Ch. 15 Kinematics of Rigid Bodies

Prof. SangJoon Shin

15.0 Introduction

Categories of rigid-body motion
i) Translation --- if any straight line inside the body keeps the same direction during motion

- All the particles forming the body move along parallel paths.
straight lines \rightarrow rectilinear translation (Fig. 15.1.)
curved lines \rightarrow curvilinear translation (Fig. 15.2.)

Fig. 15.1

Fig. 15.2

15.0 Introduction

Categories of rigid-body motion
ii) Rotation about a fixed axis --- particles move in parallel planes along circles centered on the same axis (Fig 15.3.)
\rightarrow axis of rotation, the particles on the axis have zero velocity / acceleration.

Fig. 15.3

Fig. 15.4.(a) --- curvilinear translation, all particles moving along parallel circles
(b) ---rotation, all particles moving along concentric circles.
\longrightarrow each particle moves in a given plane \rightarrow plane motion

(a) Curvilinear translation

(b) Rotation

Fig. 15.4

15.0 Introduction

Categories of rigid-body motion
iii) General plane motion--- all the particles move in parallel planes. neither a rotation nor a translation two examples ---- Fig. 15.5.
iv) Motion about a fixed point --- three-dimensional motion of a rigid body attached at a fixed point (Fig. 15.6.)

(a) Rolling wheel

(b) Sliding rod

Fig. 15.6

IIIg. 15.5

15.0 Introduction

Categories of rigid-body motion
v) General motion ---- which does not fall in any of the categories above

Rotation about a fixed axis \rightarrow angular velocity, angular acceleration velocity, acceleration

$$
\text { of a given point ---- position vector + angular }\left\{\begin{array}{l}
\text { velocity } \\
\text { acceleration }
\end{array}\right.
$$

General plane motion --- gears, connecting rods, pin-connected linkages.
velocity of a point B of the slab --- sum of the velocity of the ref. point A . the velocity of B relative to a frame of ref. translating with A (Moving with A, but not rotating)
---- same approach used for acceleration
Alternative methods --- $\left\{\begin{array}{l}\text { instantaneous center of rotation } \\ \text { use of parametric expressions }\end{array}\right.$
Motion of a particle relative to a rotating frame of ref. , Coriolis acceleration

15.1A Translation

Rigid body in translation. A, B; two particles in it, (Fig. 15.7.(a))
$\overrightarrow{r_{A}}, \overrightarrow{r_{B}}$
-- - position vectors of A and B with respect to fixed frame of ref.
$\overrightarrow{r_{B / A}} \quad--$ vector joining A and B

$$
\begin{equation*}
\overrightarrow{r_{B}}=\overrightarrow{r_{A}}+\overrightarrow{r_{B / A}} \tag{15.1.}
\end{equation*}
$$

Differentiate w.r.t.

Translation ---- $>r_{B / A}$ must maintain a constant direction, also const. magnitude

$$
\begin{align*}
& \Rightarrow \overrightarrow{r_{B / A}}=0 \quad \overrightarrow{v_{B}}=\overrightarrow{v_{A}}
\end{align*}
$$

Differentiate once more

$$
\begin{equation*}
\overrightarrow{a_{B}}=\overrightarrow{a_{A}} \tag{15.3.}
\end{equation*}
$$

All particles have the same velocity / acceleration at any given instant.

15.1A Translation

Curvilinear translation -- velocity / acceleration change direction / magnitude
Rectilinear translation - - all particles move along a straight line, velocity / acceleration keep the same direction.

15.1B Rotation about a Fixed Axis

Rigid body rotating about a fixed axis $A A^{\prime}$
P..... point of the body, $\vec{r}=$ position vector w.r.t. a fixed frame of ref. frame is centered at O on $A A^{\prime}, Z$ axis coincides with $A A^{\prime}$ (Fig. 15.8.)

B : projection of P on $\mathrm{AA}^{\prime}, \mathrm{P}$ will describe a circle of center B , radius of $r \sin \phi, \phi$: angle formed by r and AA^{\prime}.

