Linear System and State Space Formulation

Chen Ch. 2-5

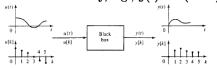
Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

Basic Concepts

- System: a collection of elements, that interacts with its environment via a set of input $u \in \mathbb{R}^m$ and output $y \in \mathbb{R}^p$.
 - Causal system (current output depends only on past/current inputs, not future (e.g., $y = \frac{1}{a}u$) vs acausal system (e.g., y = su).
 - Static (memoryless) system y(t) = h(u(t)) vs dynamic (with memory) system $y(t) = h(t, x(t_o), u([t_o; t])$.
- State: $x(t_1) \in \Re^n$ of a causal system at t_1 is the information needed, together with the input $u: [t_1, t_2]$, to uniquely define the output y at t_2 .
 - State $x(t_1)$ at t_1 contains all the information related to the past input history of $u: [-\infty, t_1]$ to define $y(t), \forall t \geq t_1$.
 - State is not unique (e.g., $x_1 + x_2, x_1 x_2, x_3$).
 - Dimension of system = dimension of minimal state vector $x \in \Re^n$.
- Finite-dimensional system (only finite SV needed) vs infinite-dimensional system (infinite SV necessary, e.g., $y(t) = u(t-\tau)$).



©Dongjun Le

Dynamical Systems

• State-space system representation:

(Continuous-time): $\dot{x}(t) = f(x(t), u(t), t), \quad y(t) = h(x(t), u(t), t)$ (Discrete-time): $x(k+1) = f(x(k), u(k), k), \quad y(k) = h(x(k), u(k), k)$

where $t \in \Re$ is time, $k \in \mathcal{Z}$ is discrete-time index, $x \in \Re^n$ is state vector, $u \in \Re^p$ is input vector, and $y \in \Re^m$ output vector, with f, h being state dynamics map and output map.

- State transition map: given $x_o = x(t_o)$ and $u([t_o, t_1]), x(t_1)$ is uniquely determined, i.e., $x(t_1) = s(t_1, t_o, x_o, u([t_o; t_1]))$
 - Semi-group property: $\forall t_2 \geq t_1 \geq t_o, x_o \in \Re^n \text{ and } u([t_o; t_2]),$

$$s(t_2, t_o, x_o, u([t_o; t_2]) = s(t_2, t_1, s(t_1, t_o, x_o, u(t_o, t_1)), u([t_1; t_2])$$

$$= s(t_2, t_1, x_1, u([t_1; t_2])$$

- Ex) solution by integration: $x(t_1) = x(t_o) + \int_{t_o}^{t_1} f(x(\tau), u(\tau), \tau) d\tau$.
- Output map: $y(t) = h(s(t, t_o, x_o, u([t_o; t])), u(t), t) = h'(t, t_o, x_o, u([t_o; t])).$

Dongjun Lee

ENGINEER

Linear Dynamical System

- Linear system property: given $(x_i(t_o), u_i([t_o;t])) \rightarrow (x_i(t), y_i(t)), t \geq t_o$,
 - $-\alpha(x_i(t_o), u_i([t_o; t])) \rightarrow \alpha(x_i(t), y_i(t))$ for constant α (homogeneity).
 - $-(x_1(t_o)+x_2(t_o),u_1+u_2) \rightarrow (x_1(t)+x_2(t),y_1(t)+y_2(t))$ (additivity).
 - Superposition property: for any real constants α, β ,

$$(\alpha x_1(t_o) + \beta x_2(t_o), \alpha u_1 + \beta u_2) o (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2)$$

- Note the scaling applies both to IC and input.
- For linear dynamics $\dot{x} = f(x, u, t)$ (i.e., $f(\alpha x_1 + \beta x_2, \alpha u_1 + \beta u_2, t) = \alpha f(x_1, u_1, t) + \beta f(x_1, u_1, t)$), we have linear state-transition map:

$$s(t, t_o, \alpha x_1^o + \beta x_2^o, \alpha u_1 + \beta u_2) = \alpha s(t, t_o, x_1^o, u_1) + \beta s(t, t_o, x_2^o, u_2)$$

Further, with linear output map (i.e., $h(\alpha x_1 + \beta x_2, \alpha u_1 + \beta u_2, t) = \alpha h(x_1, u_1, t) + \beta h(x_2, u_2, t)$),

$$h(s(t, t_o, \alpha x_1^o + \beta x_2^o, \alpha u_1 + \beta u_2), t) = y(t, t_o, \alpha x_1^o + \beta x_2^o, \alpha u_1 + \beta u_2)$$

= $\alpha y(t, t_o, x_1^o, u_1) + \beta y(t, t_o, x_2^o, u_2)$

• LTV or LTI system: $\dot{x} = A(t)x + B(t)u$, y = C(t)x + D(t)u.

