Dynamics

CHAPER 16.
 Plane Motion of Rigid Bodies : Forces and Acceleration

Prof. SangJoon Shin

16.0 Introduction

Kinetics of rigid bodies

- relations between the forces acting on a rigid body shape and mass of the body motion produced

Kinetics of the particle

- Mass can be concentrated in one point, and all the forces acting at that point
\rightarrow Shape of the body, exact location of the points of application of the force will now be accounted.
Motion of a body as a whole, motion about its mass center
- Approach

Consider rigid bodies as made of large number of particles, Use the relations obtained in Chap. 14
Eq. (14.16) $\quad \sum \vec{F}=m \overline{\bar{a}} \quad$ external force, acceleration of G
Eq. (14.23) $\quad \sum \overline{M_{G}}=\dot{\overline{H_{G}}} \quad$ moments of external forces, angular momentum about G

16.0 Introduction

- Limits of the results in this chapter (except Sec 16.1A)
i) Plane motion
ii) Rigid bodies: only plane slabs which are symmetrical with respect to the ref. plane (\rightarrow principal centroidal axis of inertia perpendicular to the ref. plane)
$\left.\rightarrow \begin{array}{c}\text { Plane motion of nonsymmetrical three-dimensional bodies } \\ \text { motion in three-dimensional space }\end{array}\right\}$ Chap. 18
- Angular momentum of a rigid body $\rightarrow \dot{\overline{H_{G}}}=\bar{I} \vec{\alpha}$
- Sec 16.1B

External forces acting on a rigid body $\xrightarrow{\text { equivalent }} m \overline{\bar{a}}+\bar{I} \bar{\alpha}$

- Principle of transmissibility
- Free-body-diagram and kinetic diagram
\rightarrow solution of all problems involving plane motion of rigid bodies
- Connected rigid bodies, involving translation, centroidal rotation, unconstrained motion
- Noncentroidal rotation, rolling motion, other partially constrained motion

16.1A Equation of Motion for a Rigid Body

- Rigid body acted upon by several external forces (Fig. 16.1)

Assume that the body is made of a large number of n of particles of mass

$$
\Delta m_{i}(i=1,2, \cdots, n)
$$

Apply the results in Chap. 14

- Motion of mass center G with respect to the Newtonian frame Oxyz

$$
\begin{equation*}
\sum \bar{F}=m \overline{\bar{a}} \tag{16.1}
\end{equation*}
$$

Motion of the body relative to the centroidal frame $G x^{\prime} y^{\prime} z^{\prime}$

$$
\begin{equation*}
\sum \overline{M_{G}}=\dot{\overline{H_{G}}} \tag{16.2}
\end{equation*}
$$

Fig. 16.1
$\dot{\bar{H}_{G}}$: angular momentum about G of the system of particles forming the body \rightarrow angular momentum of the rigid body about G

16.1A Equation of Motion for a Rigid Body

Eqs. (16.1), (16.2)
: the system of the external forces $\xrightarrow{\text { equipollent }}$ system of $m \overline{\bar{a}}$ attached at G and $\dot{\dot{H}_{G}}$ the couple (Fig.16.3)

Eqs. (16.1), (16.2) \rightarrow apply in the most general case of the motion of a rigid body

Fig. 16.3

- But, in this chapter, restricted to the plane motion Plane motion - each particle remains at a constant distance from a fixed ref. plane
- Rigid bodies

Only plane slabs and bodies which are symmetrical with respect to the ref. plane
Further studies \rightarrow Chap. 18

16.1B Angular Momentum of a Rigid Body in Plane Motion

- Eq. (14.24) of Sec 14.1D (pp. 928)
$\overline{H_{G}}$ can be computed by taking the moments about G of the momenta of the particles in their motion with respect to either of the frames $O x y$ or $G x^{\prime} y^{\prime}$ (Fig 16.4)

$$
\begin{equation*}
\overline{H_{G}}=\sum\left(\vec{r}_{i}^{\prime} \times \bar{v}_{i}^{\prime} \Delta m_{i}\right) \tag{16.3}
\end{equation*}
$$

