𝑩 = 𝐵0𝒛 with 𝑬 = 0,

⚫ Cyclotron (gyration) frequency
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Motions of a charged particle in uniform magnetic field

⚫ Particle velocity

𝑣𝑥 = 𝑣⊥ cos 𝜔𝑐𝑡 + 𝜙0

𝑣𝑦 = −𝑣⊥ sin 𝜔𝑐𝑡 + 𝜙0

𝑣𝑧 = 𝑣𝑧0

⚫ Particle position

𝑥 = 𝑥0 + 𝑟𝑐 sin 𝜔𝑐𝑡 + 𝜙0

𝑦 = 𝑦0 + 𝑟𝑐 cos 𝜔𝑐𝑡 + 𝜙0

𝑧 = 𝑧0 + 𝑣𝑧0𝑡

⚫ Larmor (gyration) radius

𝑟𝑐 = 𝑟L =
𝑣⊥
𝜔𝑐

=
𝑚𝑣⊥
𝑞 𝐵0

⚫ Guiding center

𝑥0, 𝑦0, 𝑧0 + 𝑣𝑧0𝑡
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Gyro-frequency and gyro-radius

⚫ The direction of gyration is always such that the magnetic field generated by the 

charged particle is opposite to the externally imposed field. → diamagnetic

𝑓𝑐𝑒 = 2.80 × 106 𝐵0 Hz 𝐵0 in gauss

𝑟𝑐𝑒 =
3.37 𝐸

𝐵0
cm (𝐸 in volts)

⚫ For electrons

⚫ For singly charged ions

𝑓𝑐𝑖 = 1.52 × 103 𝐵0/𝑀𝐴 Hz 𝐵0 in gauss

𝑟𝑐𝑖 =
144 𝐸𝑀𝐴

𝐵0
cm (𝐸 in volts,𝑀𝐴 in amu)

⚫ Energy gain?
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Motions of a charged particle in uniform E and B fields

⚫ Equation of motion

𝑚
𝑑𝒗

𝑑𝑡
= 𝑞 𝑬 + 𝒗 × 𝑩

⚫ Parallel motion: 𝑩 = 𝐵0𝒛 and 𝑬 = 𝐸0𝒛,

𝑚
𝑑𝑣𝑧
𝑑𝑡

= 𝑞𝐸𝑧

𝑣𝑧 =
𝑞𝐸𝑧
𝑚

𝑡 + 𝑣𝑧0

→ Straightforward acceleration along B
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𝑬×𝑩 drift

⚫ Transverse motion: 𝑩 = 𝐵0𝒛 and 𝑬 = 𝐸0𝒙,

⚫ Differentiating,

𝑚
𝑑𝑣𝑥
𝑑𝑡

= 𝑞𝐸0 + 𝑞𝐵0𝑣𝑦

𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑞𝐵0𝑣𝑥

𝑑2𝑣𝑥
𝑑𝑡2

= −𝜔𝑐
2𝑣𝑥

𝑑2𝑣𝑦

𝑑𝑡2
= −𝜔𝑐

2
𝐸0
𝐵0

+ 𝑣𝑦

⚫ Particle velocity

𝑣𝑥 = 𝑣⊥ cos 𝜔𝑐𝑡 + 𝜙0

𝑣𝑦 = −𝑣⊥ sin 𝜔𝑐𝑡 + 𝜙0 −
𝐸0
𝐵0

𝑣𝑔𝑐

𝒗𝐸 =
𝑬 × 𝑩

𝐵𝟐
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DC magnetron

⚫ A magnetron which is widely used in the sputtering system uses the 𝑬×𝑩 drift 

motion for plasma confinement.

⚫ What is the direction of 𝑬×𝑩 drift motion?
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Motions of a charged particle in gravitational field

⚫ Generally, the guiding center drift caused by general force 𝑭

⚫ If 𝑭 is the force of gravity 𝑚𝒈,

𝒗𝑓 =
1

𝑞

𝑭 × 𝑩

𝐵𝟐

𝒗𝑔 =
𝑚

𝑞

𝒈 × 𝑩

𝐵𝟐

⚫ What is the difference between 𝒗𝐸 and 𝒗𝑔?
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𝜵𝐵⊥𝑩: Grad-B drift

⚫ The gradient in |𝑩| causes the Larmor radius to be larger at the bottom of the 

orbit than at the top, and this should lead to a drift, in opposite directions for ions 

and electrons, perpendicular to both 𝑩 and 𝜵𝐵.