Angular coordinate $\theta \ldots$ completely defines the position of P and the entire body positive when viewed as counterclockwise from A^{\prime}
unit \cdot. radians $($ rad $)$, degrees $\left({ }^{\circ}\right)$, revolutions (r)

$$
1 r=2 \pi \mathrm{rad}=360^{\circ}
$$

Fig. 15.8

15.1B Rotation about a Fixed Axis

Length of the arc Δs

$$
\begin{gather*}
\Delta s=(B P) \Delta \theta=(r \sin \phi) \Delta \theta \\
\qquad \begin{array}{l}
v=\frac{d s}{d t}=r \dot{\theta} \sin \phi
\end{array} \quad \begin{array}{l}
\text { Vector perpendicular } \\
\text { to the plane } \\
\text { containing AA' and } \vec{r}
\end{array} \\
=>\vec{v}=\frac{d \vec{r}}{d t}=\vec{\omega} \times \vec{r}
\end{gather*}
$$

[^0]
15.1B Rotation about a Fixed Axis

Acceleration differentiate Eq.(15.5.)

$$
\begin{align*}
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(\vec{\omega} \times \vec{r}) \\
& =\frac{d \vec{\omega}}{d t} \times \vec{r}+\vec{\omega} \times \frac{d \vec{r}}{d t} \\
& =\frac{d \vec{\omega}}{d t} \times \vec{r}+\vec{\omega} \times \vec{v} \\
& \leftrightarrow \vec{\alpha} \text { : angular acceleration } \\
& \vec{a}=\vec{\alpha} \times \vec{r}+\vec{\omega} \times(\vec{\omega} \times \vec{r}) \tag{15.8.}\\
& \text { Tangential } \\
& \text { component }
\end{align*}
$$

Angular acceleration

$$
\begin{align*}
& \vec{a}=\alpha \vec{k}=\dot{\omega} \vec{k}=\ddot{\theta} \vec{k} \tag{15.9.}\\
& \text { along the axis of rotation }
\end{align*}
$$

15.1B Rotation about a Fixed Axis

Rotation of a Representative slab

xy plane $\cdot \cdots$ reference plane, z-axis -- axis of rotation, $\vec{\omega}=\omega \vec{k}$ (+) : counterclockwise, (-) : clockwise

- velocity of any given point ---

$$
\begin{aligned}
& \vec{v}=\omega \vec{k} \times \vec{r} \quad(15.10 .) \\
& \text { magnitude }--v=r \omega
\end{aligned}
$$

Fig. 15.10
direction - - by rotating r through 90° in the sense of rotation

- acceleration - -

$$
\begin{align*}
& \vec{a}=\alpha \vec{k} \times \vec{r}-\omega^{2} \vec{r} \tag{15.11.}\\
& \overrightarrow{a_{t}}=\alpha \vec{k} \times \vec{r},\left|\overrightarrow{a_{t}}\right|=r \alpha
\end{align*}
$$

Fig. 15.11
counterclockwise if $\alpha(+)$, clockwise if $\alpha(-)$

$$
\overrightarrow{a_{n}}=-\omega^{2} \vec{r},\left|\overrightarrow{a_{t}}\right|=r \omega^{2}
$$

always opposite to \vec{r}, i.e., toward O

15.1C Equations defining the Rotation about a Fixed Axis

More often, motion is specified by angular acceleration α as a function of t , or a function of ω

$$
\begin{align*}
& \omega=\frac{d \theta}{d t} \tag{15.12.}\\
& \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}} \tag{15.13.}
\end{align*}
$$

(15.12.) \rightarrow (15.13.)

$$
\begin{equation*}
\alpha=\omega \frac{d \omega}{d t} \tag{15.14.}
\end{equation*}
$$

Integration \rightarrow
i) Uniform rotation --- angular acceleration $=0$

$$
\begin{equation*}
\theta=\theta_{o}+\omega t \tag{15.15.}
\end{equation*}
$$

ii) Uniformly accelerated rotation --- $\quad \alpha=$ constant

$$
\begin{align*}
& \omega=\omega_{0}+\alpha t \\
& \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \tag{15.16.}\\
& \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{align*}
$$

15.2A General Plane Motion

General plane motion ---- always sum of a translation and a rotation.
[example]
i) Rolling wheel --- rolling motion = combination of simultaneous translation and rotation

ii) Sliding rod--- motion $=$ translation(horizontal) + rotation about $\mathrm{A}($ Fig.15.13(a)) or translation(vertical) + rotation about B(Fig. 15.13(b))

