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16.0 Introduction

Kinetics of rigid bodies

« relations between the forces acting on a rigid body
shape and mass of the body
motion produced

Kinetics of the particle

« Mass can be concentrated in one point, and all the forces acting at that point

- Shape of the body, exact location of the points of application of the force will now
be accounted.
Motion of a body as a whole, motion about its mass center

« Approach
Consider rigid bodies as made of large number of particles,
Use the relations obtained in Chap. 14

Eq. (14.16) Z F=ma external force, acceleration of G

Eq. (14.23) ZM—G = H—G moments of external forces, angular momentum about G




16.0 Introduction

« Limits of the results in this chapter (except Sec 16.1A)

i) Plane motion

ii) Rigid bodies: only plane slabs which are symmetrical with respect to the ref. plane
(= principal centroidal axis of inertia perpendicular to the ref. plane)

- Plane motion of nonsymmetrical three-dimensional bodies
. : : Chap. 18
motion in three-dimensional space

+ Angular momentum of a rigid body > H—G:TE

+ Sec16.1B _ L
External forces acting on a rigid body equivalent « mz 4 | o

« Principle of transmissibility

* Free-body-diagram and kinetic diagram
- solution of all problems involving plane motion of rigid bodies

« Connected rigid bodies, involving translation, centroidal rotation, unconstrained
motion

« Noncentroidal rotation, rolling motion, other partially constrained motion




16.1A Equation of Motion for a Rigid Body

« Rigid body acted upon by several external forces (Fig. 16.1)
Assume that the body is made of a large nhumber of n of particles of mass

Am (i=12,---,n) 1»1 F,
Y S,
Apply the results in Chap. 14 me
« Motion of mass center G with respect to the Newtonian :
frame Oxyz
y. - flf
> F=ma (16.1)
Motion of the body relative to the centroidal frame Gx’yz’ - -
> Mg =Hg (16.2)

Fig. 16.1

H—e : angular momentum about G of the system of particles forming the body
- angular momentum of the rigid body about G




16.1A Equation of Motion for a Rigid Body

Egs. (16.1), (16.2) _ _ .
: the system of the external forces —fupollent o gystem of ma attached at G and H,
the couple (Fig. 16. 3)

Egs. (16.1), (16.2) = apply in the most general case of the motion of a rigid body

. 1; o)

Fig. 16.3

« But, in this chapter, restricted to the plane motion
Plane motion — each particle remains at a constant distance from a fixed ref. plane

* Rigid bodies
Only plane slabs and bodies which are symmetrical with respect to the ref. plane
Further studies > Chap. 18




16.1B Angular Momentum of a Rigid Body

in Plane Motion

« Eq. (14.24) of Sec 14.1D (pp. 928)

Hs can be computed by taking the moments about G of the momenta of the particles
in their motion with respect to either of the frames Oxy or Gx’y’ (Fig 16.4)

Ho =3 7 am) (163 h- o
| DR

ri : position vector e
} of the particle P, \Jw“ =
v, Am : linear momentum relative -
Y to centroidal frame
Gx'y’
+  Since the particle belongs to the slab, v =6><Fi' ;‘;g. B :

H—G:z[a’x(axﬁ'jmi

| J

same direction as @ (perpendicular to the slab)

Differentiate o

He|=0}r'am] ——— H =lo (16.4) Ho=lw=1la (16.5)
\_'_l

Moment of inertia:l_




16.1B Angular Momentum of a Rigid Body

in Plane Motion

rate of change of the angular momentum = a vector of the same
direction of ,, of magnitude |,

- valid results for the plane motion of rigid bodies which are
symmetrical with respect to the ref. plane

However, do not apply to nonsymmetrical bodies or three-dim. motion.




16.1C Plane Motion of a Rigid Body

* rigid slab of mass m under several external forces Elfz (Fig. 16.5)

Eq. (16.5) H; - (16.2), in scalar form

fozméx, Zﬁy:maw ZMG:TO‘ (16.6)

« Eqg. (16.6) _

acceleration of G and its angular acceleration ¢ are

easily obtained once _[the resultant of external forces
their moment resultant about G

with initial conditions, M,e can be obtained by
integration

- Motion of the slab is completely defined by

ZE and ZMG




16.1C Plane Motion of a Rigid Body

« System of particles which are not rigidly connected (Chap. 14)
specific external forces as well as internal forces

* Rigid body
only depends upon the resultant and moment resultant of external forces
- two systems are equipollent, also equivalent

- Sec. 14.1 A (Fig. 16. 6)
(a) system of external forces } equipollent
(b) system of effective forces associated with the particles

But, since the particles form a rigid body = equivalent (red equal sign in Fig. 16.6)

Active Aeroelasticity and Rotorcraft Lab.



