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Motions in uniform electric field

 Equation of motion of a charged particle in fields

𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

= 𝑞𝑞 𝑬𝑬(𝒓𝒓, 𝑡𝑡) + 𝒗𝒗 × 𝑩𝑩(𝒓𝒓, 𝑡𝑡) ,
𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

= 𝒗𝒗(𝑡𝑡)

 Motion in constant electric field

 For a constant electric field 𝑬𝑬 = 𝑬𝑬𝟎𝟎 with 𝑩𝑩 = 0,

 Electrons are easily accelerated by electric field due to their smaller 
mass than ions.

 Electrons (Ions) move against (along) the electric field direction.

 The charged particles get kinetic energies.

𝒓𝒓(𝑡𝑡) = 𝒓𝒓𝟎𝟎 + 𝒗𝒗𝟎𝟎𝑡𝑡 +
𝑞𝑞𝑬𝑬𝟎𝟎
𝟐𝟐𝑚𝑚 𝑡𝑡2
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Motions in uniform magnetic field

𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝒗𝒗 × 𝑩𝑩

𝑚𝑚
𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝐵𝐵0𝑣𝑣𝑦𝑦

𝑚𝑚
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑 = −𝑞𝑞𝐵𝐵0𝑣𝑣𝑥𝑥

𝑚𝑚
𝑑𝑑𝑣𝑣𝑧𝑧
𝑑𝑑𝑑𝑑 = 0

𝑑𝑑2𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑2 = −𝜔𝜔𝑐𝑐2𝑣𝑣𝑥𝑥 𝜔𝜔𝑐𝑐 =

𝑞𝑞 𝐵𝐵0
𝑚𝑚

 Motion in constant magnetic field

 For a constant magnetic field 𝑩𝑩 = 𝐵𝐵0𝒛𝒛 with 𝑬𝑬 = 0,

 Cyclotron (gyration) frequency
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Motions in uniform magnetic field

 Particle velocity

𝑣𝑣𝑥𝑥 = 𝑣𝑣⊥ cos 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0
𝑣𝑣𝑦𝑦 = −𝑣𝑣⊥ sin 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0
𝑣𝑣𝑧𝑧 = 0

 Particle position

𝑥𝑥 = 𝑟𝑟𝑐𝑐 sin 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0 + 𝑥𝑥0 − 𝑟𝑟𝑐𝑐 sin𝜙𝜙0
𝑦𝑦 = 𝑟𝑟𝑐𝑐 cos 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0 + 𝑦𝑦0 − 𝑟𝑟𝑐𝑐 cos𝜙𝜙0
𝑧𝑧 = 𝑧𝑧0 + 𝑣𝑣𝑧𝑧𝑧𝑡𝑡

 Larmor (gyration) radius

𝑟𝑟𝑐𝑐 =
𝑣𝑣⊥
𝜔𝜔𝑐𝑐

=
𝑚𝑚𝑣𝑣⊥
𝑞𝑞 𝐵𝐵0

 Guiding center

𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0 + 𝑣𝑣𝑧𝑧𝑧𝑡𝑡
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Gyro-frequency and radius

 The direction of gyration is always such that the magnetic field generated by the 
charged particle is opposite to the externally imposed field.  diamagnetic

𝑓𝑓𝑐𝑐𝑐𝑐 = 2.80 × 106 𝐵𝐵0 Hz 𝐵𝐵0 in gauss

𝑟𝑟𝑐𝑐𝑐𝑐 =
3.37 𝐸𝐸
𝐵𝐵0

cm (𝐸𝐸 in volts)

 For electrons

 For singly charged ions

𝑓𝑓𝑐𝑐𝑐𝑐 = 1.52 × 103 𝐵𝐵0/𝑀𝑀𝐴𝐴 Hz 𝐵𝐵0 in gauss

𝑟𝑟𝑐𝑐𝑐𝑐 =
144 𝐸𝐸𝑀𝑀𝐴𝐴

𝐵𝐵0
cm (𝐸𝐸 in volts,𝑀𝑀𝐴𝐴 in amu)

 Energy gain?
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Motions in uniform E and B fields

 Equation of motion

𝑚𝑚
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

= 𝑞𝑞 𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩

 Parallel motion: 𝑩𝑩 = 𝐵𝐵0𝒛𝒛 and 𝑬𝑬 = 𝐸𝐸0𝒛𝒛,

𝑚𝑚
𝑑𝑑𝑣𝑣𝑧𝑧
𝑑𝑑𝑑𝑑 = 𝑞𝑞𝐸𝐸𝑧𝑧

𝑣𝑣𝑧𝑧 =
𝑞𝑞𝐸𝐸𝑧𝑧
𝑚𝑚 𝑡𝑡 + 𝑣𝑣𝑧𝑧𝑧

 Straightforward acceleration along B
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𝑬𝑬×𝑩𝑩 drift

