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15.0 Introduction

Categories of rigid-body motion

i ) Translation --- if any straight line inside the body keeps the same direction 

during motion

⚫ All the particles forming the body move along parallel paths.

straight lines → rectilinear translation  (Fig. 15.1.)

curved lines  → curvilinear translation  (Fig. 15.2.) 
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15.0 Introduction

Categories of rigid-body motion

ii ) Rotation about a fixed axis --- particles move in parallel planes along circles centered

on the same axis (Fig 15.3.)

→ axis of rotation, the particles on the axis have

zero velocity / acceleration.

Fig. 15.4.(a) --- curvilinear translation, all particles moving along parallel circles

(b) ---rotation, all particles moving along concentric circles.

each particle moves in a given plane → plane motion 
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15.0 Introduction

Categories of rigid-body motion

iii ) General plane motion--- all the particles move in parallel planes.

neither a rotation nor a translation 

two examples ---- Fig. 15.5.

iv ) Motion about a fixed point --- three-dimensional motion of a rigid body attached at a

fixed point (Fig. 15.6.)
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15.0 Introduction

Categories of rigid-body motion

v ) General motion ---- which does not fall in any of the categories above

Rotation about a fixed axis → angular velocity, angular acceleration velocity, acceleration

of a given point ---- position vector + angular        velocity

acceleration

General plane motion --- gears, connecting rods, pin-connected linkages.

velocity of a point B of the  slab --- sum of          the velocity of the ref. point A.       

the velocity of B relative to a

frame of ref. translating with A

(Moving with A, but not rotating)

---- same approach used for acceleration 

Alternative methods --- instantaneous center of rotation

use of parametric expressions

Motion of a particle relative to a rotating frame of ref. , Coriolis acceleration
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15.1A Translation

Rigid body in translation. A,B ; two particles in it, (Fig. 15.7.(a))

- - - position vectors of A and B with respect to fixed frame of ref.

- - - vector joining A and B 

(15.1.)

Differentiate  w.r.t. 

Translation ---- >          must maintain a constant direction, also const. magnitude

=>  

(15.2.)

Differentiate once more

(15.3.)

All particles have the same velocity / acceleration at any given instant.

,A Br r

/B Ar

/B A B Ar r r= +

/B Ar

/ 0B Ar =

B Av v=

B Aa a=
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15.1A Translation

Curvilinear translation - - - velocity / acceleration change direction / magnitude

Rectilinear translation - - - all particles move along a straight line, velocity / acceleration 

keep the same direction.
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15.1B Rotation about a Fixed Axis

Rigid body rotating about a fixed axis AA’

P ∙ ∙ ∙ ∙ ∙ ∙ point of the body,     = position vector w.r.t. a fixed frame of ref.

frame is centered at O on AA’, Z axis coincides with AA’ (Fig. 15.8.)

B : projection of P on AA’ , P will describe a circle of center B, radius of        

: angle formed by       and AA’.

Angular coordinate       ∙ ∙ ∙ ∙ completely defines the position of P

and the entire body positive when

viewed as counterclockwise from A’

unit  ∙ ∙ ∙ radians(rad), degrees( °), revolutions(r)

r

sin ,r  

r



1 2 360r rad= =

8



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

15.1B Rotation about a Fixed Axis

Length of the arc  

(15.4.)

= >                                                    (15.5.)

Angular velocity                                                (15.6.)

right-hand rule from the rotation of a body

obeys the parallelogram law of addition(vector quantities)

s

( ) ( sin )s BP r   =  = 

sin
ds

v r
dt

 = =

Independent of P

Vector perpendicular 
to the plane 
containing AA’ and  r

dr
v r

dt
= = 

k k  = =
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15.1B Rotation about a Fixed Axis

Acceleration ∙ ∙ ∙ ∙ differentiate  Eq.(15.5.)

(15.8.)

