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Various applications of plasma technology
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Low-temperature plasma

Plasma Science: Advancing Knowledge in the National Interest (2007)
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Plasma processing technology in industry
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Plasma processing technology is vitally important to 

several of the largest manufacturing industries in the world
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Plasma processing in integrated circuit fabrication

⚫ Argon or oxygen discharges are used to sputter-deposit aluminum, tungsten, or 

high-temperature superconducting films.

⚫ Oxygen discharges can be used to grow SiO2 films on silicon.

⚫ SiH2Cl2/NH3 and Si(OC2H5)4/O2 discharges are used for the plasma-enhanced 

chemical vapor deposition (PECVD) of Si3N4 and SiO2 films, respectively.

⚫ BF3 discharges can be used to implant dopant (B) atoms into silicon.

⚫ CF4/Cl2/O2 discharges are used to selectively remove silicon films.

⚫ Oxygen discharges are used to remove photoresist or polymer films.

⚫ These types of steps (deposit or grow, dope or modify, etch or remove) are 

repeated again and again in the manufacture of a modern IC.

⚫ For microfabrication of an IC, one-third of the tens to hundreds of fabrication 

steps are typically plasma based.
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Typical IC fabrication process

a. Film deposition

b. Photoresist deposition

c. Optical exposure

d. Photo development

e. Etching

f. PR removal
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Silicon etching using a plasma discharge

⚫ Start with an inert molecular gas, such as CF4.

⚫ Excite the discharge to sustain a plasma by electron–neutral dissociative 

ionization,

and to create reactive species by electron–neutral dissociation,

⚫ The etchant F atoms react with the silicon substrate, yielding the volatile etch 

product SiF4:

⚫ Finally, the product is pumped away.

⚫ It is important that CF4 does not react with silicon, and that the etch product SiF4

is volatile, so that it can be removed.

e + CF4 → 2e + CF3
+ + F

e + CF4 → e + CF3 + F

→ e + CF2 + 2F

Si(s) + 4F(g) → SiF4(g)
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Plasma etching in integrated circuit manufacture

• 화학적 반응: 플라즈마 내의 전자들은 중성입자와 충돌하여 화학 반응에 필요한 radical을 생성

• 물리적 반응: 기판 표면에 들어오는 이온들은 쉬스 전기장에 의해 가속 (이방성)
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Plasma processing for semiconductor fabrication
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Characteristics of weakly-ionized plasmas

⚫ A plasma is a collection of free charged particles moving in random directions 

that is, on the average, electrically neutral.

⚫ Weakly-ionized plasmas have the following features:

(1) they are driven electrically;

(2) charged particle collisions with neutral gas molecules are important;

(3) there are boundaries at which surface losses are important;

(4) ionization of neutrals sustains the plasma in the steady state;

(5) the electrons are not in thermal equilibrium with the ions.
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Non-equilibrium is important in semiconductor fabrication

⚫ For low-pressure discharges, the plasma is not in thermal equilibrium and the 

electrical power is coupled most efficiently to electrons. Energy is transferred 

inefficiently from electrons to ions and neutrals due to mass difference.

⚫ Plasma processing: high temperature processing at low temperatures

➢ Wafer can be near room temperature

➢ Electrons produce free radicals : Chemistry

➢ Electrons produce electron-ion pairs : Ion bombardment
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Electron energy distribution function (EEDF)

• Energetic electrons undergo collision with neutrals to generate excited 
neutrals, atoms, free radicals, ions, and additional electrons

- E < 2 eV : elastic →  heating

: attachment → electron loss, electronegative plasma

- E = 2 – 6 eV : excitation  → light emission

- E = 6 – 15 eV : dissociation → radicals, chemistry

- E > 15 eV : ionization → positive ion, plasma
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Formation of plasma sheaths
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Importance of sheath

⚫ Radicals, neutrals, fractional ions and electrons are generated in plasma.

⚫ Energetic particles are produced at the electrode sheaths.

⚫ To control the ion energy, flux and directionality, the understanding of plasma 

and sheath is required.
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Capacitive rf discharge
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High density plasma sources
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Surface treatment with atmospheric plasmas

LCD glass cleaning
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Nano-fabrication

Nanoscale 10, 17494-17511 (2018) Microsystems & Nanoengineering 6, 25 (2020)

https://www.nature.com/micronano
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Plasma agriculture
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Biomedical applications

▪ Biocompatibility

▪ Sterilization

▪ Surgery
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Plasma surgery

(From Plasma Surgical Inc.)
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▪ Sterilization of living tissue 

▪ Bacteria inactivation 

▪ Hemostasis
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Plasma dentistry

▪ Deactivation of Biofilms

➢ Root canal disinfection

➢ E. faecalis in the root canal

➢ Ex-vivo biofilms on root canals of extracted teeth

➢ E. coli, L. casei, S. mutans and C. albicans on agar and dentine plates

▪ Tooth Bleaching (surface treatment)