 Transverse motion: 𝑩𝑩 = 𝐵𝐵0𝒛𝒛 and 𝑬𝑬 = 𝐸𝐸0𝒙𝒙,

 Differentiating,

𝑚𝑚
𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝐸𝐸0 + 𝑞𝑞𝐵𝐵0𝑣𝑣𝑦𝑦

𝑚𝑚
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐵𝐵0𝑣𝑣𝑥𝑥

𝑑𝑑2𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑2 = −𝜔𝜔𝑐𝑐2𝑣𝑣𝑥𝑥
𝑑𝑑2𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑2 = −𝜔𝜔𝑐𝑐2

𝐸𝐸0
𝐵𝐵0

+ 𝑣𝑣𝑦𝑦

 Particle velocity

𝑣𝑣𝑥𝑥 = 𝑣𝑣⊥ cos 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0
𝑣𝑣𝑦𝑦 = −𝑣𝑣⊥ sin 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙0 −

𝐸𝐸0
𝐵𝐵0

𝑣𝑣𝑔𝑔𝑔𝑔

𝒗𝒗𝐸𝐸 =
𝑬𝑬 × 𝑩𝑩
𝐵𝐵𝟐𝟐
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DC magnetron

 A magnetron which is widely used in the sputtering system uses the 𝑬𝑬×𝑩𝑩 drift 
motion for plasma confinement.

 What is the direction of 𝑬𝑬×𝑩𝑩 drift motion?
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Motions in gravitational field

 Generally, the guiding center drift caused by general force 𝑭𝑭

 If 𝑭𝑭 is the force of gravity 𝑚𝑚𝒈𝒈,

𝒗𝒗𝑓𝑓 =
1
𝑞𝑞
𝑭𝑭 × 𝑩𝑩
𝐵𝐵𝟐𝟐

𝒗𝒗𝑔𝑔 =
𝑚𝑚
𝑞𝑞
𝒈𝒈 × 𝑩𝑩
𝐵𝐵𝟐𝟐

 What is the difference between 𝒗𝒗𝐸𝐸 and 𝒗𝒗𝑔𝑔?
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𝜵𝜵𝐵𝐵⊥𝑩𝑩: Grad-B drift

 The gradient in |𝑩𝑩| causes the Larmor radius to be larger at the bottom of the 
orbit than at the top, and this should lead to a drift, in opposite directions for ions 
and electrons, perpendicular to both 𝑩𝑩 and 𝜵𝜵𝐵𝐵.

 Guiding center motion

𝒗𝒗𝛻𝛻𝐵𝐵 = ±
1
2 𝑣𝑣⊥𝑟𝑟𝑐𝑐

𝑩𝑩 × 𝛁𝛁𝐵𝐵
𝐵𝐵𝟐𝟐

𝜵𝜵𝐵𝐵
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Curved B: Curvature drift

 The average centrifugal force

 Total drift in a curved vacuum field (curvature + grad-B)

𝑭𝑭𝑐𝑐𝑐𝑐 =
𝑚𝑚𝑣𝑣∥2

𝑅𝑅𝑐𝑐
�𝒓𝒓 = 𝑚𝑚𝑣𝑣∥2

𝑹𝑹𝑐𝑐
𝑅𝑅𝑐𝑐2

 Curvature drift

𝒗𝒗𝑅𝑅 =
1
𝑞𝑞
𝑭𝑭𝑐𝑐𝑐𝑐 × 𝑩𝑩
𝐵𝐵𝟐𝟐 =

𝑚𝑚𝑣𝑣∥2

𝑞𝑞𝐵𝐵𝟐𝟐
𝑹𝑹𝑐𝑐 × 𝑩𝑩
𝑅𝑅𝑐𝑐2

𝒗𝒗𝑅𝑅 + 𝒗𝒗𝛻𝛻𝐵𝐵 =
𝑚𝑚
𝑞𝑞
𝑹𝑹𝑐𝑐 × 𝑩𝑩
𝑅𝑅𝑐𝑐2𝐵𝐵2

𝑣𝑣∥2 +
1
2 𝑣𝑣⊥

2

𝐵𝐵 ∝
1
𝑅𝑅𝑐𝑐

𝜵𝜵 𝐵𝐵
𝐵𝐵 = −

𝑹𝑹𝑐𝑐
𝑅𝑅𝑐𝑐2
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𝜵𝜵𝐵𝐵∥𝑩𝑩: Magnetic mirror

 Adiabatic invariant: Magnetic moment

 Magnetic mirror

 As the particle moves into regions of stronger or weaker 𝐵𝐵, its Larmor
radius changes, but 𝜇𝜇 remains invariant.