Dongjun Le

ENGINEERING
COLLEGE OF INSERTED RES

LTV and LTI Systems

• State-space representation of linear systems:

$$\dot{x} = A(t)x(t) + B(t)u(t), \quad y(t) = C(t)x(t) + D(t)u(t)$$

where $A(t) \in \mathbb{R}^{n \times n}$, $B(t) \in \mathbb{R}^{n \times p}$, $C(t) \in \mathbb{R}^{m \times n}$, $D(t) \in \mathbb{R}^{m \times p}$ are state, input, output and direct feedthrough matrices. If these are constants \Rightarrow linear time-invariant (LTI); else \Rightarrow linear time-varying (LTV).

- Jacobian linearization of $\dot{x} = f(x, u, t)$, y = h(x, u, t) around nominal trajectory $\dot{\bar{x}} = f(\bar{x}, \bar{u}, t)$, $\bar{y} = h(\bar{x}, \bar{u}, t)$ or equilibrium (with $\dot{\bar{x}} = 0$).
 - Define deviations $\tilde{x} := x \bar{x}$, $\tilde{u} := u \bar{u}$, $\tilde{y} := y \bar{y}$. Then,

$$egin{aligned} \dot{ ilde{x}} &= \dot{x} - \dot{ ilde{x}} = f(ar{x} + ilde{x}, ar{u} + ilde{u}, t) - f(ar{x}, ar{u}, t) = \left. rac{\partial f}{\partial x}
ight|_{ar{x}(t), ar{u}(t)} ilde{x} + \left. rac{\partial f}{\partial u}
ight|_{ar{x}(t), ar{u}(t)} ilde{u} \\ ar{y} &= y - ar{y} = h(ar{x} + ilde{x}, ar{u} + ilde{u}, t) - h(ar{x}, ar{u}, t) = \left. rac{\partial h}{\partial x}
ight|_{ar{x}(t), ar{u}(t)} ilde{x} + \left. rac{\partial h}{\partial u}
ight|_{ar{x}(t), ar{u}(t)} ilde{u} \end{aligned}$$

- Ex) $\dot{x}_1 = x_2, \dot{x}_2 = -\frac{g}{L}\sin x_2; \dot{x} = t\sin x + u^2\sin t, y = \cos tx + e^{-t}u.$
- Realization of Y(s) = H(s)U(s). Then, $H(s) = H_{sp}(s) + H(\infty)$ with $D = H(\infty)$. Further, $H_{sp}(s) = \frac{1}{D(s)}[N_1s^{n-1}...+N_n]$. Then, can obtain A, B, C, D via $Y(s) = [N_1s^{n-1} + ... + N_n]X(s)$ and $X(s) = \frac{1}{D(s)}U(s)$.

A Onnaiun Lee MIN ENGINEERIN

Linear System Response

 \bullet Consider linear system $\dot{x} = A(t)x + B(t)u$ with superposition property:

$$s(t, t_o, \alpha x_1^o + \beta x_2^o, \alpha u_1 + \beta u_2) = \alpha s(t, t_o, x_1^o, u_1) + \beta s(t, t_o, x_2^o, u_2)$$

• Then, we can write the state response x(t) as composed of:

$$x(t) = s(t, t_o, x_o, u) = s(t, t_o, x_o + 0, 0 + u) = s(t, t_o, x_o, 0) + s(t, t_o, 0, u)$$

- zero-input response $x_{u=0,x_o}(t)=s(t,t_o,x_o,0)$ (i.e., response x(t) only due to IC x_o with no input) and
- zero-state response $x_{u,x_o=0} = s(t,t_o,0,u)$ (i.e., response only due to input u with zero IC).
- Recall SISO TF case: Y(s) = H(s)U(s) + H(s)[IC].
- Fundamental matrix: A matrix $X(t) \in \mathbb{R}^{n \times n}$ is a fundamental matrix of $\dot{x} = A(t)x$, if

 $\dot{X}(t) = A(t)X(t)$

with non-singular $X(t_o)$ for some t_o .

