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16.0 Introduction

Kinetics of rigid bodies
• relations between the forces acting on a rigid body

shape and mass of the body
motion produced

Kinetics of the particle
• Mass can be concentrated in one point, and all the forces acting at that point
→ Shape of the body, exact location of the points of application of the force will now 

be accounted.
Motion of a body as a whole, motion about its mass center

• Approach
Consider rigid bodies as made of large number of particles,
Use the relations obtained in Chap. 14

Eq. (14.16)                       external force, acceleration of G

Eq. (14.23)                        moments of external forces, angular momentum about G
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F ma=

G GM H
•

=
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• Limits of the results in this chapter (except Sec 16.1A)
i) Plane motion
ii) Rigid bodies: only plane slabs which are symmetrical with respect to the ref. plane

(→ principal centroidal axis of inertia perpendicular to the ref. plane)

→ Plane motion of nonsymmetrical three-dimensional bodies
motion in three-dimensional space

Chap. 18

• Angular momentum of a rigid body →

• Sec 16.1B
External forces acting on a rigid body

GH I
•

=

equivalent ma I⎯⎯⎯⎯→ +

• Principle of transmissibility

• Free-body-diagram and kinetic diagram 
→ solution of all problems involving plane motion of rigid bodies

• Connected rigid bodies, involving translation, centroidal rotation, unconstrained 
motion

• Noncentroidal rotation, rolling motion, other partially constrained motion
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16.1A Equation of Motion for a Rigid Body

• Rigid body acted upon by several external forces (Fig. 16.1)
Assume that the body is made of a large number of n of particles of mass

( 1,2, , )im i n = 

Apply the results in Chap. 14

• Motion of mass center G with respect to the Newtonian 
frame Oxyz

Motion of the body relative to the centroidal frame Gx’y’z’

F ma= (16.1)

G GM H
•

= (16.2)

GH
•

: angular momentum about G of the system of particles forming the body
→ angular momentum of the rigid body about G
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Eqs. (16.1), (16.2)
: the system of the external forces                       system of          attached at G and 
the couple       (Fig. 16. 3)

Eqs. (16.1), (16.2) → apply in the most general case of the motion of a rigid body

equipollent⎯⎯⎯⎯→ ma GH
•

• But, in this chapter, restricted to the plane motion
Plane motion – each particle remains at a constant distance from a fixed ref. plane

• Rigid bodies 
Only plane slabs and bodies which are symmetrical with respect to the ref. plane
Further studies → Chap. 18
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16.1B Angular Momentum of a Rigid Body 
in Plane Motion

• Eq. (14.24) of Sec 14.1D (pp. 928)

can be computed by taking the moments about G of the momenta of the particles 
in their motion with respect to either of the frames Oxy or Gx’y’ (Fig 16.4)

GH

( )iG i iH r v m =   (16.3)

ir 

i iv m

: position vector

: linear momentum

of the particle Pi

relative 
to centroidal frame 
Gx’y’

• Since the particle belongs to the slab, 
i iv r  = 

iG i iH r r m
  =     

  


same direction as       (perpendicular to the slab)

2

]iG iH r m = 

Moment of inertia: I

GH I= (16.4)
GH I I 
• •

= = (16.5)
Differentiate
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rate of change of the angular momentum = a vector of the same 
direction of      , of magnitude  I

→ valid results for the plane motion of rigid bodies which are 
symmetrical with respect to the ref. plane

However, do not apply to nonsymmetrical bodies or three-dim. motion.
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Eq. (16.5)         → (16.2), in scalar form

16.1C Plane Motion of a Rigid Body

• rigid slab of mass m under several external forces                (Fig. 16.5)1 2, ,F F   

GH
•

,x xF ma= ,y yF ma= GM I= (16.6)

• Eq. (16.6)
acceleration of G and its angular acceleration      are 
easily obtained once   the resultant of external forces

their moment resultant about G

with initial conditions,            can be obtained by 
integration

→ Motion of the slab is completely defined by 



, ,x y 

F GMand
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• System of particles which are not rigidly connected (Chap. 14) 
specific external forces as well as internal forces

• Rigid body
only depends upon the resultant and moment resultant of external forces
→ two systems are equipollent, also equivalent