𝜇𝜇 = 𝐼𝐼𝐼𝐼 =
1
2𝑚𝑚𝑣𝑣⊥

2

𝐵𝐵

1
2𝑚𝑚𝑣𝑣⊥0

2

𝐵𝐵0
=

1
2𝑚𝑚𝑣𝑣⊥𝑚𝑚

2

𝐵𝐵𝑚𝑚

𝑣𝑣⊥𝑚𝑚2 = 𝑣𝑣⊥02 + 𝑣𝑣∥02 ≡ 𝑣𝑣02

𝐵𝐵0
𝐵𝐵𝑚𝑚

=
𝑣𝑣⊥02

𝑣𝑣⊥𝑚𝑚2 =
𝑣𝑣⊥02

𝑣𝑣02
= sin2𝜃𝜃
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Motions in a dipole magnetic field

 Trajectories of particles confined in a dipole field

 Particles experience gyro-, bounce- and drift- motions
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Boltzmann’s equation & macroscopic quantities

 Particle density

 Particle flux

 Particle energy density
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Particle conservation

𝜕𝜕𝑛𝑛
𝜕𝜕𝑡𝑡

+ 𝜵𝜵 � 𝑛𝑛𝒖𝒖 = 𝐺𝐺 − 𝐿𝐿

The net number of particles per second 
generated within Ω either flows across 
the surface Γ or increases the number 
of particles within Ω.

For common low-pressure discharges 
in steady-state:

Hence, 

𝐺𝐺 = 𝜈𝜈𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒 , 𝐿𝐿 ≈ 0

𝜵𝜵 � 𝑛𝑛𝒖𝒖 = 𝜈𝜈𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒

 The continuity equation is clearly not sufficient to give the evolution of the 
density 𝑛𝑛, since it involves another quantity, the mean particle velocity 𝒖𝒖.
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Momentum conservation

𝑚𝑚𝑚𝑚
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 � 𝜵𝜵 𝒖𝒖 = 𝑞𝑞𝑞𝑞𝑬𝑬 − 𝜵𝜵𝑝𝑝 −𝑚𝑚𝑚𝑚𝜈𝜈𝑚𝑚𝒖𝒖

Convective derivative
 Pressure tensor
 isotropic for weakly ionized plasmas

 The time rate of momentum transfer per 
unit volume due to collisions with other 
species
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Equation of state (EOS)

 An equation of state is a thermodynamic equation describing the state of matter 
under a given set of physical conditions. 

𝑝𝑝 = 𝑝𝑝 𝑛𝑛,𝑇𝑇 , 𝜀𝜀 = 𝜀𝜀(𝑛𝑛,𝑇𝑇)

 Isothermal EOS for slow time variations, where temperatures are allowed to 
equilibrate. In this case, the fluid can exchange energy with its surroundings.

 The energy conservation equation needs to be solved to determine p and T.

𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛, 𝛻𝛻𝑝𝑝 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

 Adiabatic EOS for fast time variations, such as in waves, when the fluid does not 
exchange energy with its surroundings

 The energy conservation equation is not required.

𝑝𝑝 = 𝐶𝐶𝑛𝑛𝛾𝛾,
𝛻𝛻𝛻𝛻
𝑝𝑝

= 𝛾𝛾
𝛻𝛻𝛻𝛻
𝑛𝑛

𝛾𝛾 =
𝐶𝐶𝑝𝑝
𝐶𝐶𝑣𝑣

(specific heat ratio)

 Specific heat ratio vs degree of freedom (𝑓𝑓) 𝛾𝛾 = 1 +
2
𝑓𝑓
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Equilibrium: Maxwell-Boltzmann distribution

 For a single species in thermal equilibrium with itself (e.g., electrons), in the 
absence of time variation, spatial gradients, and accelerations, the Boltzmann 
equation reduces to 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐

= 0

 Then, we obtain the Maxwell-Boltzmann velocity distribution

𝑓𝑓 𝑣𝑣 =
2
𝜋𝜋

𝑚𝑚
𝑘𝑘𝑘𝑘

3
𝑣𝑣2𝑒𝑒𝑒𝑒𝑒𝑒 −

𝑚𝑚𝑣𝑣2

2𝑘𝑘𝑘𝑘

𝑓𝑓 𝜀𝜀 =
2
𝜋𝜋

𝜀𝜀
𝑘𝑘𝑘𝑘

1/2
𝑒𝑒𝑒𝑒𝑒𝑒 −

𝜀𝜀
𝑘𝑘𝑘𝑘

 The mean speed

𝑣̅𝑣 =
8𝑘𝑘𝑘𝑘
𝜋𝜋𝑚𝑚

1/2
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Particle and energy flux

 The directed particle flux: the number of particles per square meter per second 
crossing the 𝑧𝑧 = 0 surface in the positive direction

Γ𝑧𝑧 =
1
4
𝑛𝑛𝑣̅𝑣

 The average energy flux: the amount of energy per square meter per second in 
the +z direction

𝑆𝑆𝑧𝑧 = 𝑛𝑛
1
2
𝑚𝑚𝑣𝑣2𝑣𝑣𝑧𝑧

𝒗𝒗

= 2𝑘𝑘𝑘𝑘Γ𝑧𝑧

 The average kinetic energy 𝑊𝑊 per particle crossing 𝑧𝑧 = 0 in the positive direction

𝑊𝑊 = 2𝑘𝑘𝑘𝑘

𝑣𝑣𝑡𝑡𝑡 =
𝑘𝑘𝑘𝑘
𝑚𝑚

1/2
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Diffusion and mobility

 The fluid equation of motion including collisions

 In steady-state, for isothermal plasmas

𝑚𝑚𝑚𝑚
𝑑𝑑𝒖𝒖
𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 � 𝜵𝜵 𝒖𝒖 = 𝑞𝑞𝑞𝑞𝑬𝑬 − 𝜵𝜵𝑝𝑝 −𝑚𝑚𝑚𝑚𝜈𝜈𝑚𝑚𝒖𝒖

