Ch. 15 Kinematics of Rigid Bodies

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Categories of rigid-body motion

- i) Translation --- if any straight line inside the body keeps the same direction during motion
 - All the particles forming the body move along parallel paths.

straight lines \rightarrow rectilinear translation (Fig. 15.1.)

curved lines \rightarrow curvilinear translation (Fig. 15.2.)

Categories of rigid-body motion

ii) Rotation about a fixed axis --- particles move in parallel planes along circles centered on the same axis (Fig 15.3.)

→ axis of rotation, the particles on the axis have zero velocity / acceleration.

Fig. 15.4.(a) --- curvilinear translation, all particles moving along parallel circles (b) ---rotation, all particles moving along concentric circles.

 \searrow each particle moves in a given plane \rightarrow plane motion

Categories of rigid-body motion

iii) General plane motion--- all the particles move in parallel planes.

neither a rotation nor a translation

two examples ---- Fig. 15.5.

iv) Motion about a fixed point --- three-dimensional motion of a rigid body attached at a fixed point (Fig. 15.6.)

Categories of rigid-body motion

v) General motion ---- which does not fall in any of the categories above

Rotation about a fixed axis → angular velocity, angular acceleration velocity, acceleration of a given point ---- position vector + angular velocity acceleration

General plane motion --- gears, connecting rods, pin-connected linkages. velocity of a point B of the slab --- sum of _____ the velocity of the ref. point A.

the velocity of B relative to a frame of ref. translating with A (Moving with A, but not rotating)

---- same approach used for acceleration

Alternative methods --- ____ instantaneous center of rotation _____ use of parametric expressions

Motion of a particle relative to a rotating frame of ref., Coriolis acceleration

15.1A Translation

Rigid body in translation. A,B ; two particles in it, (Fig. 15.7.(a))

 r_A , r_B - - - position vectors of A and B with respect to fixed frame of ref.

 $r_{B/A}$ - - - vector joining A and B

Translation ---- > $r_{B/A}$ must maintain a constant direction, also const. magnitude

$$\Rightarrow r_{B/A} = 0$$

$$\overrightarrow{v_B} = \overrightarrow{v_A}$$
 (15.2.)

Differentiate once more

$$\overline{a_B} = \overline{a_A}$$
 (15.3.)

All particles have the same velocity / acceleration at any given instant.

15.1A Translation

Curvilinear translation - - - velocity / acceleration change direction / magnitude

Rectilinear translation - - - all particles move along a straight line, velocity / acceleration keep the same direction.

Rigid body rotating about a fixed axis AA'

P · · · · · point of the body, r = position vector w.r.t. a fixed frame of ref. frame is centered at O on AA', Z axis coincides with AA' (Fig. 15.8.)

B : projection of P on AA', P will describe a circle of center B, radius of $r \sin \phi$, ϕ : angle formed by \vec{r} and AA'.

Angular coordinate θ ···· completely defines the position of P and the entire body positive when viewed as counterclockwise from A'

 \rightarrow unit \cdots radians(rad), degrees(°), revolutions(r)

$$1r = 2\pi \ rad = 360^{\circ}$$

Length of the arc Δs

$$\Delta s = (BP)\Delta\theta = (r\sin\phi)\Delta\theta$$

$$v = \frac{ds}{dt} = r\dot{\theta}\sin\phi$$
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(15.4.)
(1

 $\vec{\omega} = \omega \vec{k} = \dot{\theta} \vec{k}$

Angular velocity

right-hand rule from the rotation of a body obeys the parallelogram law of addition(vector quantities)

(15.6.)

Acceleration \cdots differentiate Eq.(15.5.)

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (\vec{\omega} \times \vec{r})$$

$$= \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt}$$

$$= \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \vec{v}$$

$$\downarrow, \vec{\alpha} : angular \ acceleration$$

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) \qquad (15.8.)$$

$$\downarrow, \vec{\alpha} = \vec{\alpha} \vec{k} = \vec{\omega} \vec{k} = \vec{\omega} \vec{k} = \vec{\omega} \vec{k} = \vec{\omega} \vec{k} \qquad (15.9.)$$

Rotation of a Representative slab xy plane · · · · reference plane, z-axis - - - axis of rotation, $\vec{\omega} = \vec{\omega} \vec{k}$ (+) : counterclockwise, (-) : clockwise

- velocity of any given point ---

$$\vec{v} = \omega \vec{k} \times \vec{r}$$
 (15.10.)

