Ch. 12 Kinetics of Particles

Prof. SangJoon Shin

12.0 Introduction

Newton's $\left\{\begin{array}{l}1^{\text {st }} \text { law } \rightarrow \\ 3^{\text {rd }} \text { law } \rightarrow\end{array}\right.$ motion of bodies with no acceleration
$2^{\text {nd }}$ law \rightarrow accelerated : magnitude or direction of the velocity changes

Resultant of the forces are not zero, particle will have an acceleration ratio of the resultant force and the acceleration \rightarrow mass

Linear momentum : $\overrightarrow{\boldsymbol{L}}=\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$, alternative form of Newton's $2^{\text {nd }}$ law
International System of Units (SI) vs. US customary units
Rectangular components vs. tangential/normal component
Radial/transverse component
angular momentum $\overrightarrow{\boldsymbol{H}_{0}}=\overrightarrow{\boldsymbol{r}} \times \boldsymbol{m} \overrightarrow{\boldsymbol{v}}$, another Newton's $2^{\text {nd }}$ law
Under central force \rightarrow angular momentum about O is conserved
orbit motion under gravitational attraction

12.1A Newton's $2^{\text {nd }}$ Law of Motion

If the resultant force acting on a particle is not zero, the particle will have an acceleration proportional to the magnitude of the resultant and in the direction of this resultant force
Fig. 12.1 (a)~(c)

$$
\begin{gather*}
\frac{F_{1}}{a_{1}}=\frac{F_{2}}{a_{2}}=\frac{F_{3}}{a_{3}}=\cdots=\text { const. } \rightarrow \text { mass } m \\
\vec{F}=m \vec{a} \tag{12.1}
\end{gather*}
$$

$\begin{cases}\overrightarrow{\boldsymbol{F}} & \text { and } \overrightarrow{\boldsymbol{a}} \text { are proportional } \\ \overrightarrow{\boldsymbol{F}} & \text { and } \overrightarrow{\boldsymbol{a}} \text { have the same direction }\end{cases}$
: still holds if $\overrightarrow{\boldsymbol{F}}$ varies with time they will not, in general, be tangent to the path.

(a)

(b)

(c)

Fig. 12.1

12.1A Newton's $2^{\text {nd }}$ Law of Motion

Several forces

$$
\begin{equation*}
\sum \vec{F}=m \vec{a} \tag{12.2}
\end{equation*}
$$

\uparrow
sum, or resultant, of all the forces
Frame of reference
: system of axes with respect to which $\overrightarrow{\boldsymbol{a}}$ is determined is not arbitrary.
$\{$ must have a constant orientation with respect to the stars
$\{$ their origin must either be attached to the sun
or move with a constant velocity w. r. t. the sun
(sun \leftarrow mass center of the solar system)
\rightarrow Newtonian frame of reference (inertial system)
Precisely, axes attached to the earth $\rightarrow \mathrm{X}$ Newtonian frame of reference
However, in most engineering applications, enough for (12.1) and (12.2) without any applicable error.
If $\overrightarrow{\boldsymbol{a}}$ represents a relative acceleration w. r. t. moving axes, (12.1)
do not hold. (e.g. attached to an accelerated car rotating piece of machinery)
$\sum \overrightarrow{\boldsymbol{F}}=\mathbf{0} \rightarrow$ if initially at rest ($\overrightarrow{\boldsymbol{v}}_{0}=\mathbf{0}$), remain at rest originally moving with \vec{v}_{0}, maintain constant velocity (in a straight line)
\rightarrow Newton's $1^{\text {st }}$ law : particular case of the $2^{\text {nd }}$ law.

12.1B Linear Momentum, Rate of change of Linear Momentum

$$
\vec{a}=\frac{d \vec{v}}{d t} \quad, \quad \sum \vec{F}=m \frac{d \vec{v}}{d t}
$$

m is constant,

$$
\begin{equation*}
\sum \vec{F}=\frac{d}{d t}(m \vec{v}) \tag{12.3}
\end{equation*}
$$

$\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$: (linear) momentum, same direction with velocity
(12.3) : the resultant of the forces acting on the particle is equal to the rate of change of the linear momentum of the particle.
(Newton's original statement regarding $2^{\text {nd }}$ law)
\vec{L} : linear momentum

$$
\begin{align*}
& \vec{L}=m \vec{v} \\
& \sum \vec{F}=\dot{\vec{L}} \tag{12.5}
\end{align*}
$$

mass is assumed to be constant

12.1B Linear Momentum, Rate of change of Linear Momentum

(12.3), (12.5) \rightarrow not applicable to the rockets, which gain or lose mass However, applicable to relativistic mechanics, where mass is assumed to vary with the particle speed