𝒖𝒖 =
1

𝑚𝑚𝑚𝑚𝜈𝜈𝑚𝑚
𝑞𝑞𝑞𝑞𝑬𝑬 − 𝜵𝜵𝑝𝑝 =

1
𝑚𝑚𝑚𝑚𝜈𝜈𝑚𝑚

𝑞𝑞𝑞𝑞𝑬𝑬 − 𝑘𝑘𝑘𝑘𝜵𝜵𝑛𝑛

=
𝑞𝑞

𝑚𝑚𝜈𝜈𝑚𝑚
𝑬𝑬 −

𝑘𝑘𝑘𝑘
𝑚𝑚𝜈𝜈𝑚𝑚

𝜵𝜵𝑛𝑛
𝑛𝑛 = ±𝜇𝜇𝑬𝑬 − 𝐷𝐷

𝜵𝜵𝑛𝑛
𝑛𝑛

 In terms of particle flux

𝚪𝚪 = 𝑛𝑛𝒖𝒖 = ±𝑛𝑛𝜇𝜇𝑬𝑬 − 𝐷𝐷𝜵𝜵𝑛𝑛

𝜇𝜇 =
𝑞𝑞

𝑚𝑚𝜈𝜈𝑚𝑚
∶ Mobility 𝐷𝐷 =

𝑘𝑘𝑘𝑘
𝑚𝑚𝜈𝜈𝑚𝑚

∶ Diffusion coefficient

𝜇𝜇 =
𝑞𝑞 𝐷𝐷
𝑘𝑘𝑘𝑘 ∶ Einstein relation

Drift Diffusion
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Ambipolar diffusion

 The flux of electrons and ions out of any region must be equal such that charge 
does not build up. Since the electrons are lighter, and would tend to flow out 
faster in an unmagnetized plasma, an electric field must spring up to maintain 
the local flux balance.

 The ambipolar diffusion coefficient for weakly ionized plasmas

Γ𝑖𝑖 = +𝑛𝑛𝜇𝜇𝑖𝑖𝐸𝐸 − 𝐷𝐷𝑖𝑖𝛻𝛻𝛻𝛻 Γ𝑒𝑒 = −𝑛𝑛𝜇𝜇𝑒𝑒𝐸𝐸 − 𝐷𝐷𝑒𝑒𝛻𝛻𝛻𝛻

 Ambipolar electric field for Γ𝑖𝑖 = Γ𝑒𝑒

𝐸𝐸 =
𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑒𝑒
𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑒𝑒

𝛻𝛻𝛻𝛻
𝑛𝑛

 The common particle flux

Γ = −
𝜇𝜇𝑒𝑒𝐷𝐷𝑖𝑖 + 𝜇𝜇𝑖𝑖𝐷𝐷𝑒𝑒
𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑒𝑒

𝛻𝛻𝛻𝛻 = −𝐷𝐷𝑎𝑎𝛻𝛻𝛻𝛻

𝐷𝐷𝑎𝑎 =
𝜇𝜇𝑒𝑒𝐷𝐷𝑖𝑖 + 𝜇𝜇𝑖𝑖𝐷𝐷𝑒𝑒
𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑒𝑒

≈ 𝐷𝐷𝑖𝑖 +
𝜇𝜇𝑖𝑖
𝜇𝜇𝑒𝑒
𝐷𝐷𝑒𝑒 ≈ 𝐷𝐷𝑖𝑖 1 +

Te
Ti

~𝜇𝜇𝑖𝑖Te
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Steady-state plane-parallel solutions

 Diffusion equation
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝐷𝐷𝛻𝛻2𝑛𝑛 = 𝐺𝐺 − 𝐿𝐿

volume source and sink

 For a plane-parallel geometry with no volume source or sink

−𝐷𝐷
𝑑𝑑2𝑛𝑛
𝑑𝑑𝑥𝑥2

= 0 𝑛𝑛 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵

 For a uniform specified source of diffusing particles

−𝐷𝐷
𝑑𝑑2𝑛𝑛
𝑑𝑑𝑥𝑥2 = 𝐺𝐺0 𝑛𝑛 =

𝐺𝐺0𝑙𝑙2

8𝐷𝐷 1 −
2𝑥𝑥
𝑙𝑙

2

𝑛𝑛 =
Γ0
𝐷𝐷

𝑙𝑙
2 − 𝑥𝑥

B.C. Γ 𝑥𝑥 = 0 = Γ0
𝑛𝑛 𝑥𝑥 = 𝑙𝑙/2 = 0

B.C. symmetric at 𝑥𝑥 = 0

𝑛𝑛 𝑥𝑥 = ±𝑙𝑙/2 = 0

 The most common case is for a plasma consisting of positive ions and an equal 
number of electrons which are the source of ionization