magnitude - - - $v = r\omega$

direction - - - by rotating γ through 90° in the sense of rotation

$$\vec{a} = \alpha \vec{k} \times \vec{r} - \omega^2 \vec{r} \qquad (15.11.)$$
$$\vec{a}_t = \alpha \vec{k} \times \vec{r}, \ \left| \vec{a}_t \right| = r\alpha$$

Fig. 15.10

counterclockwise if $\alpha(+)$, clockwise if $\alpha(-)$

$$\vec{a_n} = -\omega^2 \vec{r}, \ \left| \vec{a_t} \right| = r\omega^2$$

always opposite to r, i.e., toward O

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

15.1C Equations defining the Rotation about a Fixed Axis

More often, motion is specified by angular acceleration α as a function of t, or a function of Q or ω

$$\omega = \frac{d\theta}{dt}$$
(15.12.)
$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$
(15.13.)

 $(15.12.) \rightarrow (15.13.)$

$$\alpha = \omega \frac{d\omega}{dt} \tag{15.14.}$$

Integration \rightarrow

i) Uniform rotation --- angular acceleration = 0

$$\theta = \theta_o + \omega t \tag{15.15.}$$

ii) Uniformly accelerated rotation --- α = constant

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \quad (15.16.)$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

15.2A General Plane Motion

General plane motion ---- always sum of a translation and a rotation.

[example]

i) Rolling wheel --- rolling motion = combination of simultaneous translation and rotation

ii) Sliding rod--- motion = translation(horizontal) + rotation about A(Fig.15.13(a)) or

translation(vertical) + rotation about B(Fig. 15.13(b))

15.2A General Plane Motion

Displacement of two particles A and B(Fig.15.14.) two parts ---- $A1, B1 \rightarrow A2, B1'$: translation A2, B1' \rightarrow A2, B2 : rotation about A

Fig. 15.14

Relative motion of B w.r.t. a frame attached at A, of fixed orientation

 \rightarrow rotation, B will appear to describe an arc of circle centered at A.

---- same result obtained by using B as a point of ref. (Fig.15.17.)

 \rightarrow $v_{\scriptscriptstyle A/B}, v_{\scriptscriptstyle B/A}$: same magnitude, opposite sense

Angular velocity ω --- same no matter which the ref. is at a or b.

 \rightarrow angular velocity \mathcal{O} of a rigid body in plane motion is independent of its ref. point.

---- same result obtained by using B as a point of ref. (Fig.15.17.)

Several moving parts --- pin- connected...

- i) The points where two parts are connected must have the same absolute velocity
- ii) Gears---- teeth in contact must have the same absolute velocity
- iii) Parts which slide on each other --- relative velocity must be considered.

At any given instant, the velocities of the various particles of the slab are the same as if the slab were rotating about a certain axis \rightarrow " instantaneous axis of rotation",

C: "instantaneous center of rotation"

$$\vec{v_A}, \vec{\omega}$$
 can be obtained by rotating the slab with $\vec{\omega}$ at a distance $r = v_A / \omega$ from A (Fig.15.18(b))

The velocities of all the other particles would be the same as originally defined. \rightarrow As far as the velocities are concerned, the slab seems to rotate about the instant considered.

Two ways to define the instantaneous center C

i) Directions of v_A, v_B are known and different ---- drawing perpendicular lines to v_A and v_B, the point where the two lines intersect (Fig.15.19(a))
ii) v_A, v_B are perpendicular to AB and their magnitudes are known ---- by intersecting AB with the line joining the extremities of v_A, v_B (Fig.15.19(b))
iii) IF v_A and v_B were parallel in Fig.15.19(a)) or if v_A, v_B had the same magnitude in Fig.15.19(b)) ----- C would be at an infinite distance, would be zero.

Sliding rod with the instantaneous center

C can be obtained by drawing perpendicular to v_A and v_B . The velocities of all the particles are the same as if the rod rotated about C.

if
$$V_A$$
 is known, $\omega = \frac{V_A}{\overline{AC}} = \frac{V_A}{l\cos\theta}$
 $v_B = (BC)\omega = l\sin\theta\frac{V_A}{l\cos\theta} = v_A\tan\theta$

Only absolute velocities are involved.