If $\sum \overrightarrow{\boldsymbol{F}}=\mathbf{0}$, rate of change of $\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$ is zero
\rightarrow Principle of conservation of linear momentum (alternative statement of Newton's $1^{\text {st }}$ law)

12.1C System of Units

$\overrightarrow{\boldsymbol{F}}=\boldsymbol{m} \overrightarrow{\boldsymbol{a}}$, units of force, mass, length and time cannot be chosen arbitrary
can choose three of four units arbitrarily but must choose the fourth unit
so that $\overrightarrow{\boldsymbol{F}}=\boldsymbol{m} \overrightarrow{\boldsymbol{a}}$ is satisfied.
\rightarrow coherent set of kinetic units

International System of Units (SI Units)

force \rightarrow derived unit, newton (N)

$$
1 N=(1 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathbf{a}=1 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
m=1 \mathrm{~kg}
$$

$$
\mathbf{F}=1 \mathrm{~N}
$$

Fig. 4 A force of 1 newton gives a 1kilogram mass an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$

SI base units: chosen and defined to be independent of the location, can be used anywhere on earth

12.1C System of Units

Weight $\vec{W}: W=m g$

$$
W=(1 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=9.81 \mathrm{~N}
$$

Multiple/submultiples of units

$$
\begin{array}{ll}
1 \mathrm{~km}=1000 \mathrm{~m}, & 1 \mathrm{~mm}=0.001 \mathrm{~m} \\
1 \mathrm{Mg}=1000 \mathrm{~kg}=1 t, & 1 g=0.001 \mathrm{~kg} \\
1 \mathrm{kN}=1000 \mathrm{~N} &
\end{array}
$$

Unit of linear momentum

$$
m v=(k g)(m / s)=k g \cdot m / s
$$

U.S. customary units: foot (ft), pound (lb), second (s)

$$
1 f t=0.3048 m, \quad 1 l b=0.4536 k g f
$$

$m=1 \mathrm{~kg}$

$\mathbf{W}=9.81 \mathrm{~N}$

Fig. 5 In the SI system, a block with mass 1 kg has a weight of 9.81 N

Fig. 6 In the U.S. system, a block with a weight of 1 lb in free fall has an acceleration of $32.2 \mathrm{ft} / \mathrm{s}^{2}$

12.1C System of Units

Unit of mass consistent with ft, lb, s

$$
\begin{aligned}
& f=m a, \quad \quad 1 l b=(1 \text { slug })\left(1 f t / s^{2}\right) \\
& 1 \text { slug }=\frac{1 l b}{1 f t / s^{2}}=1 l b \cdot s^{2} / f t
\end{aligned}
$$

Slug is a mass 32.2 times larger than the mass of the standard pound.

$$
m=\frac{W}{g}, m v=(s l u g)(f t / s)=\left(l b \cdot s^{2} / f t\right)(f t / s)=l b \cdot s
$$

Conversion from one system of units to another

$$
\begin{aligned}
& 1 \mathrm{ft}=0.3048 \mathrm{~m}, \quad 1 \mathrm{lb}=4.448 \mathrm{~N} \\
& 1 \mathrm{slug}=1 \mathrm{lb} \cdot \mathrm{~s}^{2} / f t=14.59 \mathrm{~kg} \\
& 1 \text { pound }- \text { mass }=0.4536 \mathrm{~kg}
\end{aligned}
$$

$$
\mathrm{a}=1 \mathrm{ft} / \mathrm{s}^{2}
$$

$\mathbf{F}=1 \mathrm{lb}$
($=1 \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}$)

Fig. 7 In the U.S. customary system, a force of 1 lb applied to a block with a mass of 1 slug produces an acceleration of $1 \mathrm{ft} / \mathrm{s}^{2}$

12.1D Eqn. of Motion

$$
\vec{F}=m \vec{a}
$$

- 2 important graphical tools to solve the dynamics problem using Newton's $2^{\text {nd }}$ law: free-body diagram (FBD), kinematic diagram (KD)

FBD: - body: multiple diagrams when necessary

- axes: Cartesin, normal/tangential, radial/transverse
- support forces: 2 perpendicular forces for a pin, normal force, friction force
- applied forces and body forces: weight, magnetic forces, known pulling force
- dimension: angle, distance