𝛻𝛻2𝑛𝑛 +
𝜈𝜈𝑖𝑖𝑖𝑖
𝐷𝐷 𝑛𝑛 = 0 where, 𝐷𝐷 = 𝐷𝐷𝑎𝑎 and 𝜈𝜈𝑖𝑖𝑖𝑖 is the ionization frequency

𝑛𝑛0 is determined
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Boltzmann’s relation

 The density of electrons in thermal equilibrium can be obtained from the electron 
force balance in the absence of the inertial, magnetic, and frictional forces

Setting 𝑬𝑬 = −𝜵𝜵Φ and assuming 𝑝𝑝𝑒𝑒 = 𝑛𝑛𝑒𝑒𝑘𝑘𝑇𝑇𝑒𝑒

Integrating, we have

𝑚𝑚𝑛𝑛𝑒𝑒
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 � 𝜵𝜵 𝒖𝒖 = −𝑒𝑒𝑛𝑛𝑒𝑒𝑬𝑬 − 𝜵𝜵𝑝𝑝𝑒𝑒 − 𝑚𝑚𝑛𝑛𝑒𝑒𝜈𝜈𝑚𝑚𝒖𝒖

𝑒𝑒𝑛𝑛𝑒𝑒𝜵𝜵Φ − 𝑘𝑘𝑇𝑇𝑒𝑒𝜵𝜵𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒𝜵𝜵 𝑒𝑒Φ − 𝑘𝑘𝑇𝑇𝑒𝑒ln𝑛𝑛𝑒𝑒 = 0

𝑛𝑛𝑒𝑒 𝒓𝒓 = 𝑛𝑛0exp
𝑒𝑒Φ 𝒓𝒓
𝑘𝑘𝑇𝑇𝑒𝑒

= 𝑛𝑛0exp
Φ 𝒓𝒓

Te
Boltzmann’s relation for electrons

 For positive ions in thermal equilibrium at temperature Ti 𝑛𝑛𝑖𝑖(𝒓𝒓) = 𝑛𝑛0exp −
Φ(𝒓𝒓)

Ti

 However, positive ions are almost never in thermal equilibrium in low pressure 
discharges because the ion drift velocity 𝑢𝑢𝑖𝑖 is large, leading to inertial or frictional 
forces comparable to the electric field or pressure gradient forces.
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Debye shielding (screening)

 Coulomb potential

 Screened Coulomb potential

Φ 𝑟𝑟 =
𝑄𝑄

4𝜋𝜋𝜖𝜖0𝑟𝑟

Φ 𝑟𝑟 =
𝑄𝑄

4𝜋𝜋𝜖𝜖0𝑟𝑟
exp −

𝑟𝑟
𝜆𝜆𝐷𝐷

𝛻𝛻2Φ = −
𝑒𝑒𝑛𝑛0
𝜖𝜖0

1 − 𝑒𝑒𝑒𝑒Φ/𝑘𝑘𝑇𝑇𝑒𝑒 ≈
𝑒𝑒2𝑛𝑛0
𝜖𝜖0𝑘𝑘𝑇𝑇𝑒𝑒

Φ =
Φ
𝜆𝜆𝐷𝐷2

 Poisson’s equation

 Debye length

𝜆𝜆𝐷𝐷 =
𝜖𝜖0𝑘𝑘𝑇𝑇𝑒𝑒
𝑒𝑒2𝑛𝑛0

1/2

=
𝜖𝜖0Te
𝑒𝑒𝑛𝑛0

1/2

Plasma
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Debye length

𝜆𝜆𝐷𝐷 cm =
𝜖𝜖0Te
𝑒𝑒𝑛𝑛0

⁄1 2

= 743
Te eV

𝑛𝑛0 cm−3 = 743
4

1010 ≈ 0.14 mm

 The electron Debye length 𝜆𝜆𝐷𝐷𝐷𝐷 is the characteristic length scale in a plasma.

 The Debye length is the distance scale over which significant charge densities 
can spontaneously exist. For example, low-voltage (undriven) sheaths are 
typically a few Debye lengths wide.

+

-

--

--

+

+

+

+

λD

Quasi-neutrality?

 Typical values for a processing plasma (ne = 1010 cm-3, Te = 4 eV)

 It is on space scales larger than a Debye length that the 
plasma will tend to remain neutral.

 The Debye length serves as a characteristic scale length 
to shield the Coulomb potentials of individual charged 
particles when they collide.
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Quasi-neutrality

 The potential variation across a plasma of length 𝑙𝑙 ≫ 𝜆𝜆𝐷𝐷𝐷𝐷 can be estimated from 
Poisson’s equation

We generally expect that

Then, we obtain

𝛻𝛻2Φ~
Φ
𝑙𝑙2 ~

𝑒𝑒
𝜖𝜖0

𝑍𝑍𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑒𝑒

Φ ≲ Te =
𝑒𝑒
𝜖𝜖0
𝑛𝑛𝑒𝑒𝜆𝜆𝐷𝐷𝐷𝐷2

𝑍𝑍𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑒𝑒
𝑛𝑛𝑒𝑒

≲
𝜆𝜆𝐷𝐷𝐷𝐷2

𝑙𝑙2 ≪ 1

𝑍𝑍𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑒𝑒
Plasma approximation

 The plasma approximation is violated within a plasma sheath, in proximity to a 
material wall, either because the sheath thickness s ≈ 𝜆𝜆𝐷𝐷𝐷𝐷, or because Φ ≫ Te.
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Plasma oscillations

 Electrons overshoot by inertia and oscillate around their equilibrium position with 
a characteristic frequency known as plasma frequency.