Angular acceleration                                                                   (15.9.)

along the axis of rotation 

( )

:

dv d
a r

dt dt

d dr
r

dt dt

d
r v

dt

angular acceleration











= = 

=  + 

=  + 

( )a r r  =  +  

Tangential 
component

Normal component

a k k k  = = =
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15.1B Rotation about a Fixed Axis

Rotation of a Representative slab

xy plane ∙ ∙ ∙ ∙ reference plane,  z-axis - - - - axis of rotation, 

(+) : counterclockwise, (-) : clockwise

- velocity of any given point --- (15.10.)

magnitude - - -

direction - - - by rotating     through 90° in the sense of rotation

- acceleration - - - (15.11.)

k =

v k r= 

v r=

r

2

2 2

,

( ), ( )

,

, . .,

t t

n t

a k r r

a k r a r

counterclockwise if clockwise if

a r a r

always opposite to r i e toward O

 

 

 

 

=  −

=  =

+ −

= − =
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15.1C Equations defining the Rotation about a Fixed 
Axis

More often, motion is specified by angular acceleration        as a function of   t, or  

a function of     ,   or  

(15.12.)

(15.13.)

(15.12.)  → (15.13.)

(15.14.)

Integration →  

i) Uniform rotation  --- angular acceleration  = 0

(15.15.)

ii) Uniformly accelerated rotation --- = constant

(15.16.)


 

2

2

d

dt

d d

dt dt

d

dt




 



 

=

= =

=

o t  = +

0

2

0 0

2 2

0 0

1

2

2 ( )

t

t t

  

   

    

= +

= + +

= + −


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15.2A General Plane Motion

General plane motion ---- always sum of a translation and a rotation.

[example]

i)   Rolling wheel --- rolling motion = combination of simultaneous translation and rotation

ii)  Sliding rod--- motion =  translation(horizontal) + rotation about A(Fig.15.13(a)) or

translation(vertical)    + rotation about B(Fig. 15.13(b))
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15.2A General Plane Motion

Displacement of two particles A and B(Fig.15.14.)

two parts ---- A1, B1 → A2, B1’  : translation

A2, B1’ → A2, B2  : rotation about A

Relative motion of B w.r.t.  a frame attached at A, of  fixed orientation

→ rotation, B will appear to describe an arc of circle centered at A.
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15.2B Absolute velocity of a particle of the 
slab

(15.15) → (15.17)  =  

/B A B Av v v= +

/ / /,B A B A B Av k r v r =  =

/B A B Av v k r= + 

(15.17)

rotation of the 
slab about A

(15.18)

(15.17’)

(Fig.15.15)

angular velocity of the slab

w.r.t. axes of fixed orientation

position vector of B  relative to A

translation of                               
the slab
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15.2B Absolute velocity of a particle of the 
slab

Sliding rod of Fig. 15.13 

--- known, fixed               in terms of  

motion =  translation with A   +  simultaneous rotation about A   (Fig.15.16.)

direction is known, but its magnitude            is unknown.

direction is known

A
v ,

B
v  , ,

A
v l 

/B A B A
v v v= + (15.17)

/B A
v l

B
v

/tan ,
cos

B A A

B A

v v
v v

l l
 


= = = (15.19)
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15.2B Absolute velocity of a particle of the 
slab

---- same result obtained by using B as a point of ref.   (Fig.15.17.)

: same magnitude, opposite sense

Angular velocity         --- same no matter which the ref.  is  at  a or b.

→ angular velocity       of  a rigid body in plane motion is independent of its  ref. point.

/ /
,

A B B A
v v→




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15.2B Absolute velocity of a particle of the 
slab

---- same result obtained by using B as a point of ref.   (Fig.15.17.)

Several moving parts  --- pin- connected…

i)     The points where two parts are connected must have the same absolute velocity

ii)    Gears---- teeth in contact must have the same absolute velocity

iii)    Parts which slide on each other  --- relative velocity must be considered.

18



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

15.3 Instantaneous center of rotation in plane motion 

At any given instant, the velocities of the various particles of the slab are the same as if the 

slab were rotating about a certain axis → “ instantaneous axis of rotation”,  

C :  “instantaneous center of rotation”

---- can be obtained by rotating the slab with           at a distance

from A  (Fig.15.18(b))                          

The velocities of all the other particles  would be the same as originally defined. 

→ As far as the velocities are concerned , the slab seems to rotate about the

instant considered.

,
A

v  

/
A

r v =
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15.3 Instantaneous center of rotation in plane motion 

Two ways to define the instantaneous center  C

i)   Directions of              are known and different –--- drawing perpendicular lines to                  

and       , the point where the two  lines intersect   (Fig.15.19(a))                      

ii)                are perpendicular to          and  their magnitudes are known 

---- by intersecting         with the line joining the extremities of                (Fig.15.19(b))

iii) IF       and         were parallel in Fig.15.19(a))   or   if             had the same  magnitude  

in  Fig.15.19(b)) ------ C   would be at an infinite distance,         would be zero.