• Sec. 14.1 A (Fig. 16. 6)
(a) system of external forces
(b) system of effective forces associated with the particles

equipollent

But, since the particles form a rigid body → equivalent (red equal sign in Fig. 16.6) 
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• Fig. 16. 7
effective forces  → attached at G and a couple of moment 

i) Translation
angular acceleration = 0,
effective forces → attached of G (Fig. 16.8)

ma I

 equivalentexternal forces ma⎯⎯⎯→

ma
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ii) Centroidal Rotation
Rotating about a fixed axis perpendicular to the ref. plane and passing through G

→ centroidal rotation 

effective forces → (Fig. 16.9)

0a =

I     equivalentexternal forces couple of moment I ⎯⎯⎯→
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iii) General plane motion

general plane motion                    sum of    translation
centroidal rotation

mass center G is the ref. point       more restrictive than that of kinematics (Sec. 
15.2A)

• First two eqns of Eq. (16.6)
already obtained in the general case of system of particles (not necessarily rigidly 
connected)

However, in the general case of the plane motion of a rigid body, the resultant of the 
external forces does NOT pass through G.

• Last eqn of Eq. (16.6) 
still valid if the body were constrained through G
→ a rigid body in plane motion rotates about G as if G were fixed.

replaced
⎯⎯⎯→

  
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16.6 Solution of Problems Involving the 
Motion of a Rigid body

• Fundamental relation between the forces                 and 
→ free-body-diagram eqn. (Fig. 16.7)

→ can be used to determine           from a given system of forces
forces which produce a given motion 

1 2, ,F F    ,a 

,a 
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• Sec. 16.1C
fundamental relationship between the forces and    of the mass center, and

of the body
free-body diagram, kinetic diagram (Fig. 16.7)

• Statics
Solution can be simplified by an appropriate choice of the point about which 
the moments of the forces are computed
→ derive the component or moment equations which fit best the solution from 

the fundamental relations

• FBD for rigid bodies: same steps as in Chap. 12, but draw forces at the location of 
action, label different dimensions when summing their moments

• KD for rigid bodies: always on the mass center, and include 

• Steps for a pendulum in Fig. 16.10
- isolate the body
- define the axes
- replace the constraints with support forces
- applied forces/moments, body forces
- label FBD with the dimensions

ma I

16.1E Solution of Problems Involving the 
Motion of a Rigid body

a


Fig. 16.10
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16.1E Solution of Problems Involving the 
Motion of a Rigid body

• Sum of moments about the mass center

• Alternatively, sum of moments about an arbitrary point P

Perpendicular distance from point P to the line of action of the resultant 
acceleration vector

• In statics: moment about a point P will be determined by a vector product

:
2

G y

L
M I M P I 

 
+ = − = 

 


( ): 0
2 2

P y x

L L
M I mad M W I ma ma 

   
+ = + − = + +   

   


:d

/G Pmad r ma = 

Fig. 16.11
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16.1E Solution of Problems Involving the 
Motion of a Rigid body

• Eq. (16.6) can be re-written as

and

or or

,x xF ma= ,y yF ma=

GM I= PM I mad = + /P G PM I r ma= + 
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• Advantage of free-body and kinetic diagram

vectorial relationship between the forces applied and resulting linear 
and angular accelerations

i) pictorial representation → much clearer understanding of the effect of the forces
ii) two solution procedures 
① analysis of kinematic and kinetic characteristics → free-body diagrams (Fig. 16.7)
② diagram → analyze various forces and vectors involved.

16.1E Solution of Problems Involving the 
Motion of a Rigid body
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iii) unified approach for the analysis of the plane motion of a rigid body

regardless of the particular type of motion involved

kinematics: may vary from one case to another
kinetics    : consistently the same approach → diagram containing   external

at G

iv) resolution   translation 
centroidal rotation 

F

ma

I

→ basic concept for the study of mechanics

→ used again in Chap. 17 (method of work and energy, impulse and momentum)

v) extended to general three-dim. motion (Chap. 18)

16.1E Solution of Problems Involving the 
Motion of a Rigid body
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16.1F Systems of Rigid Bodies

• The previous method → plane motion of several connected rigid bodies
for each point, a diagram similar to Fig. 16.7, eqns of motion obtained from these 
diagrams are solved simultaneously.