C inside the rigid body ---- at that instant, its velocity is zero. But will probably different from zero at $t + \Delta t$

- \Rightarrow C doesn't have zero acceleration.
- Acceleration can not be determined as if the slab were rotating about C

Any plane motion = a translation of an arbitrary ref. point + simultaneous rotation \rightarrow determine the acceleration of the points of the slab $a_{R} = a_{A} + a_{R/A}$ (15.21.) relative acceleration $\overrightarrow{a_{B/A}}$ tangential component $(a_{B/A})_t$ (Fig 15.22.) normal component $(\overrightarrow{a_{B/A}})_n$ $(\overrightarrow{a_{B/A}})_t = \alpha \overrightarrow{k} \times \overrightarrow{r_{B/A}}, \quad |(\overrightarrow{a_{B/A}})_t| = r\alpha$ (15.22.) $(\overrightarrow{a_{B/A}})_n = -\omega^2 \overrightarrow{r_{B/A}}, \quad |(\overrightarrow{a_{B/A}})_n| = r\omega^2$ (15.22.) (15.21.) $\rightarrow \vec{a_{R}} = \vec{a_{A}} + \alpha \vec{k} \times \vec{r_{R/A}} - \omega^{2} \vec{r_{R/A}}$ (15.21') $(\mathbf{a}_{B/A})_t$ Bo Plane motion Translation with A Rotation about A Fig. 15.22

Sliding AB(Fig. 15.23.) v_{A} , a_{A} known , determine a_{B} , α $a_{B} = a_{A} + a_{B/A}$ $\overrightarrow{a_{A}} + (\overrightarrow{a_{R/A}})_{n} + (\overrightarrow{a_{R/A}})_{t}$ (15.23.) $l\omega^2$ llpha ,but no way to tell it is directed to left or right Toward A Both possible sense of a_{R} in Fig. 15.23 aB/A)n al Plane motion Translation with A Rotation about A

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Fig. 15.23

Eq. (15.23) \rightarrow Fig. 15.24

four possible vector polygons --- - depending upon the sense of a_A and relative magnitude of a_A and $(a_{\scriptscriptstyle B/A})_n$

 ω also has to be known \leftarrow either method from Sec. 15.2 or 15.3. Then, a_B and α can be obtained by x and y components. From Fig.15.24(a),

 $\xrightarrow{+} x \text{ component} : 0 = a_A + l\omega^2 \sin \theta - l\alpha \cos \theta$ $+ \uparrow y \text{ component} : -a_B = -l\omega^2 \cos \theta - l\alpha \sin \theta$

Or, direct measurement on the vector polygon. (careful on $\overrightarrow{a_A}$ and $\overrightarrow{(a_{B/A})_n}$)

If the extremities were moving along curved tracks, necessary to resolve To normal, tangential components \rightarrow six different vectors.

Several moving parts ----- the point where two parts are connected \rightarrow must have the same absolute acceleration

* Meshed gears ----- teeth in contact \rightarrow the same tangential acceleration normal component --- different

15.5A Rate of change of a vector w.r.t. a Rotating Frame

Sec 11.4B --- rate of change of a vector is the same w.r.t. a fixed frame a frame in translation how about w.r.t. a rotating frame of reference? Fig.15.26. ---- fixed frame OXYZ rotating frame *Oxyz*, $\overrightarrow{\Omega}$: angular velocity $\vec{Q}(t)$: vector function $(\bar{Q})_{oxyz}$

Fig. 15.26

X

15.5A Rate of change of a vector w.r.t. a Rotating Frame

$$\vec{Q} = Q_x \vec{i} + Q_y \vec{j} + Q_z \vec{k} \quad (\vec{i}, \vec{j}, \vec{k}: unit \ vectors) \quad (15.27)$$

Differentiate, rate of change of \vec{Q} , w.r.t. rotating frame Oxyz

rotating frame Oxyz

$$\left(\vec{Q}\right)_{Oxyz} = \dot{Q}_x \vec{i} + \dot{Q}_y \vec{j} + \dot{Q}_z \vec{k}$$
(15.28)

Differentiate $ec{Q}$, w.r.t. the fixed frame OXYZ, $ec{i}$, $ec{j}$, $ec{k}$ are variable

 $(\vec{Q})_{oxyz} \qquad \text{velocity of a particle at the tip of } \vec{Q} = \vec{\Omega} \times \vec{Q} \qquad (15.30)$ $(\vec{Q})_{oxyz} = (\vec{Q})_{oxyz} + \vec{\Omega} \times \vec{Q} \qquad (15.31)$

Rate of change of \hat{Q} w.r.t. Induced by the rotation of Oxyz

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

(15.29)의 부연설명 $(\vec{Q})_{oxyz}$ 는 만일, 벡터 Q가 frame Oxyz에 fixed 되어 있어 $(\vec{Q})_{oxyz} = 0$ 이 된다면 (15.29)식의 마지막 3개 항과 같이 됨. 그러한 경우 $(\vec{Q})_{oxyz}$ 는 \vec{Q} 이 tip에 위치하여 있는 particle의 velocity를 나타내게 되며, 이는 frame Oxyz에 rigidly attached 되어 있는 질점의 velocity를 의미함. Frame Oxyz는 Frame OXYZ 에 대하여 $\vec{\Omega}$ 의 angular velocity로 회전하고 있으므로 마지막 3 개 항= $\vec{\Omega} \times \vec{Q}$

15.5A Rate of change of a vector w.r.t. a Rotating Frame

When \vec{Q} is represented by the unit vectors in *Oxyz*, Eq.(15.31) simplifies the determination of $(\vec{Q})_{oxyz}$, since no need to separate computation of the derivatives of the unit vectors defining the rotating frame.