15.2A General Plane Motion

Displacement of two particles A and B (Fig.15.14.) two parts ---- $\left\{\begin{array}{l}A 1, B 1 \rightarrow A 2, B 1^{\prime}: \text { translation } \\ A 2, B 1^{\prime} \rightarrow A 2, B 2: \text { rotation about } A\end{array}\right.$

Fig. 15.14

Relative motion of B w.r.t. a frame attached at A, of fixed orientation
\rightarrow rotation, B will appear to describe an arc of circle centered at A.

15.2B Absolute velocity of a particle of the slab

translation
the slab
rotation of the slab about A

position vector of B relative to A angular velocity of the slab w.r.t. axes of fixed orientation

$$
\begin{equation*}
(15.15) \rightarrow(15.17)=\overrightarrow{v_{B}}=\overrightarrow{v_{A}}+\omega \vec{k} \times \overrightarrow{r_{B / A}} \tag{15.17'}
\end{equation*}
$$

Plane motion

Translation with A

$+$

Rotation about A

Fig. 15.15

15.2B Absolute velocity of a particle of the slab

Sliding rod of Fig. 15.13
--- v_{A} known, fixed $\overrightarrow{v_{B}}, \vec{\omega}$ in terms of $\overrightarrow{v_{A}}, l, \theta$ motion $=$ translation with $\mathrm{A}+$ simultaneous rotation about A (Fig.15.16.)

$$
\begin{equation*}
\overrightarrow{v_{B}}=\overrightarrow{v_{A}}+\overrightarrow{v_{B / A}} \tag{15.17}
\end{equation*}
$$

$\overrightarrow{v_{B / A}}$ direction is known, but its magnitude $l \omega$ is unknown.
$\leftarrow v_{B}$ direction is known

$$
\begin{equation*}
v_{B}=v_{A} \tan \theta, \quad \omega=\frac{v_{B / A}}{l}=\frac{v_{A}}{l \cos \theta} \tag{15.19}
\end{equation*}
$$

Fig. 15.16

15.2B Absolute velocity of a particle of the slab

same result obtained by using B as a point of ref. (Fig.15.17.)

Fig. 15.17

Angular velocity $\vec{\omega}$--- same no matter which the ref. is at a or b.
\rightarrow angular velocity ω of a rigid body in plane motion is independent of its ref. point.

15.2B Absolute velocity of a particle of the slab

same result obtained by using B as a point of ref. (Fig.15.17.)

Several moving parts --- pin- connected...
i) The points where two parts are connected must have the same absolute velocity
ii) Gears---- teeth in contact must have the same absolute velocity
iii) Parts which slide on each other --- relative velocity must be considered.

Fig. 15.17

15.3 Instantaneous center of rotation in plane motion

At any given instant, the velocities of the various particles of the slab are the same as if the slab were rotating about a certain axis \rightarrow " instantaneous axis of rotation",

C : "instantaneous center of rotation"
---- $\overrightarrow{v_{A}}, \vec{\omega}$ can be obtained by rotating the slab with $\vec{\omega}$ at a distance

$$
r=v_{A} / \omega \text { from A (Fig.15.18(b)) }
$$

The velocities of all the other particles would be the same as originally defined.
\rightarrow As far as the velocities are concerned, the slab seems to rotate about the instant considered.

Fig. 15.18

15.3 Instantaneous center of rotation in plane motion

Two ways to define the instantaneous center C
i) Directions of $\overrightarrow{v_{A}}, \overrightarrow{v_{B}}$ are known and different ---- drawing perpendicular lines to $\overrightarrow{v_{A}}$ and ${ }^{V_{B}}$, the point where the two lines intersect (Fig.15.19(a))
ii) v_{A}, v_{B} are perpendicular to $\overline{A B}$ and their magnitudes are known
---- by intersecting $\overline{A B}$ with the line joining the extremities of $\overrightarrow{v_{A}}, \overrightarrow{v_{B}}$ (Fig.15.19(b))
iii) IF v_{A} and v_{B} were parallel in Fig.15.19(a)) or if v_{A}, v_{B} had the same magnitude in Fig.15.19(b)) ------ C would be at an infinite distance, $\vec{\omega}$ would be zero.