 Equation of motion (cold plasma)
2 2

0
2

0

e
x e

d n e
m eE

dt





   

2 2
0

2
0

0e
e

d n e

mdt





 

 Electron plasma frequency

𝜔𝜔𝑝𝑝𝑝𝑝 =
𝑛𝑛0𝑒𝑒2

𝑚𝑚𝜖𝜖0

1/2

 If the assumption of infinite mass ions is not made, then the ions also move 
slightly and we obtain the natural frequency

𝜔𝜔𝑝𝑝 = 𝜔𝜔𝑝𝑝𝑝𝑝2 + 𝜔𝜔𝑝𝑝𝑖𝑖
2 1/2 where, 𝜔𝜔𝑝𝑝𝑝𝑝 = 𝑛𝑛0𝑒𝑒2/𝑀𝑀𝜖𝜖0 1/2 (ion plasma frequency)
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Plasma frequency

 Plasma oscillation frequency for electrons and ions

𝑓𝑓𝑝𝑝𝑒𝑒 =
𝜔𝜔𝑝𝑝𝑝𝑝
2𝜋𝜋 = 8980 𝑛𝑛0 Hz 𝑛𝑛0 in cm−3

𝑓𝑓𝑝𝑝𝑖𝑖 =
𝜔𝜔𝑝𝑝𝑖𝑖
2𝜋𝜋 = 210 𝑛𝑛0/𝑀𝑀𝐴𝐴 Hz 𝑛𝑛0 in cm−3,𝑀𝑀𝐴𝐴 in amu

 Typical values for a processing plasma (Ar)

𝑓𝑓𝑝𝑝𝑒𝑒 =
𝜔𝜔𝑝𝑝𝑝𝑝
2𝜋𝜋 = 8980 1010 Hz = 9 × 108 [Hz]

𝑓𝑓𝑝𝑝𝑖𝑖 =
𝜔𝜔𝑝𝑝𝑖𝑖
2𝜋𝜋 = 210 1010/40 Hz = 3.3 × 106 [Hz]

 Collective behavior

𝜔𝜔𝑝𝑝𝑝𝑝𝜏𝜏 > 1 Plasma frequency > collision frequency
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Criteria for plasmas

 Criteria for plasmas:

𝜆𝜆𝐷𝐷 ≪ 𝐿𝐿

𝜔𝜔𝑝𝑝𝑝𝑝𝜏𝜏𝑐𝑐 > 1

𝑁𝑁𝐷𝐷 ≫ 1

𝑁𝑁𝐷𝐷 = 𝑛𝑛
4
3
𝜋𝜋𝜆𝜆𝐷𝐷3

 The picture of Debye shielding is valid only if there are enough particles in the 
charge cloud. Clearly, if there are only one or two particles in the sheath region, 
Debye shielding would not be a statistically valid concept. We can compute the 
number of particles in a “Debye sphere”:

 Plasma parameter

Λ = 4𝜋𝜋𝑛𝑛𝜆𝜆𝐷𝐷3 = 3𝑁𝑁𝐷𝐷

 Coupling parameter

Γ =
Coulomb energy
Thermal energy =

𝑞𝑞2/(4𝜋𝜋𝜖𝜖0𝑎𝑎)
𝑘𝑘𝑇𝑇𝑒𝑒

~Λ−2/3

Wigner-Seitz radius 𝑎𝑎 = 3 4𝜋𝜋𝑛𝑛𝑒𝑒/3
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Formation of plasma sheaths

 Plasma sheath: the non-neutral potential region between the plasma and the 
wall caused by the balanced flow of particles with different mobility such as 
electrons and ions.
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Plasma-sheath structure
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Collisionless sheath

 Ion energy & flux conservations (no collision)

 Ion density profile

1
2
𝑀𝑀𝑢𝑢(𝑥𝑥)2 + 𝑒𝑒Φ(𝑥𝑥) =

1
2
𝑀𝑀𝑢𝑢𝑠𝑠2 𝑛𝑛𝑖𝑖 𝑥𝑥 𝑢𝑢 𝑥𝑥 = 𝑛𝑛𝑖𝑖𝑠𝑠𝑢𝑢𝑠𝑠

𝑛𝑛𝑖𝑖 𝑥𝑥 = 𝑛𝑛𝑖𝑖𝑠𝑠 1 −
2𝑒𝑒Φ(𝑥𝑥)
𝑀𝑀𝑢𝑢𝑠𝑠2

−1/2

 Electron density profile

𝑛𝑛𝑒𝑒(𝑥𝑥) = 𝑛𝑛𝑒𝑒𝑠𝑠exp
Φ(𝑥𝑥)