of the particle P_{i} relative to centroidal frame $G x^{\prime} y^{\prime}$

- Since the particle belongs to the slab,

$$
\vec{v}_{i}^{\prime}=\vec{\omega} \times \vec{r}_{i}^{\prime}
$$

Fig. 16.4

$$
\overline{H_{G}}=\sum[\underbrace{\vec{r}_{i}^{\prime} \times\left(\vec{\omega} \times \vec{r}_{i}^{\prime}\right) \Delta m_{i}}]
$$

same direction as $\bar{\omega}$ (perpendicular to the slab)

$$
\begin{equation*}
\left|\vec{H}_{G}\right|=\omega \sum_{r_{i}}^{\left.r^{\prime 2} \Delta m_{i}\right]} \longrightarrow \overline{H_{G}}=\bar{I} \bar{\omega} \quad(16.4) \quad \xrightarrow{\text { Differentiate }} \dot{\dot{H}_{G}}=\bar{I} \dot{\bar{\omega}}=\bar{I} \vec{\alpha} \tag{16.5}
\end{equation*}
$$

Moment of inertia: \bar{I}

16.1B Angular Momentum of a Rigid Body in Plane Motion

rate of change of the angular momentum $=a$ vector of the same direction of $\vec{\alpha}$, of magnitude $\vec{I} \vec{\alpha}$
\rightarrow valid results for the plane motion of rigid bodies which are symmetrical with respect to the ref. plane

However, do not apply to nonsymmetrical bodies or three-dim. motion.

16.1C Plane Motion of a Rigid Body

- rigid slab of mass m under several external forces $\bar{F}_{1}, \bar{F}_{2}, \cdots$
(Fig. 16.5)
Eq. (16.5) $\dot{\overrightarrow{H_{G}}} \rightarrow$ (16.2), in scalar form

$$
\begin{equation*}
\sum \stackrel{\rightharpoonup}{F}_{x}=m \vec{a}_{x}, \quad \sum \stackrel{\rightharpoonup}{F}_{y}=m \vec{a}_{y}, \quad \sum \vec{M}_{G}=\bar{I} \alpha \tag{16.6}
\end{equation*}
$$

- Eq. (16.6)
acceleration of G and its angular acceleration α are easily obtained once fthe resultant of external forces
${ }^{\text {their moment resultant about } G}$
with initial conditions, \bar{x}, \bar{y}, θ can be obtained by integration
\rightarrow Motion of the slab is completely defined by

$$
\sum \vec{F} \text { and } \sum \vec{M}_{G}
$$

Fig. 16.5

16.1C Plane Motion of a Rigid Body

- System of particles which are not rigidly connected (Chap. 14) specific external forces as well as internal forces
- Rigid body
only depends upon the resultant and moment resultant of external forces
\rightarrow two systems are equipollent, also equivalent
- Sec. 14.1 A (Fig. 16. 6)
$\left.\begin{array}{l}\text { (a) system of external forces } \\ \text { (b) system of effective forces associated with the particles }\end{array}\right\}$ equipollent

But, since the particles form a rigid body \rightarrow equivalent (red equal sign in Fig. 16.6)

Fig. 16.6

16.1C Plane Motion of a Rigid Body

- Fig. 16.7
effective forces $\rightarrow m \overline{\bar{a}}$ attached at G and a couple of moment $\bar{I} \vec{\alpha}$
i) Translation angular acceleration $\equiv 0$, effective forces $\rightarrow m \overline{\bar{a}}$ attached of G (Fig. 16.8)
external forces $\stackrel{\text { equivalent }}{\longleftrightarrow} m \overline{\bar{a}}$

Fig. 16.7

Fig. 16.8 Translation.

16.4 Plane Motion of a Rigid Body

ii) Centroidal Rotation

Rotating about a fixed axis perpendicular to the ref. plane and passing through G
\rightarrow centroidal rotation $\overline{\bar{a}}=0$
effective forces $\rightarrow \bar{I} \vec{\alpha} \quad$ (Fig. 16.9) \quad external forces $\stackrel{\text { equivilent }}{ }$ couple of moment $\bar{I} \vec{\alpha}$

Fig. 16.9 Centroidal rotation.

16.1C Plane Motion of a Rigid Body

iii) General plane motion
general plane motion $\stackrel{\text { replaced }}{\longleftrightarrow}$ sum of $\left\{\begin{array}{l}\text { translation } \\ \text { centroidal rotation }\end{array}\right.$
mass center G is the ref. point \cdots more restrictive than that of kinematics (Sec. 15.2A)

- First two eqns of Eq. (16.6)
already obtained in the general case of system of particles (not necessarily rigidly connected)

However, in the general case of the plane motion of a rigid body, the resultant of the external forces does NOT pass through G.