16.1C Plane Motion of a Rigid Body

« Fig. 16. 7 .
effective forces - ma attached at G and a couple of moment la

i) Translation
angular acceleration = 0,
effective forces > Ma attached of G (Fig. 16.8)

equivalent

external forces «Suvaent o mz




16.4 Plane Motion of a Rigid Body

ii) Centroidal Rotation
Rotating about a fixed axis perpendicular to the ref. plane and passing through G

> centroidal rotationa =0

effective forces > | « (Fig. 16.9) external forces <@ 5 couple of moment I«

(@) (b)
Fig. 16.9 Centroidal rotation.




16.1C Plane Motion of a Rigid Body

iii) General plane motion

replaced

general plane motion «—— sum of  translation
centroidal rotation

mass center G is the ref. point --- more restrictive than that of kinematics (Sec.
15.2A)

* First two egns of Eq. (16.6)
already obtained in the general case of system of particles (not necessarily rigidly
connected)

However, in the general case of the plane motion of a rigid body, the resultant of the
external forces does NOT pass through G.

« Last egn of Eq. (16.6)
still valid if the body were constrained through G
- a rigid body in plane motion rotates about G as if G were fixed.




16.6 Solution of Problems Involving the

Motion of a Rigid body

- Fundamental relation between the forces Fi,F,,-- and a,«a
- free-body-diagram eqgn. (Fig. 16.7)

- can be used to determine .[ a,a from a given system of forces
forces which produce a given motion




16.1E Solution of Problems Involving the

Motion of a Rigid body

« Sec. 16.1C _
fundamental relationship between the forces and a of the mass center, and
o of the body
——— free-body diagram, kinetic diagram (Fig. 16.7)

« Statics
Solution can be simplified by an appropriate choice of the point about which
the moments of the forces are computed
- derive the component or moment equations which fit best the solution from
the fundamental relations

« FBD for rigid bodies: same steps as in Chap. 12, but draw forces at the location of
action, label different dimensions when summing their moments

« KD for rigid bodies: ma always on the mass center, and include | «

« Steps for a pendulum in Fig. 16.10
- isolate the body
- define the axes |
- replace the constraints with support forces s» ! =
- applied forces/moments, body forces
- label FBD with the dimensions




16.1E Solution of Problems Involving the

Motion of a Rigid body

Fig. 16.11

« Sum of moments about the mass center
+OY Mg =la:M —Py(%jz_a
« Alternatively, sum of moments about an arbitrary point P
- _ L) - _ (L _
+OY M, =la+mad, :M -W (Ej: lo+ma, (EjeraX(O)

d, : Perpendicular distance from point P to the line of action of the resultant
acceleration vector

+ In statics: moment about a point P will be determined by a vector product

mad, =1;,, xma




16.1E Solution of Problems Involving the

Motion of a Rigid body

Eq. (16.6) can be re-written as
Zl_fx = max, ZEy = mé:y,

and

SMg=la or D Mp=la+mad, ZMP=Ia+rG,P><ma




16.1E Solution of Problems Involving the

Motion of a Rigid body

* Advantage of free-body and kinetic diagram
\ J
|

vectorial relationship between the forces applied and resulting linear
and angular accelerations

i) pictorial representation - much clearer understanding of the effect of the forces

ii) two solution procedures
@ analysis of kinematic and kinetic characteristics > free-body diagrams (Fig. 16.7)
@ diagram - analyze various forces and vectors involved.




16.1E Solution of Problems Involving the

Motion of a Rigid body

iii) unified approach for the analysis of the plane motion of a rigid body
regardless of the particular type of motion involved

kinematics: may vary from one case to another B
kinetics : consistently the same approach - diagram containing rexternal F

m§ at G
la
V) resolution{ transla_tion . - basic concept for the study of mechanics
centroidal rotation

- used again in Chap. 17 (method of work and energy, impulse and momentum)

v) extended to general three-dim. motion (Chap. 18)




16.1F Systems of Rigid Bodies

+ The previous method - plane motion of several connected rigid bodies
for each point, a diagram similar to Fig. 16.7, egns of motion obtained from these
diagrams are solved simultaneously.