KD: - body: same in FBD

- inertial term: $\boldsymbol{m} \overrightarrow{\boldsymbol{a}}$ consistent with the coord. System or components

Fig. 9 Steps in drawing a free-body diagram and a kinetic diagram for solving dynamics problems

12.1D Eqn. of Motion

More convenient to replace $\overrightarrow{\boldsymbol{F}}=\boldsymbol{m} \overrightarrow{\boldsymbol{a}}$ by equivalent equations Involving scalar quantities
i) Rectangular components
: resolving $\overrightarrow{\boldsymbol{F}}$ and $\overrightarrow{\boldsymbol{a}}$ into rectangular components

$$
\begin{array}{rlrl}
\sum\left(F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}\right) & =m\left(a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}\right) \\
\sum F_{x}=m a_{x} & \sum F_{y} & =m a_{y} & \sum F_{z} \\
=m a_{z} \\
=m \ddot{x} & & =m \ddot{y} & \\
=m \ddot{z}
\end{array}
$$

: example of projectile $\vec{w}=-w \vec{j}$

$$
\begin{array}{ll}
m \ddot{x}=0, & m \ddot{y}=-w, \\
\ddot{x}=0, & m \ddot{z}=0 \\
\ddot{y}=-\frac{w}{m}=-g, & \ddot{z}=0
\end{array}
$$

\longrightarrow can be integrated independently
: two or more bodies, \rightarrow eqn. of motion should be written for each body all accelerations should be measured w. r. t. a Newtonian frame of reference

12.1D Eqn. of Motion

ii) Tangential and Normal Components

$$
\begin{align*}
\sum F_{t} & =m a_{t}, & \sum F_{n} & =m a_{n} \\
& =m \frac{d v}{d t} & & =m \frac{v^{2}}{\rho} \tag{12.9}
\end{align*}
$$

solve for two unknowns

Fig. 10 The net force acting on a particle moving in a curvilinear path can be resolved into components tangent to the path and normal to the path, producing tangential and normal components of acceleration

12.1D Eqn. of Motion

iii) Radial and Transverse Components

$$
\begin{align*}
& \sum F_{r}=m a_{r}, \quad \sum F_{\theta} \\
&=m a_{\theta} \tag{12.10-12}\\
&=m\left(\ddot{r}-r \dot{\theta}^{2}\right) \quad=m(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \\
& \longrightarrow \text { solve for two unknowns }
\end{align*}
$$

Fig. 12.14

12.1 Dynamic Equilibrium

Alternative form of Newton's $2^{\text {nd }}$ Law

$$
\begin{equation*}
\sum \vec{F}-m \vec{a}=0 \tag{12.10}
\end{equation*}
$$

If we add the vector $\mathbf{- m} \boldsymbol{m}$, we obtain a system of vectors equivalent to zero (Fig. 12.8)

Fig. 12.8
$-\boldsymbol{m} \overrightarrow{\boldsymbol{a}}$: inertia vector
$=0$
Dynamic equilibrium : equilibrium under the given forces and inertia vector
, Closed-vector polygon : coplanar forces
$\sum \boldsymbol{F}_{x}=\mathbf{0}, \quad \sum \boldsymbol{F}_{y}=\mathbf{0}$ including inertia vector
> tangential and normal components :

$$
\text { inertia vector }\left\{\begin{array}{l}
-\boldsymbol{m} \vec{a}_{t} \\
-\boldsymbol{m} \vec{a}_{n}
\end{array}\right.
$$

12.1 Dynamic Equilibrium

Tangential component : measure of the resistance to a change in speed
Normal component : tendency to leave its curved path(centrifugal force)

Either $=0$ under special conditions
i) Start from rest, initial velocity $=0 \rightarrow$ normal component of inertia vector $=0$
ii) Constant speed \rightarrow tangential component $=0$

Inertia vectors is often called "inertia forces" : measure of resistance when we set them in a motion or we try to change the conditions of motion Inertia forces \neq forces found in statics (e.g. contact forces, gravitational forces)