A
v,v v

BA
v
B

,v v
BA AB

AB ,v v
BA

A
v v

B
,v v

BA


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15.3 Instantaneous center of rotation in plane motion 

Sliding rod with the instantaneous center

C  can be obtained by drawing perpendicular  to       and   

The velocities of all the particles are the same as if the rod rotated about C.

if        is known ,         

Only absolute velocities are involved.

C  inside the rigid body ---- at that instant,  its velocity is zero.  But  will probably different

from zero at 

 C  doesn’t  have zero acceleration.

 Acceleration can not be determined as if the slab were rotating about C

A
v

A
v

cos

( ) sin tan
cos

A A

A

B A

v v

lAC

v
v BC l v

l




  


= =

= = =

t t+ 
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15.4A Abs. and Rel. Acceleration in Plane Motion

Any plane motion  =  a translation of an arbitrary ref. point   + simultaneous rotation

→ determine the acceleration of the points of the slab

relative acceleration                     tangential component  

normal  component       

/B A B A
a a a= +

(15.22.)

/B A
a

/ / /

2 2

/ / /

2

/ /

( ) , ( )

( ) , ( )

B A t B A B A t

B A n B A B A n

B A B A B A

a k r a r

a r a r

a a k r r

 

 

 

=  =

= − =

= +  −

/
( )

B A t
a

/
( )

B A n
a

(Fig 15.22.)

(15.21.)  → (15.21’)

(15.22.)

(15.21.)
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15.4A Abs. and Rel. Acceleration in Plane Motion

Sliding AB(Fig. 15.23.)

known   , determine  

/

/ /
( ) ( )

B A B A

A B A n B A t

a a a

a a a

= +

+ + (15.23.)

,
A A

v a

2l

Toward A

,
B

a 

l ,but no way to tell it is directed to left or right

Both possible sense of        in Fig. 15.23
B

a

23



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

15.4A Abs. and Rel. Acceleration in Plane Motion

four possible  vector polygons --- - depending  upon the sense of 

and  relative  magnitude of       and   

also has to be known   ← either method from Sec. 15.2 or 15.3.

Then,      and      can be obtained by  x and y  components.

From  Fig.15.24(a), 

Or, direct measurement on the vector polygon.

(careful on       and             )

2

2

: 0 sin cos

: cos sin

A

B

x component a l l

y component a l l

   

   

+
⎯⎯→ = + −

+  − = − −

B
a

A
a

/
( )

A B A n
a a



A
a /

( )
B A n

a



Eq. (15.23)  → Fig. 15.24
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15.4A Abs. and Rel. Acceleration in Plane Motion

If the extremities were moving along curved tracks, necessary to resolve      

To normal, tangential components → six different vectors.

Several moving parts ------ the point where two parts are connected

→ must have the same absolute acceleration

* Meshed gears ----- teeth in contact → the same tangential acceleration 

normal component  --- different

25



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

15.5A Rate of change of a vector w.r.t. a Rotating 
Frame

Sec 11.4B --- rate of change of a vector is the same w.r.t.          a fixed frame

a frame in translation

how about w.r.t. a rotating frame of reference?

Fig.15.26. ---- fixed frame  OXYZ

rotating frame   Oxyz,      : angular velocity 

: vector function 



( )Q t

( )
OXYZ

Q
•

( )
Oxyz

Q
•
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15.5A Rate of change of a vector w.r.t. a Rotating 
Frame

Differentiate,  rate of change of     ,  w.r.t. rotating frame  Oxyz

Differentiate     , w.r.t.  the fixed  frame  OXYZ,                   are variable

( , , : )
x y z

i j k unit vectorsQ Q i Q j Q k= + +

Q

(15.27)

(15.28)( )
x y zOxyz

Q Q i Q j Q k
• • • •

= + +

, ,i j k

( )
x y zOXYZ x y z

di d j dk
Q Q i Q j Q k Q Q Q

dt dt dt

• • • •

= + + + + +

( )
Oxyz

Q
•

Q=  

velocity of a particle at the tip of 𝑄

(15.30)

(15.29)

( ) ( )
OXYZ Oxyz

Q Q Q
• •

= +  

Rate of change of  w.r.t.
rotating frame Oxyz

Induced by the rotation of Oxyz

(15.31)
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

(15.29)의 부연설명

는 만일,  벡터 Q가 frame Oxyz에 fixed  되어 있어

이 된다면 (15.29)식의 마지막 3개 항과 같이 됨.