« Single diagram for the entire system (Sample Prob. 16.4)

internal forces can be omitted since they are equal and opposite forces - equipollent to
zero

Egns obtained by expressing that the system of external forces is equipollent to the
system of internal terms - can be solved for the remaining unknowns (now NOT dealing
with a single rigid body)

« Multiple rigid bodies:

ZE:Zmigi and ZM—P:HP

HP - Zl_i&i +Zmi§'i (di)i :Zl_i&i +Z[(FG/P )i Xmig‘i]
Sometimes, can be re-written as
S F=Y Fu > M=% (M;),

However, not possible to solve the problems involving more than 3 unknowns.




16.2 Constrained Plane Motion

« constrained motion

cranks (must rotate about a fixed axis), wheels (must roll without sliding)
connecting rods (must describe certain prescribed motion)

- definite relation exists between 5 of mass center G

QI

, angular acceleration

* Solution procedure

i) Kinematic analysis
Plane motion of a slender rod (Fig. 16.12)
length I, mass m, extremities connected to blocks of negligible
mass _
horizontal and vertical frictionless tracks, force P applied at A
from kinematics, 3 can be determined from P given
> wish to determine @, ®,a required for this motion,

as well as N,, Ng

I?

Fig. 16.12




16.2 Constrained Plane Motion

i) determine a_x,a_y from kinematics

ii) apply FBD and KD (Fig. 16.13)

> 5,N—A,N—B can be determined.
[problem] Given P,0,w , find 5,05,NA,NB

(Sol) From kinematics express a,,a,, interms of &

(First, express &, in terms of & . Then, express &,,&, interms of & . Fig. 16.13
Put the expressions into Fig. 16.13)
3 equations in terms of «,N,,Ng; and can be solved.

+ Several moving parts
the above approach can be used with each part of the mechanism

- two particular cases [ translation: o= 0
- centroidal rotation: a=0
- two other cases [ noncentroidal rotation } & special comments
rolling motion of a disk/wheel P




16.2 Constrained Plane Motion

I. Noncentroidal Rotation
rotation about a fixed axis which does not pass through its mass center

O«—r——>G (Fig. 16.14)
@, : angular velocity and acceleration of line OG

a=ra, an=reo* (16.7)

> w,a of line OG: also represents the angular vel.
and accel. of the body

- Eq. (16.7): kinematic relation between
motion of the mass center G

motion of the body about G __ Fig. 16.14
\ A»({l' ma, [ ’  ‘:
.‘ e i L 2
N -
Eio i,

I | - | ‘ .v o ! &
kT go\ '\:}
IR,

(b)

(a)

Fig. 16.15




16.2 Constrained Plane Motion

« Interesting relation
moments about O from Figure 16.15

+0 Y M, =Ta+(mra)r = (1 +mr )a

s

l, (parallel-axis theorem) (16.8)
> ZMO = l,a

Although (16.8) expresses an important relation between the moment of the external forces
about the fixed point O and product |, , we still need Eq. (16.1) to find the forces at O.

« Uniform rotation —
a =0, —lg vanishes, —ma, vanishes

—ma_n centrifugal force, represents the tendency to break away from axis of rotation




16.2 Constrained Plane Motion

II. Rolling Motion
* rolls without sliding

Z and ¢ not independent. assuming balanced disk, X traveled by G during a rotation &

X=rf, —— a=ra (16.9)

. system of the inertial terms —t s ma, and la (Fig. 16.17)

W

] D
niaa = rct)

Osiffiine
(&

\ v‘i
AN "
C R
oYy ) >




16.2 Constrained Plane Motion

« rolls without sliding
no relative motion between the disk point and the ground.

regarding the friction force, a block resting on a surface

| friction force| < max. F, = zN

F | can be independently of N by solving the eqns from Fig. 16.17

rolling disk,
If sliding is impending, F reaches max. F = uN

If sliding and rolling, F,=#4N, a and a independent
« Three different cases

i) Rolling, no sliding - F<u

ii) Rolling, sliding impending : F=uN, a=ra

iii) Rotating and sliding : F=uN, a and « independent




16.2 Constrained Plane Motion

- First assume that rolling without sliding, find F
if F <uN, assumption correct

F>u N, assumption incorrect, should be started again, assuming rotating and
sliding

« Unbalanced disk: G does not coincide with O (geometric center)
- (16.9) does not hold. However, a similar relation will hold

a,=ra (16.10)
when it rolls without sliding,
For a interms of @, , use the relative-acceleration formula / \
a=8; =8+ (16.11) -/ |
= % +(@g/0) +(@g10)n
a,=ra, |(ago)|=(06)a, |(Byo0),|=(0G)e", O\ /
(Fig. 16.17) G j/
~_ Cc

Or by the relationship between two points on a rigid body

= > 2
a =8y +axlg o =0 I5, Fig. 16.17
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