⚫ Guiding center motion

𝒗𝛻𝐵 = ±
1

2
𝑣⊥𝑟𝑐

𝑩 × 𝛁𝐵

𝐵𝟐

𝜵𝐵
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Curved B: Curvature drift

⚫ The average centrifugal force

⚫ Total drift in a curved vacuum field (curvature + grad-B)

𝑭𝑐𝑓 =
𝑚𝑣∥

2

𝑅𝑐
ො𝒓 = 𝑚𝑣∥

2
𝑹𝑐

𝑅𝑐
2

⚫ Curvature drift

𝒗𝑅 =
1

𝑞

𝑭𝑐𝑓 × 𝑩

𝐵𝟐 =
𝑚𝑣∥

2

𝑞𝐵𝟐

𝑹𝑐 × 𝑩

𝑅𝑐
2

𝒗𝑅 + 𝒗𝛻𝐵 =
𝑚

𝑞

𝑹𝑐 × 𝑩

𝑅𝑐
2𝐵2

𝑣∥
2 +

1

2
𝑣⊥

2

𝐵 ∝
1

𝑅𝑐

𝜵 𝐵

𝐵
= −

𝑹𝑐

𝑅𝑐
2
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𝜵𝐵∥𝑩: Magnetic mirror

⚫ Adiabatic invariant: Magnetic moment

⚫ Magnetic mirror

⚫ As the particle moves into regions of stronger or weaker 𝐵, its Larmor radius 

changes, but 𝜇 remains invariant.

𝜇 = 𝐼𝐴 =
𝑞

2𝜋/𝜔𝑐
∙ 𝜋𝑟𝑐

2 =

1
2𝑚𝑣⊥

2

𝐵

1
2𝑚𝑣⊥0

2

𝐵0
=

1
2𝑚𝑣⊥𝑚

2

𝐵𝑚

𝑣⊥𝑚
2 + 𝑣∥𝑚

2 = 𝑣⊥0
2 + 𝑣∥0

2 ≡ 𝑣0
2

𝐵0
𝐵𝑚

=
𝑣⊥0

2

𝑣⊥𝑚
2 =

𝑣⊥0
2

𝑣0
2 = sin2𝜃
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Motions of a charged particle in a dipole magnetic field

⚫ Trajectories of particles confined in a dipole field

→ Particles experience gyro-, bounce- and drift- motions
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Homework

⚫ F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer (2016), 

chapter 2 Problems: 2.1, 2.7, 2.21(a)
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Boltzmann’s equation & macroscopic quantities

⚫ Particle density

⚫ Particle flux

⚫ Particle energy density

Distribution function

One-dimensional phase space
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Particle conservation

𝜕𝑛

𝜕𝑡
+ 𝜵 ∙ 𝑛𝒖 = 𝐺 − 𝐿

The net number of particles per second 

generated within Ω either flows across 

the surface Γ or increases the number 

of particles within Ω.

For common low-pressure discharges 

in steady-state:

Hence, 

𝐺 = 𝜈𝑖𝑧𝑛𝑒 , 𝐿 ≈ 0

𝜵 ∙ 𝑛𝒖 = 𝜈𝑖𝑧𝑛𝑒

⚫ The continuity equation is clearly not sufficient to give the evolution of the 

density 𝑛, since it involves another quantity, the mean particle velocity 𝒖.
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Momentum conservation

𝑚𝑛
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝜵 𝒖 = 𝑞𝑛𝑬 − 𝜵𝑝 −𝑚𝑛𝜈𝑚𝒖

Convective derivative
⚫ Pressure tensor

→ isotropic for weakly ionized plasmas

⚫ The time rate of momentum transfer per 

unit volume due to collisions with other 

species
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Equation of state (EOS)

⚫ An equation of state is a thermodynamic equation describing the state of matter 

under a given set of physical conditions. 

𝑝 = 𝑝 𝑛, 𝑇 , 𝜀 = 𝜀(𝑛, 𝑇)

⚫ Isothermal EOS for slow time variations, where temperatures are allowed to 

equilibrate. In this case, the fluid can exchange energy with its surroundings.

→ The energy conservation equation needs to be solved to determine p and T.

𝑝 = 𝑛𝑘𝑇, 𝛻𝑝 = 𝑘𝑇𝛻𝑛

⚫ Adiabatic EOS for fast time variations, such as in waves, when the fluid does not 

exchange energy with its surroundings

→ The energy conservation equation is not required.