- Last eqn of Eq. (16.6)
still valid if the body were constrained through G
\rightarrow a rigid body in plane motion rotates about G as if G were fixed.

16.6 Solution of Problems Involving the Motion of a Rigid body

- Fundamental relation between the forces $\bar{F}_{1}, \bar{F}_{2}, \cdots$ and $\overline{\bar{a}}, \bar{\alpha}$
\rightarrow free-body-diagram eqn. (Fig. 16.7)
\rightarrow can be used to determine $\{\overline{\bar{a}}, \vec{\alpha}$ from a given system of forces forces which produce a given motion

Fig. 16.7

16.1E Solution of Problems Involving the Motion of a Rigid body

- Sec. 16.1C
fundamental relationship between the forces and $\overline{\bar{a}}$ of the mass center, and $\vec{\alpha}$ of the body
\longrightarrow free-body diagram, kinetic diagram (Fig. 16.7)
- Statics

Solution can be simplified by an appropriate choice of the point about which the moments of the forces are computed
\rightarrow derive the component or moment equations which fit best the solution from the fundamental relations

- FBD for rigid bodies: same steps as in Chap. 12, but draw forces at the location of action, label different dimensions when summing their moments
- KD for rigid bodies: $m \overline{\bar{a}}$ always on the mass center, and include $\bar{I} \vec{\alpha}$
- Steps for a pendulum in Fig. 16.10
- isolate the body
- define the axes
- replace the constraints with support forces
- applied forces/moments, body forces
- label FBD with the dimensions

Fig. 16.10

16.1E Solution of Problems Involving the Motion of a Rigid body

Fig. 16.11

- Sum of moments about the mass center

$$
+\odot \sum M_{G}=\bar{I} \alpha: M-P_{y}\left(\frac{L}{2}\right)=\bar{I} \alpha
$$

- Alternatively, sum of moments about an arbitrary point P

$$
+\odot \sum M_{P}=\bar{I} \alpha+m \bar{a} d_{ \pm}: M-W\left(\frac{L}{2}\right)=\bar{I} \alpha+m \bar{a}_{y}\left(\frac{L}{2}\right)+m \bar{a}_{x}(0)
$$

$\overline{d_{ \pm}}$: Perpendicular distance from point P to the line of action of the resultant acceleration vector

- In statics: moment about a point P will be determined by a vector product

$$
m \bar{a} \overline{d_{ \pm}}=\vec{r}_{G / P} \times m \vec{a}
$$

16.1E Solution of Problems Involving the Motion of a Rigid body

- Eq. (16.6) can be re-written as

$$
\sum \stackrel{\rightharpoonup}{F}_{x}=m \vec{a}_{x}, \quad \sum \stackrel{\rightharpoonup}{F}_{y}=m \vec{a}_{y},
$$

and

$$
\sum \vec{M}_{G}=\bar{I} \alpha \quad \text { or } \quad \sum M_{P}=\bar{I} \alpha+m \bar{a} d_{ \pm} \quad \text { or } \quad \sum M_{P}=\bar{I} \alpha+\vec{r}_{G / P} \times m \vec{a}
$$

16.1E Solution of Problems Involving the Motion of a Rigid body

- Advantage of free-body and kinetic diagram

vectorial relationship between the forces applied and resulting linear and angular accelerations
i) pictorial representation \rightarrow much clearer understanding of the effect of the forces
ii) two solution procedures
(1) analysis of kinematic and kinetic characteristics \rightarrow free-body diagrams (Fig. 16.7)
(2) diagram \rightarrow analyze various forces and vectors involved.