Te

 Setting 𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑖𝑖𝑖𝑖 ≡ 𝑛𝑛𝑠𝑠

𝑑𝑑2Φ
𝑑𝑑𝑑𝑑2 =

𝑒𝑒𝑛𝑛𝑠𝑠
𝜖𝜖0

exp
Φ
Te

− 1 −
Φ
ℰ𝑠𝑠

−1/2

where, 𝑒𝑒ℰ𝑠𝑠 ≡
1
2
𝑀𝑀𝑢𝑢𝑠𝑠2
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Bohm sheath criterion

 Multiplying the sheath equation by 𝑑𝑑Φ/𝑑𝑑𝑑𝑑 and integrating over 𝑥𝑥

�
0

Φ𝑑𝑑Φ
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑Φ
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 =
𝑒𝑒𝑛𝑛𝑠𝑠
𝜀𝜀0

�
0

Φ𝑑𝑑Φ
𝑑𝑑𝑑𝑑 exp

Φ
Te

− 1 −
Φ
ℰ𝑠𝑠

−1/2

𝑑𝑑𝑑𝑑

 Cancelling 𝑑𝑑𝑑𝑑’s and integrating with respect to Φ

1
2

𝑑𝑑Φ
𝑑𝑑𝑑𝑑

2

=
𝑒𝑒𝑛𝑛𝑠𝑠
𝜀𝜀0

Teexp
Φ
Te

− Te + 2ℰ𝑠𝑠 1 −
Φ
ℰ𝑠𝑠

1/2

− 2ℰ𝑠𝑠 ≥ 0

𝑢𝑢𝑠𝑠 ≥
𝑒𝑒Te
𝑀𝑀

1/2

≡
𝑘𝑘𝑇𝑇𝑒𝑒
𝑀𝑀

1/2

≡ 𝑢𝑢𝐵𝐵 (Bohm speed)

ℰ𝑠𝑠 ≡
1

2𝑒𝑒𝑀𝑀𝑢𝑢𝑠𝑠
2 ≥

Te
2

 Bohm sheath criterion
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Presheath

 To give the ions the directed velocity 𝑢𝑢𝐵𝐵, there must be a finite electric field in the 
plasma over some region, typically much wider than the sheath, called the 
presheath.

 At the sheath–presheath interface there is a transition from subsonic (𝑢𝑢𝑖𝑖 < 𝑢𝑢𝐵𝐵) to 
supersonic (𝑢𝑢𝑖𝑖 > 𝑢𝑢𝐵𝐵) ion flow, where the condition of charge neutrality must 
break down.

 The potential drop across a collisionless presheath, which accelerates the ions 
to the Bohm velocity, is given by

1
2𝑀𝑀𝑢𝑢𝐵𝐵

2 =
𝑒𝑒Te

2 = 𝑒𝑒Φ𝑝𝑝
where, Φ𝑝𝑝 is the plasma potential with respect to the 
potential at the sheath–presheath edge

 The spatial variation of the potential Φ𝑝𝑝(𝑥𝑥) in a collisional presheath (Riemann)

1
2 −

1
2 exp

2Φ𝑝𝑝

Te
−
Φ𝑝𝑝

Te
=
𝑥𝑥
𝜆𝜆𝑖𝑖

 The ratio of the density at the sheath edge to that in the plasma

𝑛𝑛𝑠𝑠 = 𝑛𝑛𝑏𝑏𝑒𝑒−Φ𝑝𝑝/Te ≈ 0.61𝑛𝑛𝑏𝑏
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Sheath potential at a floating Wall

 Ion flux

 Electron flux

Γ𝑖𝑖 = 𝑛𝑛𝑠𝑠𝑢𝑢𝐵𝐵

Γ𝑒𝑒 =
1
4
𝑛𝑛𝑒𝑒𝑒𝑒𝑣̅𝑣𝑒𝑒 =

1
4
𝑛𝑛𝑠𝑠𝑣̅𝑣𝑒𝑒exp

Φ𝑤𝑤
Te

 Ion flux = electron flux for a floating wall

𝑛𝑛𝑠𝑠
𝑒𝑒Te
𝑀𝑀

1/2

=
1
4𝑛𝑛𝑠𝑠

8𝑒𝑒Te
𝜋𝜋𝑚𝑚

1/2

exp
Φ𝑤𝑤
Te

 Wall potential

Φ𝑤𝑤 = −
Te
2 ln

𝑀𝑀
2𝜋𝜋𝑚𝑚

 Ion bombarding energy

Φ𝑤𝑤 ≈ −2.8Te for hydrogen and Φ𝑤𝑤 ≈ −4.7Te for argon

ℰ𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑒𝑒Te

2 + 𝑒𝑒 Φ𝑤𝑤 =
𝑒𝑒Te

2 1 + ln
𝑀𝑀

2𝜋𝜋𝑚𝑚

a few 𝜆𝜆𝐷𝐷𝐷𝐷
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High-voltage sheath: matrix sheath

 The potential Φ in high-voltage sheaths is highly negative with respect to the 
plasma–sheath edge; hence 𝑛𝑛𝑒𝑒~𝑛𝑛𝑠𝑠𝑒𝑒Φ/Te → 0 and only ions are present in the 
sheath.