𝑝 = 𝐶𝑛𝛾,
𝛻𝑝

𝑝
= 𝛾

𝛻𝑛

𝑛
𝛾 =

𝐶𝑝
𝐶𝑣

(specific heat ratio)

⚫ Specific heat ratio vs degree of freedom (𝑓) 𝛾 = 1 +
2

𝑓
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Equilibrium: Maxwell-Boltzmann distribution

⚫ For a single species in thermal equilibrium with itself (e.g., electrons), in the 

absence of time variation, spatial gradients, and accelerations, the Boltzmann 

equation reduces to 

ቤ
𝜕𝑓

𝜕𝑡
𝑐

= 0

⚫ Then, we obtain the Maxwell-Boltzmann velocity distribution

𝑓 𝑣 = 𝑛
𝑚

2𝜋𝑘𝑇

3/2

4𝜋𝑣2 exp −
𝑚𝑣2

2𝑘𝑇

⚫ The mean speed

ҧ𝑣 =
8𝑘𝑇

𝜋𝑚

1/2

𝑣𝑡ℎ =
𝑘𝑇

𝑚

1/2
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Particle and energy flux

⚫ The directed particle flux: the number of particles per square meter per second 

crossing the 𝑧 = 0 surface in the positive direction

Γ𝑧 =
1

4
𝑛 ҧ𝑣

⚫ The average energy flux: the amount of energy per square meter per second in 

the +𝑧 direction

𝑆𝑧 = 𝑛
1

2
𝑚𝑣2𝑣𝑧

𝒗

= 2𝑘𝑇Γ𝑧

⚫ The average kinetic energy 𝑊 per particle crossing 𝑧 = 0 in the positive direction

𝑊 = 2𝑘𝑇
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Diffusion and mobility

⚫ The fluid equation of motion including collisions

⚫ In steady-state, for isothermal plasmas

𝑚𝑛
𝑑𝒖

𝑑𝑡
= 𝑚𝑛

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝜵 𝒖 = 𝑞𝑛𝑬 − 𝜵𝑝 −𝑚𝑛𝜈𝑚𝒖

𝒖 =
1

𝑚𝑛𝜈𝑚
𝑞𝑛𝑬 − 𝜵𝑝 =

1

𝑚𝑛𝜈𝑚
𝑞𝑛𝑬 − 𝑘𝑇𝜵𝑛

=
𝑞

𝑚𝜈𝑚
𝑬 −

𝑘𝑇

𝑚𝜈𝑚

𝜵𝑛

𝑛
= ±𝜇𝑬 − 𝐷

𝜵𝑛

𝑛

⚫ In terms of particle flux

𝚪 = 𝑛𝒖 = ±𝑛𝜇𝑬 − 𝐷𝜵𝑛

𝜇 =
𝑞

𝑚𝜈𝑚
∶ Mobility 𝐷 =

𝑘𝑇

𝑚𝜈𝑚
∶ Diffusion coefficient

𝜇 =
𝑞 𝐷

𝑘𝑇
∶ Einstein relation

Drift Diffusion
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Ambipolar diffusion

⚫ The flux of electrons and ions out of any region must be equal such that charge 

does not build up. Since the electrons are lighter, and would tend to flow out 

faster in an unmagnetized plasma, an electric field must spring up to maintain 

the local flux balance.

⚫ The ambipolar diffusion coefficient for weakly ionized plasmas

Γ𝑖 = +𝑛𝜇𝑖𝐸 − 𝐷𝑖𝛻𝑛 Γ𝑒 = −𝑛𝜇𝑒𝐸 − 𝐷𝑒𝛻𝑛

⚫ Ambipolar electric field for Γ𝑖 = Γ𝑒

𝐸 =
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 + 𝜇𝑒

𝛻𝑛

𝑛

⚫ The common particle flux

Γ = −
𝜇𝑒𝐷𝑖 + 𝜇𝑖𝐷𝑒
𝜇𝑖 + 𝜇𝑒

𝛻𝑛 = −𝐷𝑎𝛻𝑛

𝐷𝑎 =
𝜇𝑒𝐷𝑖 + 𝜇𝑖𝐷𝑒
𝜇𝑖 + 𝜇𝑒

≈ 𝐷𝑖 +
𝜇𝑖
𝜇𝑒

𝐷𝑒 ≈ 𝐷𝑖 1 +
Te
Ti

~𝜇𝑖Te
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Decay of a plasma by diffusion in a slab

⚫ Diffusion equation (w/o source term)

𝜕𝑛

𝜕𝑡
− 𝐷𝑎𝛻

2𝑛 = 0

𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑥2

𝐷 = 𝐷𝑎

⚫ In Cartesian coordinates,

⚫ Find 𝑛(𝑥, 𝑡) under the boundary conditions [H/W]