그러한 경우 는 이 tip에 위치하여 있는 particle의 velocity를 나타내게 되며,

이는 frame Oxyz에 rigidly attached  되어 있는 질점의 velocity를 의미함.

Frame Oxyz는 Frame OXYZ 에 대하여 의 angular velocity로 회전하고 있으므로

마지막 3 개 항

Q

( )
OXYZ

Q
•

( ) 0
Oxyz

Q
•

=

Q=  

( )
OXYZ

Q
•
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15.5A Rate of change of a vector w.r.t. a Rotating 
Frame

When         is represented by the unit vectors in Oxyz, Eq.(15.31)  simplifies the 

determination  of                  , since no need to separate computation of the derivatives of

the unit vectors defining the rotating frame.

( )
OXYZ

Q
•

Q
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

Fig. 15.27. ---- two frames of ref,  in the plane of the figure 

fixed frame OXY, rotating frame Oxy

:  rate of change of      , w.r.t. a fixed framer( )
OXY

r
•
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

:                        w.r.t. the rotating  frame Oxy

:   angular  velocity of the frame  Oxy w.r.t. OXY

( )
Oxy

r

( ) ( )
P OXY Oxy

v r r r
•

= =   +

/P P P F
v v v


= +

'P
v /

:
P F

v F rotating frame

:  P’ velocity in the slab                          
which coincides with P
at the instant

(15.32)

(15.33)

abs. velocity of P vel. of P’ of 
moving frame F
coinciding with P

vel. of P relative to F
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

Absolute acceleration --- rate of change  of         ,  w.r.t. OXYP
v

(15.34)

.(15.32)( )
Oxy

by Eqr r
•

=  +

P
v ( ) ( )

Oxy Oxy
r r
•• •

+  

[( ) ]
P P Oxy

d
a v r r r

dt

• • • •

= =   +   +

( ) 2 ( ) ( )
Oxy Oxy

r r r r
• • ••

=   +   +   +

'P
a

/P F
a

C
a :    complementary acceleration

Coriolis acceleration

(15.36)
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

Compared with  Eq. (15.21)      

→ if the frame is rotating,  necessary to include  Coriolis’   acceleration          

Direction of  

, rotating         through 90°

in the sense of rotation of the moving frame (Fig. 15.29)

' /P P P F C
a a a a= + +

abs. accel  of P accel. of P’ of 
moving frame F
coinciding with P

accel. of P’ of 
relative to F

/
2

P F
v 

/B A B A
a a a= +

accel.  w.r.t. a frame in translation

C
a

C
a

/
2

C P F
a v= 

/P F
v
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

Significance of 

Abs. velocity of P at time t  and              (Fig. 15.30(b))

At t, velocity components   

⚫ Fig 15.30(c) , change in velocity during 

⚫ ---- change in the direction of     ,                    represents  

--- change in direction of       due  to the rotation

---change in magnitude of       due to the motion of P along 

the rod

“combined  effect of the relative motion of P and of the rotation of

the rod

C
a

0
A

asa t →

, , ' ,
A A

atu v t t u v


+ 

2

0 0

''
lim lim A A
t t

TT
v r r a

t t


 

→ →


= = = =

 

t t+ 

' , '' , 't RR TT T T →

''TT , '' /
A

v TT t

RR

T T 

u

A
v
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15.5B Plane Motion of a Particle Relative to a Rotating Frame

- sum of these two →  

Eqs. (15.33.),(15.36) →  mechanism which contain parts sliding on each other        

abs. and relative motions of sliding pins and collars.

---- useful  in long-range projectiles, appreciably  affected  by the earth rotation.

* system of axes attached to the earth--- not truly a Newtonian frame.

→ rotating frame of ref., formulas derived in this section facilitate the study 

of  the motion w.r.t. axes  attached to the earth.

C
a

' , '' ' ( )
A A

RR u T T v v r r r r   


=  = − = +  − = 

0 0

' '' '
lim( ) lim( ) 2
t t

RR T T r
u u u u

t t t t


   

→ →

 
+ = + = + =

   

C
a
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