Fig. 16.7

16.1E Solution of Problems Involving the Motion of a Rigid body

iii) unified approach for the analysis of the plane motion of a rigid body
regardless of the particular type of motion involved
kinematics: may vary from one case to another
kinetics : consistently the same approach \rightarrow diagram containing external \bar{F}

$$
\left\{\begin{array}{l}
m \overline{\bar{a}} \quad \text { at } \mathrm{G} \\
\bar{I} \vec{\alpha}
\end{array}\right.
$$

iv) resolution $\left\{\begin{array}{l}\text { translation } \\ \text { centroidal rotation }\end{array} \rightarrow\right.$ basic concept for the study of mechanics
\rightarrow used again in Chap. 17 (method of work and energy, impulse and momentum)
v) extended to general three-dim. motion (Chap. 18)

16.1F Systems of Rigid Bodies

- The previous method \rightarrow plane motion of several connected rigid bodies for each point, a diagram similar to Fig. 16.7, eqns of motion obtained from these diagrams are solved simultaneously.
- Single diagram for the entire system (Sample Prob. 16.4)
internal forces can be omitted since they are equal and opposite forces \rightarrow equipollent to zero
Eqns obtained by expressing that the system of external forces is equipollent to the system of internal terms \rightarrow can be solved for the remaining unknowns (now NOT dealing with a single rigid body)
- Multiple rigid bodies:

$$
\begin{gathered}
\sum \vec{F}=\sum m_{i} \overline{\bar{a}}_{i} \quad \text { and } \quad \sum \overline{M_{P}}=\dot{\bar{H}_{P}} \\
\dot{\dot{H}_{P}}=\sum \bar{I}_{i} \vec{\alpha}_{i}+\sum m_{i} \overrightarrow{\bar{a}}_{i}\left(d_{ \pm}\right)_{i}=\sum \bar{I}_{i} \vec{\alpha}_{i}+\sum\left[\left(\vec{r}_{G / P}\right)_{i} \times m_{i} \overrightarrow{\bar{a}}_{i}\right]
\end{gathered}
$$

Sometimes, can be re-written as

$$
\sum \vec{F}=\sum \vec{F}_{\text {eff }} \quad \sum \overline{M_{P}}=\sum\left(\overline{M_{P}}\right)_{e f f}
$$

However, not possible to solve the problems involving more than 3 unknowns.

16.2 Constrained Plane Motion

- constrained motion
cranks (must rotate about a fixed axis), wheels (must roll without sliding) connecting rods (must describe certain prescribed motion)
\rightarrow definite relation exists between $\begin{cases}\overrightarrow{\bar{a}} & \text { of mass center } G \\ \vec{\alpha} & \text {, angular acceleration }\end{cases}$
- Solution procedure
i) Kinematic analysis

Plane motion of a slender rod (Fig. 16.12)
length l, mass m, extremities connected to blocks of negligible mass
horizontal and vertical frictionless tracks, force \vec{P} applied at A from kinematics, $\overline{\bar{a}}$ can be determined from $\quad \vec{P}$ given
\rightarrow wish to determine θ, ω, α required for this motion, as well as N_{A}, N_{B}

Fig. 16.12

16.2 Constrained Plane Motion

i) determine $\overline{a_{x}}, \overline{a_{y}}$ from kinematics
ii) apply FBD and KD (Fig. 16.13)
$\rightarrow \quad \vec{P}, \overrightarrow{N_{A}}, \overrightarrow{N_{B}}$ can be determined.
[problem] Given $\bar{P}, \theta, \omega \quad$, find $\bar{a}, \alpha, N_{A}, N_{B}$
(Sol) From kinematics express $\overline{\alpha_{x}}, \overline{\alpha_{y}}$, in terms of α

Fig. 16.13
(First, express $\overline{\alpha_{A}}$ in terms of α. Then, express $\overline{\alpha_{x}}, \overline{\alpha_{y}}$ in terms of α.
Put the expressions into Fig. 16.13)
3 equations in terms of α, N_{A}, N_{B} and can be solved.

- Several moving parts
the above approach can be used with each part of the mechanism
- two particular cases $\left\{\begin{array}{cc}\text { translation: } \\ \text { centroidal rotation: } & \quad \alpha=0 \\ a=0\end{array}\right.$
- two other cases $\left\{\begin{array}{l}\text { noncentroidal rotation } \\ \text { rolling motion of a disk/wheel }\end{array}\right\} \leftarrow$ special comments

16.2 Constrained Plane Motion

I. Noncentroidal Rotation rotation about a fixed axis which does not pass through its mass center

$$
\begin{equation*}
O \longleftarrow \bar{r} \longrightarrow G \tag{Fig.16.14}
\end{equation*}
$$

$\omega, \alpha \quad$: angular velocity and acceleration of line $O G$

$$
\begin{equation*}
\bar{a}_{t}=\bar{r} \alpha, \quad \bar{a}_{n}=\bar{r} \omega^{2} \tag{16.7}
\end{equation*}
$$