➢ Hydrogen Peroxide + CAP enhanced the tooth bleaching

➢ CAP + saline

➢ Carbamide Peroxide + CAP

➢ Plasma plume + 36% H2O2 gel on extracted teeth

▪ Instrument Sterilization

➢ Removal of biofilms on microstructures titanium

➢ Dental instruments

➢ Ti discs inoculated with biofilms

▪ Composite Restoration

➢ CAP treatment increases dentin/adhesive interfacial bonding

➢ CAP treatment improves the tensile-shear bond strength between post and 

composite
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Plasmas for cancer treatment
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Wearable atmospheric pressure plasma fabric
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Plasma propulsion
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anodecathode

𝑽𝟎 = 𝟏𝟔 𝒌𝑽

➢ 긴 pre-breakdown time 동안 버블 발생 → 버블 내 스트리머 발생 및 전파

➢ 매우 짧은 시간 동안 스트리머-아크 천이 → 고온,고압 플라즈마 생성 → 충격파 발생

Underwater spark discharge



28 Introduction to Nuclear Engineering, Fall 2022

Underwater shockwave generation
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Water well cleaning

정경재외, 대한지질공학회지 23, 29 (2013)

K. J. Chung et al., Contrib. Plasma Phys. 53, 330 (2013)

K. J. Chung et al., Curr. Appl. Phys. 15, 977 (2015)

S. G. Lee et al., J. Korean Phys. Soc. 66, 1845 (2015)

K. Lee et al., J. Appl. Phys. 121, 243302 (2017)

K. Lee et al., Appl. Phys. Lett. 112, 134101 (2018)

기술 상용화(지하수 관정 세정 기술)
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Water-bloom removal

⚫ 녹조제거기술

→ Shock wave destroys gas vesicles to sink the water-bloom down to the bottom

w/o pulse w/ pulse

w/o pulse w/ pulse

Gas vesicles
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NOx reduction

40 kV, 4 MW, 0.15 J/pulse, 100 Hz

→ 20% reduction of NOx with 15 W
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High-energy-density (HED) plasma (p > Mbar) research

K
 

Standard water

Lightning

Magnetic fusion ~ 5 bar

(1014 cm-3, 10 keV)

Processing plasma

(1010 cm-3, 4 eV)

Standard air

Γ = 1

Solar core

X-Pinch

Laser

fusion

⚫ Pulsed power enables us to study high energy density physics in a laboratory,

because it can provide huge power (~GW) for a very short time (~ns)
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Warm dense matter research via underwater wire explosion

K. J. Chung et al., J. Appl. Phys. 120, 203301 (2016)

S. Park et al., Appl. Phys. Lett. 119, 174102 (2021)

WDM regime

 Binodal curve

3D EOS of Cu

Pulsed power system

0 μs 4.75 μs

14.25 μs9.50 μs

Initial wire Phase transition/expansion

Shockwave

Nonideal plasma
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2x10umφ W wires

Cathode

Anode

Hot spot

High current from pulsed power system

X-ray pulse

Hot dense matter research using X-pinch in vacuum

J. Ryu et al., RSI 92, 053533 (2021)
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RIA (Reactivity-Initiated Accident) simulator

③②① ④

①

④

②

③
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Electron thermodynamics in magnetic nozzle

J. Y. Kim et al., New J. Phys. 20, 063033 (2018) J. Y. Kim et al., PSST 28, 07LT01 (2019) J. Y. Kim et al., Phys. Rev. E 104, 045202 (2021)
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Arcing in DC or RF applications
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V. Losovskiy et al., J. Phys. D: Appl. Phys. 31, 3349 (1998)

I. Korolov et al., J. Phys. D: Appl. Phys. 47, 475202 (2014)
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RF ion sources

RF ion source for FIB RF ion source for accelerator

Y. S. Park et al., RSI 82, 123303 (2011)

Y. Lee et al., Curr. Appl. Phys. 15, 1599 (2015)

Y. S. Park et al., RSI 83, 02B313 (2012)

Y. S. Park et al., RSI 85, 02A508 (2014)

H. D. Jung et al., IEEE TPS 35, 1476 (2007)

K. J. Chung et al., RSI 85, 02B119 (2014)

K. J. Chung et al., New J. Phys. 18, 105006 (2016)

Negative ion source

Helicon ion 

source

RF ion source for Nano-MEIS
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DC ion sources

Radially movable 
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Hot cathode PIG ion source for ion implanter Cold cathode PIG ion source for accelerator

K. Choi et al., RSI 90, 033305 (2019)

Sealed 

tube ion 

source

Time-of-flight ion 

mass spectrometer

J. Y. Kim et al., PSST 30, 025011 (2021)

J. Y. Kim et al., AIP Advances 11, 085113 (2021)
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