𝑛(𝑥 = ±𝐿, 𝑡) = 0

𝑛(𝑥, 𝑡 = 0) = 𝑛0(1 − Τ𝑥 𝐿 2)

𝑛𝑖 ≈ 𝑛𝑒 = 𝑛

⚫ In general
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Steady-state solution in cylindrical geometry

⚫ Diffusion equation

𝜕𝑛

𝜕𝑡
− 𝐷𝑎𝛻

2𝑛 = 𝐺 − 𝐿 = 𝜈𝑖𝑧𝑛 − 𝛼𝑛2

volume source and sink

𝛻2𝑛 +
𝜈𝑖𝑧
𝐷
𝑛 = 0 where, 𝐷 = 𝐷𝑎 and 𝜈𝑖𝑧 is the ionization frequency

⚫ In steady-state, ignoring volume recombination

𝜕2𝑛

𝜕𝑟2
+
1

𝑟

𝜕𝑛

𝜕𝑟
+
𝜕2𝑛

𝜕𝑧2
+
𝜈𝑖𝑧
𝐷
𝑛 = 0

⚫ In cylindrical coordinates,

⚫ Find 𝑛(𝑟, 𝑧) under the boundary conditions [H/W]

L

𝑛(𝑟 = 𝑅, 𝑧) = 0

𝑛(𝑟, 𝑧 = 0) = 0

𝑛(𝑟, 𝑧 = 𝐿) = 0

z

𝑛𝑖 ≈ 𝑛𝑒 = 𝑛
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Boltzmann’s relation

⚫ The density of electrons in thermal equilibrium can be obtained from the electron 

force balance in the absence of the inertial, magnetic, and frictional forces.

Setting 𝑬 = −𝜵Φ and assuming 𝑝𝑒 = 𝑛𝑒𝑘𝑇𝑒

Integrating, we have

𝑚𝑛𝑒
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝜵 𝒖 = −𝑒𝑛𝑒𝑬 − 𝜵𝑝𝑒 −𝑚𝑛𝑒𝜈𝑚𝒖

𝑒𝑛𝑒𝜵Φ − 𝑘𝑇𝑒𝜵𝑛𝑒 = 𝑛𝑒𝜵 𝑒Φ − 𝑘𝑇𝑒ln𝑛𝑒 = 0

𝑛𝑒 𝒓 = 𝑛0exp
𝑒Φ 𝒓

𝑘𝑇𝑒
= 𝑛0exp

Φ 𝒓

Te
Boltzmann’s relation for electrons

⚫ For positive ions in thermal equilibrium at temperature Ti 𝑛𝑖(𝒓) = 𝑛0exp −
Φ(𝒓)

Ti

⚫ However, positive ions are almost never in thermal equilibrium in low pressure 

discharges because the ion drift velocity 𝑢𝑖 is large, leading to inertial or frictional 

forces comparable to the electric field or pressure gradient forces.

𝑘𝑇𝑒 = 𝑒Te
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Debye shielding (screening)

⚫ Coulomb potential

⚫ Screened Coulomb potential

Φ 𝑟 =
𝑄

4𝜋𝜖0𝑟

Φ 𝑟 =
𝑄

4𝜋𝜖0𝑟
exp −

𝑟

𝜆𝐷

𝛻2Φ = −
𝑒𝑛0
𝜖0

1 − 𝑒𝑒Φ/𝑘𝑇𝑒 ≈
𝑒2𝑛0
𝜖0𝑘𝑇𝑒

Φ =
Φ

𝜆𝐷
2

⚫ Poisson’s equation

⚫ Debye length

𝜆𝐷 =
𝜖0𝑘𝑇𝑒
𝑒2𝑛0

1/2

=
𝜖0Te
𝑒𝑛0

1/2

Plasma

𝑘𝑇𝑒 = 𝑒Te
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Debye length

𝜆𝐷 cm =
𝜖0Te
𝑒𝑛0

Τ1 2

= 743
Te eV

𝑛0 cm
−3 = 743

4

1010
≈ 0.14 mm

⚫ The electron Debye length 𝜆𝐷𝑒 is the characteristic length scale in a plasma.

⚫ The Debye length is the distance scale over which significant charge densities 

can spontaneously exist. For example, low-voltage (undriven) sheaths are 

typically a few Debye lengths wide.

+

-

--

--

+

+

+

+

lD

Quasi-neutrality?