$\rightarrow \omega, \alpha$ of line $O G$: also represents the angular vel. and accel. of the body
\rightarrow Eq. (16.7): kinematic relation between $\left\{\begin{array}{l}\text { motion of the mass center } G \\ \text { motion of the body about } G\end{array}\right.$

Fig. 16.14

Fig. 16.15

16.2 Constrained Plane Motion

- Interesting relation moments about O from Figure 16.15

$$
\begin{aligned}
& +\odot \sum M_{0}=\bar{I} \alpha+(m \bar{r} \alpha) r=\underbrace{\left(I+m \bar{r}^{2}\right)}_{I_{0} \quad \text { (parallel-axis theorem) (16.8) }} \alpha \\
& \quad \rightarrow \sum M_{0}=I_{0} \alpha
\end{aligned}
$$

Although (16.8) expresses an important relation between the moment of the external forces about the fixed point O and product $I_{0} \alpha$, we still need Eq. (16.1) to find the forces at O.

- Uniform rotation
$\alpha=0,-\bar{I} \alpha$ vanishes, $-m a_{t}$ vanishes
$-m \overline{\overline{a_{n}}}$ centrifugal force, represents the tendency to break away from axis of rotation

16.2 Constrained Plane Motion

II. Rolling Motion

- rolls without sliding
$\overline{\bar{a}}$ and $\vec{\alpha}$ not independent. assuming balanced disk, \bar{x} traveled by G during a rotation θ

$$
\bar{x}=r \theta, \xrightarrow{\text { diff. }} \bar{a}=r \alpha \quad \text { (16.9) }
$$

- system of the inertial terms $\xrightarrow{\text { equivalent }} m \overline{\overline{a_{t}}}$ and $\bar{I} \vec{\alpha} \quad$ (Fig. 16.17)

Fig. 16.17

16.2 Constrained Plane Motion

- rolls without sliding
no relative motion between the disk point and the ground.
regarding the friction force, a block resting on a surface

$$
\mid \text { friction force } \mid \leq \max . F_{m}=\mu_{s} N
$$

rolling disk, $|\vec{F}|$ can be independently of N by solving the eqns from Fig. 16.17
If sliding is impending, F reaches max. $F_{m}=\mu_{s} N$
If sliding and rolling, $F_{k}=\mu_{k} N, \bar{a}$ and α independent

- Three different cases
i) Rolling, no sliding : $F \leq \mu_{s} N, \quad \bar{a}=r \alpha$
ii) Rolling, sliding impending : $F=\mu_{s} N, \quad \bar{a}=r \alpha$
iii) Rotating and sliding : $F=\mu_{k} N, \quad \bar{a}$ and α independent

16.2 Constrained Plane Motion

\rightarrow First assume that rolling without sliding, find F
if $\quad F \leq \mu_{s} N$, assumption correct
$F>\mu_{s} N, \quad$ assumption incorrect, should be started again, assuming rotating and sliding

- Unbalanced disk: G does not coincide with O (geometric center)
\rightarrow (16.9) does not hold. However, a similar relation will hold

$$
\begin{equation*}
a_{0}=r \alpha \tag{16.10}
\end{equation*}
$$

when it rolls without sliding,
For \bar{a} in terms of ω, α, use the relative-acceleration formula

$$
\begin{align*}
\overrightarrow{\bar{a}}=\vec{a}_{G} & =\overrightarrow{a_{0}}+\overline{a_{G / O}} \tag{16.11}\\
& =\overrightarrow{a_{0}}+\left(\overline{a_{G / O}}\right)_{t}+\left(\overline{a_{G / O}}\right)_{n} \\
a_{o}= & r \alpha, \quad\left|\left(\overline{a_{G / O}}\right)_{t}\right|=(O G) \alpha, \quad\left|\left(\overline{a_{t / O}}\right)_{n}\right|=(O G) \omega^{2},
\end{align*}
$$

(Fig. 16.17)
Or by the relationship between two points on a rigid body

$$
\overrightarrow{\bar{a}}=\overrightarrow{a_{0}}+\vec{\alpha} \times \vec{r}_{G / O}-\omega^{2} \overrightarrow{r_{G / O}}
$$

Fig. 16.17

Q \& A