(a)

(b)

15.3 Instantaneous center of rotation in plane motion

Sliding rod with the instantaneous center
C can be obtained by drawing perpendicular to $\overrightarrow{v_{A}}$ and $\overrightarrow{v_{B}}$
The velocities of all the particles are the same as if the rod rotated about C.
if v_{A} is known,

$$
\begin{aligned}
& \omega=\frac{v_{A}}{\overline{A C}}=\frac{v_{A}}{l \cos \theta} \\
& v_{B}=(B C) \omega=l \sin \theta \frac{v_{A}}{l \cos \theta}=v_{A} \tan \theta
\end{aligned}
$$

Only absolute velocities are involved.

Fig. 15.20

C inside the rigid body ---- at that instant, its velocity is zero. But will probably different from zero at $t+\Delta t$
\Rightarrow C doesn't have zero acceleration.

Fig. 15.21
\Rightarrow Acceleration can not be determined as if the slab were rotating about C

15.4A Abs. and Rel. Acceleration in Plane Motion

Any plane motion $=$ a translation of an arbitrary ref. point + simultaneous rotation
\rightarrow determine the acceleration of the points of the slab

$$
\overrightarrow{a_{B}}=\overrightarrow{a_{A}}+\overrightarrow{a_{B / A}}
$$

relative acceleration $\overrightarrow{a_{B / A}} \begin{cases}\text { tangential component } & \left(\overrightarrow{a_{B / A}}\right)_{t} \\ \text { normal component } & \left(\overrightarrow{a_{B / A}}\right)_{n}\end{cases}$

$$
\begin{gather*}
\left.\left(\overrightarrow{a_{B / A}}\right)_{t}=\alpha \vec{k} \times \overrightarrow{r_{B / A}}, \quad \mid \overrightarrow{a_{B / A}}\right)_{t} \mid=r \alpha \tag{15.22.}\\
\left(\overrightarrow{a_{B / A}}\right)_{n}=-\omega^{2} \overrightarrow{r_{B / A}}, \quad\left|\left(\overrightarrow{a_{B / A}}\right)_{n}\right|=r \omega^{2} \tag{15.22.}\\
(15.21 .) \rightarrow \overrightarrow{a_{B}}=\overrightarrow{a_{A}}+\alpha \vec{k} \times \overrightarrow{r_{B / A}}-\omega^{2} \overrightarrow{r_{B / A}} \tag{15.21'}
\end{gather*}
$$

Rotation about A

15.4A Abs. and Rel. Acceleration in Plane Motion

Sliding $A B$ (Fig. 15.23.)

$$
\overrightarrow{v_{A}}, \overrightarrow{a_{A}} \text { known , determine } \overrightarrow{a_{B}}, \vec{\alpha}
$$

$$
\overrightarrow{a_{B}}=\overrightarrow{a_{A}}+\overrightarrow{a_{B / A}}
$$

$$
\begin{equation*}
\overrightarrow{a_{A}}+\left(\overrightarrow{a_{B / A}}\right)_{n}+\left(\overrightarrow{a_{B / A}}\right)_{t} \tag{15.23.}
\end{equation*}
$$

Both possible sense of $\overrightarrow{a_{B}}$ in Fig. 15.23

Fig. 15.23

15.4A Abs. and Rel. Acceleration in Plane Motion

Eq. (15.23) \rightarrow Fig. 15.24
four possible vector polygons --- - depending upon the sense of $\overrightarrow{a_{A}}$ and relative magnitude of a_{A} and $\left(a_{B / A}\right)_{n}$
ω also has to be known \leftarrow either method from Sec. 15.2 or 15.3.
Then, a_{B} and α can be obtained by x and y components.
From Fig.15.24(a),

$$
\begin{aligned}
& +x \text { component }: \quad 0=a_{A}+l \omega^{2} \sin \theta-l \alpha \cos \theta \\
& +\uparrow \quad y \text { component }: \quad-a_{B}=-l \omega^{2} \cos \theta-l \alpha \sin \theta
\end{aligned}
$$

Or, direct measurement on the vector polygon. (careful on $\overrightarrow{a_{A}}$ and $\overrightarrow{\left(a_{B / A}\right)_{n}}$)

15.4A Abs. and Rel. Acceleration in Plane Motion

If the extremities were moving along curved tracks, necessary to resolve
To normal, tangential components \rightarrow six different vectors.