12.2A Angular Momentum

Angular momentum, moment of momentum : moment about O of the vector $\boldsymbol{m} \overrightarrow{\boldsymbol{v}} \rightarrow \overrightarrow{\boldsymbol{H}}_{\text {。 }}$

$$
\vec{H}_{o}=\vec{r} \times m \vec{v}
$$

\rightarrow perpendicular to the plane containing $\overrightarrow{\boldsymbol{r}}$ and $\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$

$$
\left|\vec{H}_{o}\right|=r m v \sin \phi
$$

\rightarrow angle between $\overrightarrow{\boldsymbol{r}}$ and $\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$

$$
\text { unit : }(m)(k g \cdot m / s)=k g \cdot m^{2} / s
$$

Fig. 12.12

Resolving into component

$$
\overrightarrow{\boldsymbol{H}}_{o}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\boldsymbol{x} & \boldsymbol{y} & z \\
\boldsymbol{m} \boldsymbol{v}_{x} & \boldsymbol{m} \boldsymbol{v}_{y} & \boldsymbol{m} v_{z}
\end{array}\right| \quad \begin{aligned}
& \boldsymbol{H}_{x}=\boldsymbol{m}\left(\boldsymbol{y} \boldsymbol{v}_{x}-\boldsymbol{z} \boldsymbol{v}_{y}\right) \\
& \boldsymbol{H}_{y}=\boldsymbol{m}\left(\boldsymbol{z} \boldsymbol{v}_{x}-\boldsymbol{x} \boldsymbol{v}_{z}\right) \\
& \boldsymbol{H}_{z}=\boldsymbol{m}\left(\boldsymbol{x} v_{y}-\boldsymbol{y} \boldsymbol{v}_{x}\right)
\end{aligned}
$$

12.2A Angular Momentum

In case of a particle moving in the $x y$-plane

$$
\begin{aligned}
z=\boldsymbol{v}_{z}=\mathbf{0}, \quad \boldsymbol{H}_{y}=\boldsymbol{H}_{z}=\mathbf{0} \\
\boldsymbol{H}_{0}=\boldsymbol{H}_{z}=\boldsymbol{m}\left(\boldsymbol{x} \boldsymbol{v}_{y}-\boldsymbol{y} \boldsymbol{v}_{x}\right) \\
\quad \rightarrow \text { perpendicular to the xy-plane }
\end{aligned}
$$

$(+)$ or (-) according to the sense in which the particle is observed to move from \boldsymbol{O}
Polar coordinate : $\boldsymbol{H}_{0}=\boldsymbol{r m v} \boldsymbol{\operatorname { s i n }} \boldsymbol{\phi}=\boldsymbol{r m} \boldsymbol{v}_{\theta}$

$$
\begin{equation*}
=m r^{2} \dot{\theta}\left(v_{\theta}=r \dot{\theta}\right) \tag{12.18}
\end{equation*}
$$

Derivative w. r. t. t

Fig. 12.13

$$
\dot{\vec{H}}_{\mathbf{0}}=\dot{\vec{r}} \times \boldsymbol{m} \overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{r}} \times \boldsymbol{m} \dot{\vec{v}}=\underbrace{\overrightarrow{\mathbf{v}}}_{\substack{\downarrow \\ \mathbf{v}} \boldsymbol{m} \overrightarrow{\boldsymbol{v}}}+\overrightarrow{\boldsymbol{r}} \times \boldsymbol{m} \overrightarrow{\boldsymbol{a}} \boldsymbol{\downarrow}
$$

$\therefore \vec{v}$ and $m \vec{v}$
are collinear
$\dot{\overrightarrow{\boldsymbol{H}}}_{\mathrm{o}}=\dot{\vec{r}} \times \sum \overrightarrow{\boldsymbol{F}}=\sum \overrightarrow{\boldsymbol{M}}_{\mathrm{o}}$
: sum of the moments about \boldsymbol{O} of the force
$=$ rate of change of angular momentum about \boldsymbol{O}

12.1D Eqn. of Motion in terms of Radial and Transverse Components

Polar coordinate $\boldsymbol{r}, \boldsymbol{\theta}$

$$
\begin{aligned}
& \sum F_{r}=m a_{r}, \quad \sum F_{\theta}=m a_{\theta} \\
& =m(\ddot{r}-r \ddot{\theta}) \quad=m(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \\
& \text { or recalling } \quad \sum \overrightarrow{\boldsymbol{M}}_{0}=\dot{\overrightarrow{\boldsymbol{H}}}_{0}, \quad \boldsymbol{H}_{0}=\boldsymbol{m r ^ { 2 }} \dot{\boldsymbol{\theta}} \\
& \sum M_{0}=r \sum F_{\theta} \\
& r \sum F_{\theta}=\frac{d}{d t}\left(m r^{2} \dot{\theta}\right) \\
& =m\left(r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}\right) \\
& \sum F_{\theta}=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{aligned}
$$