• Single diagram for the entire system (Sample Prob. 16.4)
internal forces can be omitted since they are equal and opposite forces → equipollent to 
zero
Eqns obtained by expressing that the system of external forces is equipollent to the 
system of internal terms → can be solved for the remaining unknowns (now NOT dealing 
with a single rigid body)

• Multiple rigid bodies:

and

Sometimes, can be re-written as

However, not possible to solve the problems involving more than 3 unknowns.

i iF m a=  P PM H
•

=

( ) ( )/P i i i i G P i ii ii i
H I m a d I r m a 
•


 = + = +     

effF F=  ( )P P
eff

M M= 
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16.2 Constrained Plane Motion

• constrained motion
cranks (must rotate about a fixed axis), wheels (must roll without sliding)
connecting rods (must describe certain prescribed motion)

→ definite relation exists between            of mass center G

, angular acceleration

a



• Solution procedure

i) Kinematic analysis
Plane motion of a slender rod (Fig. 16.12)
length l, mass m, extremities connected to blocks of negligible 

mass
horizontal and vertical frictionless tracks, force      applied at A

from kinematics,     can be determined from                 given
→ wish to determine      required for this motion, 

as well as NA, NB

P

a
, ,  

P
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i) determine            from kinematics

ii) apply FBD and KD (Fig. 16.13)

→ can be determined.

[problem] Given               , find 

(Sol) From kinematics express                in terms of 

(First, express        in terms of     . Then, express             in terms of     .

Put the expressions into Fig. 16.13)

3 equations in terms of                    and can be solved.

• Several moving parts 

the above approach can be used with each part of the mechanism

- two particular cases      translation:                

centroidal rotation:   

- two other cases            noncentroidal rotation

rolling motion of a disk/wheel

,x ya a

, ,A BP N N

, ,P   , , ,A Ba N N

, ,x y 

A ,x y  

, ,A BN N

0 =

0a =

 special comments
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I. Noncentroidal Rotation
rotation about a fixed axis which does not pass through its mass center

O r G⎯⎯ ⎯⎯→ (Fig. 16.14)

,  : angular velocity and acceleration of line OG

2,    t na r a r = = (16.7)

→ of line OG: also represents the angular vel. 
and accel. of the body

→ Eq. (16.7): kinematic relation between
motion of the mass center G
motion of the body about G
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• Interesting relation
moments about O from Figure 16.15

2

0 ( ) ( )M I mr r I mr  + = + = +

0I (parallel-axis theorem) (16.8)

0 0M I =→

Although (16.8) expresses an important relation between the moment of the external forces 
about the fixed point O and product      , we still need Eq. (16.1) to find the forces at O.

• Uniform rotation
= 0,          vanishes,            vanishesI− tma−

nma− centrifugal force, represents the tendency to break away from axis of rotation
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II.    Rolling Motion
• rolls without sliding

and      not independent. assuming balanced disk,     traveled by G during a rotation a  x 

.,   diffx r a r = ⎯⎯⎯→ = (16.9)

• system of the inertial terms  equivalent⎯⎯⎯⎯→ tma and         (Fig. 16.17)I
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• rolls without sliding
no relative motion between the disk point and the ground.

regarding the friction force, a block resting on a surface

max.    m sfriction force F N =

rolling disk,          can be independently of N by solving the eqns from Fig. 16.17

If sliding is impending, F reaches

If sliding and rolling,                        and     independent

• Three different cases
i) Rolling, no sliding              :

ii)    Rolling, sliding impending  :

iii)   Rotating and sliding           :                                     and      independent

 F

max. m sF N=

,k kF N= a

,sF N

,sF N=

,kF N=

a r=

a r=

a         

25

16.2 Constrained Plane Motion



Active Aeroelasticity and Rotorcraft Lab., Seoul National University

→ First assume that rolling without sliding, find F

if                      assumption correct

assumption incorrect, should be started again, assuming rotating and 
sliding

• Unbalanced disk: G does not coincide with O (geometric center)
→ (16.9) does not hold. However, a similar relation will hold

when it rolls without sliding, 

For      in terms of          ,  use the relative-acceleration formula

Or by the relationship between two points on a rigid body

,sF N

,sF N

0a r=

a , 

(16.11)

(16.10)

0 /G G Oa a a a= = +

0 / /( ) ( )G O t G O na a a= + +

,oa r=
/( ) ( ) ,G O ta OG =

2

/( ) ( ) ,t O na OG =

(Fig. 16.17)
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16.2 Constrained Plane Motion

2

0 / /G O G Oa a r r = +  − Fig. 16.17
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