Several moving parts ------ the point where two parts are connected
\rightarrow must have the same absolute acceleration

* Meshed gears ----- teeth in contact $\rightarrow\left\{\begin{array}{l}\text { the same tangential acceleration } \\ \text { normal component --- different }\end{array}\right.$

15.5A Rate of change of a vector w.r.t. a Rotating

 FrameSec 11.4 B --- rate of change of a vector is the same w.r.t.
 a fixed frame a frame in translation
how about w.r.t. a rotating frame of reference?

Fig.15.26. ---- fixed frame $O X Y Z$
rotating frame $O x y z, \vec{\Omega}$: angular velocity $\vec{Q}(t)$: vector function

Fig. 15.26

15.5A Rate of change of a vector w.r.t. a Rotating Frame

$$
\begin{equation*}
\left.\vec{Q}=Q_{x} \vec{i}+Q_{y} \vec{j}+Q_{z} \vec{k} \quad \vec{i}, \vec{j}, \vec{k}: \text { unit vectors }\right) \tag{15.27}
\end{equation*}
$$

Differentiate, rate of change of \vec{Q}, w.r.t. rotating frame Oxyz

$$
\begin{equation*}
(\dot{\vec{Q}})_{o x y z}=\dot{Q}_{x} \vec{i}+\dot{Q}_{y} \vec{j}+\dot{Q}_{z} \vec{k} \tag{15.28}
\end{equation*}
$$

Differentiate \vec{Q}, w.r.t. the fixed frame $O X Y Z, \vec{i}, \vec{j}, \vec{k}$ are variable
$(\dot{\vec{Q}})_{o x y z}$
velocity of a particle at the tip of \vec{Q}

$$
\begin{equation*}
=\vec{\Omega} \times \vec{Q} \tag{15.30}
\end{equation*}
$$

15.5B Plane Motion of a Particle Relative to a Rotating Frame

(15.29)의 부연설명
$(\dot{\vec{Q}})_{O X y z}$ 는 만일, 벡터 Q 가 frame Oxyz에 fixed 되어 있어 $(\dot{\vec{Q}})_{O_{x y z}}=0$
이 된다면 (15.29)식의 마지막 3 개 항과 같이 됨.
그러한 경우 $(\dot{\vec{Q}})_{O X Y Z}$ 는 \vec{Q} 이 tip에 위치하여 있는 particle의 velocity를 나타내게 되며,
이는 frame Oxyz에 rigidly attached 되어 있는 질점의 velocity를 의미함.
Frame $O x y z$ 는 Frame $O X Y Z$ 에 대하여 Ω 의 angular velocity로 회전하고 있으므로
마지막 3 개 항 $=\vec{\Omega} \times \vec{Q}$

15.5A Rate of change of a vector w.r.t. a Rotating

 FrameWhen \vec{Q} is represented by the unit vectors in Oxyz, Eq.(15.31) simplifies the determination of $(\dot{\vec{Q}})_{o X Y Z}$, since no need to separate computation of the derivatives of the unit vectors defining the rotating frame.

15.5B Plane Motion of a Particle Relative to a Rotating Frame

Fig. 15.27. ---- two frames of ref, in the plane of the figure
fixed frame $O X Y$, rotating frame $O x y$
$(\dot{\vec{r}})_{O X Y}$: rate of change of \vec{r}, w.r.t. a fixed frame

Fig. 15.27

15.5B Plane Motion of a Particle Relative to a Rotating Frame

$(\vec{r})_{o x y}$:
w.r.t. the rotating frame Oxy
$\vec{\Omega} \quad$: angular velocity of the frame $O X y$ w.r.t. $O X Y$

$$
\begin{equation*}
\overrightarrow{v_{P}}=(\vec{r})_{O X Y}=\vec{\Omega} \times \vec{r}+(\stackrel{\rightharpoonup}{r})_{O x y} \tag{15.32}
\end{equation*}
$$

F : rotating frame
: P^{\prime} velocity in the slab which coincides with P at the instant