Fig. 15.27. ---- two frames of ref, in the plane of the figure

fixed frame *OXY*, rotating frame *Oxy* $(\vec{r})_{OXY}$: rate of change of \vec{r} , w.r.t. a fixed frame

Absolute acceleration --- rate of change of
$$V_p$$
, w.r.t. OXY
 $\vec{a}_p = \vec{v}_p = \vec{\Omega} \times \vec{r} + \vec{\Omega} \times \vec{r} + \frac{d}{dt} [(\vec{r})_{o_{Xy}}] (15.34)$
 $\vec{v}_p = (\vec{r})_{o_{Xy}} + \vec{\Omega} \times (\vec{r})_{o_{Xy}}$
 $= \vec{\Omega} \times \vec{r} + \vec{\Omega} \times (\vec{\Omega} \times \vec{r}) + 2\vec{\Omega} \times (\vec{r})_{o_{Xy}} + (\vec{r})_{o_{Xy}}$
 $\vec{a}_{p} = \vec{a}_c : (complementary acceleration)$
 $\vec{a}_{p,F}$
 $\vec{a}_{p,F}$
 $\vec{a}_{c} : (complementary acceleration)$
 $\vec{a}_{p,F}$
 $\vec{a}_{c} : (complementary acceleration)$
 $\vec{a}_{p,F}$

Fig. 15.29

$$\overrightarrow{a_{P}} = \overrightarrow{a_{P'}} + \overrightarrow{a_{P/F}} + \overrightarrow{a_{C}}$$

$$\overrightarrow{accel. of P' of}$$

$$\overrightarrow{accel. of P}$$

$$\overrightarrow{accel. of P' of}$$

$$\overrightarrow{accel. of P}$$

$$\overrightarrow{accel. of P' of}$$

$$\overrightarrow{accel. of P}$$

$$\overrightarrow{accel. of P' of}$$

$$\overrightarrow{accel. of P' of}$$

$$\overrightarrow{accel. of P}$$

$$\overrightarrow{accel. of P' of}$$

Significance of a_c $a_c = 2\omega u$ Abs. velocity of *P* at time t and $t + \Delta t$ (Fig. 15.30(b)) At t, velocity components u , v_A , $at t + \Delta t u'$, $v_{A'}$ Fig 15.30(c) , change in velocity during $\Delta t \rightarrow \overline{RR'}$, $\overline{TT''}$, $\overline{TT''}$ • $\overrightarrow{TT''}$ ---- change in the direction of v_A , $TT''/\Delta t$ represents a_A as $\Delta t \to 0$ $\lim_{t \to 0} \frac{TT''}{\Delta t} = \lim_{t \to 0} v_A \frac{\Delta \theta}{\Delta t} = r\omega\omega = r\omega^2 = a_A$ $\overrightarrow{RR'}$ --- change in direction of \overrightarrow{u} due to the rotation ---change in magnitude of V_A due to the motion of P along the rod "combined effect of the relative motion of *P* and of the rotation of the rod

Fig. 15.30

- sum of these two $\rightarrow a_c$

 $\overline{RR'} = u\Delta\theta, \ T''T' = v_{A'} - v_A = (r + \Delta r)\omega - r\omega = \omega\Delta r$

$$\lim_{t \to 0} \left(\frac{RR'}{\Delta t} + \frac{T''T'}{\Delta t}\right) = \lim_{t \to 0} \left(u\frac{\Delta\theta}{\Delta t} + \omega\frac{\Delta r}{\Delta t}\right) = u\omega + \omega u = 2\omega u$$

Eqs. (15.33.),(15.36) \rightarrow mechanism which contain parts sliding on each other abs. and relative motions of sliding pins and collars.

- a_c ---- useful in long-range projectiles, appreciably affected by the earth rotation.
 - * system of axes attached to the earth--- not truly a Newtonian frame.
 - \rightarrow rotating frame of ref., formulas derived in this section facilitate the study of the motion w.r.t. axes attached to the earth.