 The simplest high-voltage sheath, with a uniform ion density, is known as a 
matrix sheath (not self-consistent in steady-state).

 Poisson’s eq.

𝑑𝑑2Φ
𝑑𝑑𝑥𝑥2 = −

𝑒𝑒𝑛𝑛𝑠𝑠
𝜖𝜖0

Φ = −
𝑒𝑒𝑛𝑛𝑠𝑠
𝜖𝜖0

𝑥𝑥2

2

 Setting Φ = −𝑉𝑉0 at 𝑥𝑥 = 𝑠𝑠, we obtain the matrix sheath thickness

𝑠𝑠 =
2𝜖𝜖0𝑉𝑉0
𝑒𝑒𝑛𝑛𝑠𝑠

1/2

 In terms of the electron Debye length at the sheath edge

𝑠𝑠 = 𝜆𝜆𝐷𝐷𝐷𝐷
2𝑉𝑉0
Te

1/2

where, 𝜆𝜆𝐷𝐷𝐷𝐷 = 𝜖𝜖0Te/𝑒𝑒𝑛𝑛𝑠𝑠 1/2
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High-voltage sheath: space-charge-limited current

 In the limit that the initial ion energy ℰ𝑠𝑠 is small compared to the potential, the ion 
energy and flux conservation equations reduce to

1
2
𝑀𝑀𝑢𝑢2(𝑥𝑥) = −𝑒𝑒Φ(𝑥𝑥)

𝑒𝑒𝑒𝑒 𝑥𝑥 𝑢𝑢 𝑥𝑥 = 𝐽𝐽0
𝑛𝑛 𝑥𝑥 =

𝐽𝐽0
𝑒𝑒 −

2𝑒𝑒Φ
𝑀𝑀

−1/2

 Poisson’s eq.

𝑑𝑑2Φ
𝑑𝑑𝑥𝑥2 = −

𝑒𝑒
𝜖𝜖0

(𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑒𝑒) = −
𝐽𝐽0
𝜖𝜖0

−
2𝑒𝑒Φ
𝑀𝑀

−1/2

 Multiplying by 𝑑𝑑Φ/𝑑𝑑𝑑𝑑 and integrating twice from 0 to 𝑥𝑥

 Letting Φ = −𝑉𝑉0 at 𝑥𝑥 = 𝑠𝑠 and solving for 𝐽𝐽0, we obtain

−Φ3/4 =
3
2

𝐽𝐽0
𝜖𝜖0

1/2 2𝑒𝑒
𝑀𝑀

−1/4

𝑥𝑥

𝐽𝐽0 =
4
9 𝜖𝜖0

2𝑒𝑒
𝑀𝑀

1/2 𝑉𝑉0
3/2

𝑠𝑠2
Child law:
Space-charge-limited current in a plane diode

B.C. �
𝑑𝑑Φ
𝑑𝑑𝑑𝑑 𝑥𝑥=0

= 0
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High-voltage sheath: Child law sheath

 For a plasma 𝐽𝐽0 = 𝑒𝑒𝑛𝑛𝑠𝑠𝑢𝑢𝐵𝐵

 Child law sheath

 Potential, electric field and density within the sheath

Φ = −𝑉𝑉0
𝑥𝑥
𝑠𝑠

4/3

𝑒𝑒𝑛𝑛𝑠𝑠𝑢𝑢𝐵𝐵 =
4
9
𝜖𝜖0

2𝑒𝑒
𝑀𝑀

1/2 𝑉𝑉0
3/2

𝑠𝑠2

𝑠𝑠 =
2

3
𝜖𝜖0Te
𝑒𝑒𝑛𝑛𝑠𝑠

1/2 2𝑉𝑉0
Te

3/4

=
2

3
𝜆𝜆𝐷𝐷𝐷𝐷

2𝑉𝑉0
Te

3/4

𝐸𝐸 =
4
3
𝑉𝑉0
𝑠𝑠

𝑥𝑥
𝑠𝑠

1/3

 Assuming that an ion enters the sheath with initial velocity 𝑢𝑢 0 = 0

𝑛𝑛 =
4
9
𝜖𝜖0
𝑒𝑒
𝑉𝑉0
𝑠𝑠2

𝑥𝑥
𝑠𝑠

−2/3

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑣𝑣0

𝑥𝑥
𝑠𝑠

2/3
where, 𝑣𝑣0 is the characteristic ion velocity in the sheath

 Ion transit time across the sheath
𝑥𝑥 𝑡𝑡
𝑠𝑠 =

𝑣𝑣0𝑡𝑡
3𝑠𝑠

3
𝜏𝜏𝑖𝑖 =

3𝑠𝑠
𝑣𝑣0

𝑣𝑣0 =
2𝑒𝑒𝑉𝑉0
𝑀𝑀

1/2
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