Fig. 15.28

$$
\begin{equation*}
\overrightarrow{v_{P}}=\overrightarrow{v_{P^{\prime}}}+\overrightarrow{v_{P / F}} \tag{15.33}
\end{equation*}
$$

15.5B Plane Motion of a Particle Relative to a Rotating Frame

Absolute acceleration --- rate of change of v_{P}, w.r.t. $O X Y$

$$
=\vec{\Omega} \times \vec{r}+(\dot{\vec{r}})_{o x y} \text { by } E q \cdot(15.32)
$$

$$
=\underbrace{\dot{\vec{\Omega}} \times \vec{r}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})}+\underbrace{2 \vec{\Omega} \times(\dot{\vec{r}})_{o v y}}
$$

15.5B Plane Motion of a Particle Relative to a Rotating Frame

Compared with Eq. (15.21) $\overrightarrow{a_{B}}=\overrightarrow{a_{A}}+\overrightarrow{a_{B / A}}$ accel. w.r.t. a frame in translation
\rightarrow if the frame is rotating, necessary to include Coriolis' acceleration $\overrightarrow{a_{C}}$
Direction of $\overrightarrow{a_{C}}$
$\left|\overrightarrow{a_{C}}\right|=2 \Omega v_{P / F}$, rotating $\overrightarrow{v_{P / F}}$ through 90°
in the sense of rotation of the moving frame (Fig. 15.29)

Fig. 15.29

15.5B Plane Motion of a Particle Relative to a Rotating Frame

Significance of $\overrightarrow{a_{c}}$
Abs. velocity of P at time t and $t+\Delta t \quad$ (Fig. 15.30(b))
At t , velocity components $\vec{u}, \overrightarrow{v_{A}}$, at $t+\Delta t \overrightarrow{u^{\prime}}, \overrightarrow{v_{A^{\prime}}}$

- Fig 15.30 (c), change in velocity during $\Delta t \rightarrow \overrightarrow{R R^{\prime}}, \overrightarrow{T T^{\prime \prime}}, \overrightarrow{T^{\prime \prime} T^{\prime}}$

- $\overrightarrow{T T^{\prime \prime}}$---- change in the direction of $\overrightarrow{v_{A}}, \overrightarrow{T T^{\prime \prime}} / \Delta t$ represents

$$
\begin{aligned}
\overrightarrow{a_{A}} \quad \text { as } \quad \Delta t & \rightarrow 0 \\
\lim _{t \rightarrow 0} \frac{T T^{\prime \prime}}{\Delta t} & =\lim _{t \rightarrow 0} v_{A} \frac{\Delta \theta}{\Delta t}=r \omega \omega=r \omega^{2}=a_{A}
\end{aligned}
$$

--- change in direction of \vec{u} due to the rotation

(c)

15.5B Plane Motion of a Particle Relative to a Rotating Frame

- sum of these two $\rightarrow a_{c}$

$$
\begin{aligned}
& \overrightarrow{R R^{\prime}}=u \Delta \theta, T^{\prime \prime} T^{\prime}=v_{A^{\prime}}-v_{A}=(r+\Delta r) \omega-r \omega=\omega \Delta r \\
& \lim _{t \rightarrow 0}\left(\frac{R R^{\prime}}{\Delta t}+\frac{T^{\prime \prime} T^{\prime}}{\Delta t}\right)=\lim _{t \rightarrow 0}\left(u \frac{\Delta \theta}{\Delta t}+\omega \frac{\Delta r}{\Delta t}\right)=u \omega+\omega u=2 \omega u
\end{aligned}
$$

Eqs. (15.33.),(15.36) \rightarrow mechanism which contain parts sliding on each other abs. and relative motions of sliding pins and collars.
a_{C}---- useful in long-range projectiles, appreciably affected by the earth rotation.

* system of axes attached to the earth--- not truly a Newtonian frame.
\rightarrow rotating frame of ref., formulas derived in this section facilitate the study of the motion w.r.t. axes attached to the earth.

[^0]: $\vec{\omega}=\omega \vec{k}=\dot{\theta} \vec{k}$
 right-hand rule from the rotation of a body
 obeys the parallelogram law of addition(vector quantities)