Fig. 12.14

12.2B Motion under a Central Force

Moving under a central force : force $\overrightarrow{\boldsymbol{F}}$ directed toward or away from

$$
\begin{align*}
& \text { a fixed point } \mathrm{O} \text { (center of force) } \\
& \rightarrow \quad \sum \overrightarrow{\boldsymbol{M}}_{0}=\mathbf{0} \\
& \rightarrow \quad \dot{\overrightarrow{\boldsymbol{H}}}_{0}=\mathbf{0}, \quad \overrightarrow{\boldsymbol{H}}_{0}=\text { const } \tag{12.23}
\end{align*}
$$

Angular momentum of a particle moving under a central force is constant, in both magnitude and direction

$$
\rightarrow \quad \vec{r} \times m \vec{v}=\vec{H}_{0}=\text { const }
$$

$\rightarrow \overrightarrow{\boldsymbol{r}}$ must be perpendicular to the constant vector $\overrightarrow{\boldsymbol{H}}_{0}$, moves in a fixed plane Perpendicular to $\overrightarrow{\boldsymbol{H}}_{0}$
$\overrightarrow{\boldsymbol{H}}_{0}$ and the fixed plane are defined by the initial vector $\overrightarrow{\boldsymbol{r}}_{0}$ and $\overrightarrow{\boldsymbol{v}}_{0}$
Since $\left|\overrightarrow{\boldsymbol{H}}_{0}\right|$ is constant, $r m v \sin \phi=r_{0} m v_{0} \sin \phi_{0}$
Application : planetary motion, space vehicles in orbit about the earth

Fig. 12.15

Fig. 12.16

12.2B Motion under a Central Force

Polar coordinate

$$
m r^{2} \dot{\theta}=H_{0}=\text { const } .
$$

Divide by $\boldsymbol{m}, \boldsymbol{h}$: angular momentum per unit mass $\boldsymbol{H}_{0} / \boldsymbol{m}$

$$
\begin{equation*}
\boldsymbol{r}^{2} \dot{\boldsymbol{\theta}}=\boldsymbol{h} \tag{12.25}
\end{equation*}
$$

Fig. 12. 15, radius vector OP sweeps an infinitesimal area

Fig. 12.15
> Moving under a central force, areal velocity is constant.

12.2C Newton's Law of Gravitation

Example of central force : $\{$ force exerted by the sun or the planet force exerted by the earth or orbiting satellite
\rightarrow how to determine the magnitude of gravitational force
Law of universal Gravitation : two particles of masses \boldsymbol{M} and \boldsymbol{m} at a distance \boldsymbol{r} attract each other with equal and opposite forces $\overrightarrow{\boldsymbol{F}}$ and $-\overrightarrow{\boldsymbol{F}}$ directed along the line joining the particles.

$$
F=G \frac{M m}{r^{2}}
$$

\boldsymbol{G} : universal constant, "constant of gravitation"
$(66.73 \pm 0.03) \times 10^{-12} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$
>Affect becomes appreciable only when one of the bodies has a very large mass
[a planet about the sun
\{ satellite orbiting the earth
bodies falling on the surface of the earth

12.2C Newton's Law of Gravitation

Weight \vec{W} : force exerted by the earth on a body located on or near its surface

$$
W=m g=\frac{G M}{R^{2}} m \quad \text { or } \quad g=\frac{G M}{R^{2}}
$$

Earth is not truly spherical \rightarrow the value of \boldsymbol{W} and \boldsymbol{g} vary with the altitude and latitude
Reason \#2 of varying \boldsymbol{W} and \boldsymbol{g} : system of axes attached to the earth is NOT a Newtonian frame of reference
> include centrifugal force due to the earth rotation $g \simeq 9.781 \mathrm{~m} / \mathrm{s}^{2}$ (at the equator), $g \simeq 9.833 \mathrm{~m} / s^{2}$ (at the poles)
> $g=9.7807\left(1+0.0053 \sin ^{2} \phi\right) m / s^{2}, \phi$: latitude (위도) longitude (경도)
Force exerted by the earth on a body of mass \boldsymbol{m} located in space at a distance \boldsymbol{r}

$$
F=G \frac{M m}{r^{2}}
$$

Can be simplified by $\boldsymbol{G M}=\boldsymbol{g} \boldsymbol{R}^{\mathbf{2}}$

$$
\left.\begin{array}{l}
g: 9.81 m / s^{2} \\
R: 6.37 \times 10^{6} m
\end{array}\right\} \leftarrow \text { average values }
$$