⚫ Typical values for a processing plasma (ne = 1010 cm-3, Te = 4 eV)

⚫ It is on space scales larger than a Debye length that the 

plasma will tend to remain neutral.

⚫ The Debye length serves as a characteristic scale length 

to shield the Coulomb potentials of individual charged 

particles when they collide.
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Quasi-neutrality

⚫ The potential variation across a plasma of length 𝑙 ≫ 𝜆𝐷𝑒 can be estimated from 

Poisson’s equation

We generally expect that

Then, we obtain

𝛻2Φ~
Φ

𝑙2
~

𝑒

𝜖0
𝑍𝑛𝑖 − 𝑛𝑒

Φ ≲ Te =
𝑛𝑒𝑒

𝜖0
𝜆𝐷𝑒
2

𝑍𝑛𝑖 − 𝑛𝑒
𝑛𝑒

~
Φ

𝑙2
𝜖0
𝑛𝑒𝑒

≲
𝜆𝐷𝑒
2

𝑙2
≪ 1

𝑍𝑛𝑖 = 𝑛𝑒

Plasma approximation

⚫ The plasma approximation is violated within a plasma sheath, in proximity to a 

material wall, either because the sheath thickness 𝑠 ≈ 𝜆𝐷𝑒, or because Φ ≫ Te.
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Plasma oscillations

⚫ Electrons overshoot by inertia and oscillate around their equilibrium position with 

a characteristic frequency known as plasma frequency.

⚫ Equation of motion (cold plasma)

⚫ Electron plasma frequency

𝜔𝑝𝑒 =
𝑛0𝑒

2

𝑚𝜖0

1/2

⚫ If the assumption of infinite mass ions is not made, then the ions also move 

slightly and we obtain the natural frequency

𝜔𝑝 = 𝜔𝑝𝑒
2 + 𝜔𝑝𝑖

2 1/2
where, 𝜔𝑝𝑖 = 𝑛0𝑒

2/𝑀𝜖0
1/2 (ion plasma frequency)

𝑚
𝑑2∆𝑥

𝑑𝑡2
= −𝑒𝐸𝑥 = −𝑒

𝑛0𝑒∆𝑥

𝜖0

𝑑2∆𝑥

𝑑𝑡2
+
𝑛0𝑒

2

𝑚𝜖0
∆𝑥 = 0  Harmonic oscillator
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Plasma frequency

⚫ Plasma oscillation frequency for electrons and ions

𝑓𝑝𝑒 =
𝜔𝑝𝑒

2𝜋
= 8980 𝑛0 Hz 𝑛0 in cm

−3

𝑓𝑝𝑖 =
𝜔𝑝𝑖

2𝜋
= 210 𝑛0/𝑀𝐴 Hz 𝑛0 in cm

−3, 𝑀𝐴 in amu

⚫ Typical values for a processing plasma (Ar)

𝑓𝑝𝑒 =
𝜔𝑝𝑒

2𝜋
= 8980 1010 Hz = 9 × 108 [Hz]

𝑓𝑝𝑖 =
𝜔𝑝𝑖

2𝜋
= 210 1010/40 Hz = 3.3 × 106 [Hz]

⚫ Collective behavior

𝜔𝑝𝑒𝜏𝑐 > 1 Plasma frequency > collision frequency
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Criteria for plasmas

⚫ Criteria for plasmas:

𝜆𝐷 ≪ 𝐿

𝜔𝑝𝑒𝜏𝑐 > 1

𝑁𝐷 ≫ 1

𝑁𝐷 = 𝑛
4

3
𝜋𝜆𝐷

3

⚫ The picture of Debye shielding is valid only if there are enough particles in the 

charge cloud. Clearly, if there are only one or two particles in the sheath region, 

Debye shielding would not be a statistically valid concept. We can compute the 

number of particles in a “Debye sphere”:

⚫ Plasma parameter

Λ = 4𝜋𝑛𝜆𝐷
3 = 3𝑁𝐷

⚫ Coupling parameter

Γ =
Coulomb energy

Thermal energy
=
𝑞2/(4𝜋𝜖0𝑎)

𝑘𝑇𝑒
~Λ−2/3

Wigner-Seitz radius 𝑎 = 3 4𝜋𝑛𝑒/3
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K

Γ = 1

Various kinds of plasmas

High-energy density regime
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Formation of plasma sheaths

⚫ Plasma sheath: the non-neutral potential region between the plasma and the 

wall caused by the balanced flow of particles with different mobility such as 

electrons and ions.
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Plasma-sheath structure
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Homework

⚫ F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer (2016), 

chapter 5 Problems: 5.2, 5.6