- X(t) is non-singular $\forall t$: if singular at $t_1 > t_o \to \exists$ non-zero ν s.t., $x(t_1) := X(t_1)\nu = 0$. Then, $x(t) = X(t)\nu$ is a solution, thus, w/ $t \to t_o$, $x(t_o) = X(t_o)\nu = 0 \to \text{contradiction (no information collapse)}$:

Dongjun Le

Transition Matrix

• Consider the LTV system

$$\dot{x} = A(t)x + B(t)u$$

with zero-input response $s(t,t_o,x_o,0)$. Then, since linear (e.g., using $(X(t),X(t_o))$), it can be represented by **transition matrix** $\Phi(t,t_o) \in \mathbb{R}^{n \times n}$.

$$s(t, t_o, x_o, 0) = \Phi(t, t_o) x_o$$

$$-\Phi(t,t_o) = X(t)X^{-1}(t_o)$$
 with $\Phi(t_o,t_o) = I$.

$$-\frac{\partial}{\partial t}\Phi(t,t_o)=A(t)\Phi(t,t_o)$$
 (i.e., Φ is a fundamental matrix).

$$- \Phi(t, t_o) = \Phi(t, t_1)\Phi(t_1, t_o).$$

$$-\Phi^{-1}(t,t_o)=\Phi(t_o,t).$$

-
$$\Phi(t, t_o)$$
 is non-singular $\forall t \geq t_o$ (i.e., no information collapse).

$$-\frac{\partial}{\partial t_o}\Phi(t,t_o) = -\Phi(t,t_o)A(t_o).$$

- LTI system: $\frac{d}{dt}\Phi(t,t_o) = A\Phi(t,t_o), \ \Phi(t_o,t_o) = I \rightarrow \Phi(t,t_o) = e^{A(t-t_o)}.$
- LTV system: $\frac{d}{dt}\Phi(t,t_o) = A(t)\Phi(t,t_o) \rightarrow \Phi(t,t_o) \neq e^{\int_{t_o}^t A(\tau)d\tau}$.

with $e^{At} = I + At + \frac{A^2t^2}{2!} +$

MA ENGINEERIN

Formulas for Transition Matrix

• Consider transition matrix $\Phi(t, t_o)$ of LTV system $\dot{x} = A(t)x + B(t)u$ with

$$\frac{\partial}{\partial t}\Phi(t,t_o) = A(t)\Phi(t,t_o), \quad \Phi(t_o,t_o) = I$$

- Picard iteration:
 - Implicit integration equation: $\Phi(t,t_o) = I + \int_{t_o}^t A(\tau)\Phi(\tau,t_o)d\tau$.
 - k-th iteration: $\Phi_{k+1}(t,t_o) = I + \int_{t_o}^t A(\tau) \Phi_k(\tau,t_o) d\tau$ w/ $\Phi_1(t,t_o) = I$.
 - Peano-Baker formula:

$$\Phi(t,t_o) = I + \int_{t_o}^t A(\tau_1) d\tau_1 + \int_{t_o}^t A(\tau_1) \left[\int_{t_o}^{\tau_1} A(\tau_2) d\tau_2 \right] d\tau_1 + ...$$

- For the LTI system with $\dot{x} = Ax + Bu$,
 - Peano-Baker formula:

$$\Phi(t,t_o) = I + \frac{A(t-t_o)}{1!} + \frac{A^2(t-t_o)^2}{2!} + \dots = e^{A(t-t_o)}$$

- Laplace transform: $s\Phi(s) - I = A\Phi(s) \rightarrow \Phi(s) = (sI - A)^{-1}$.

$$-\ A = \left[\begin{array}{cc} -1 & 0 \\ 1 & -2 \end{array} \right] \to (sI - A)^{-1} = \left[\begin{array}{cc} \frac{1}{s+1} & 0 \\ \frac{1}{(s+1)(s+2)} & \frac{1}{s+2} \end{array} \right] \to \Phi(t,0)$$

Jordan Form and Multiplicity

• Consider LTI system $\dot{x} = Ax + Bu$ with transition matrix

$$\Phi(t,0) = e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots$$

• Recall the eigen-problem of A, i.e., $A\nu_i = \lambda_i\nu_i$, where $\lambda_i \in \mathcal{C}$ and $\nu_i \in \mathcal{C}^n$ are eigenvalue and eigenvector. Then, for each λ_i ,

algebraic multiplicity of $\lambda_i \geq \text{geometric multiplicity of } \lambda_i$

i.e., order of $(s - \lambda_i)$ in CE \geq number of independent eigenvectors.

• Jordan form: for $A \in \Re^{4 \times 4}$ with deficient λ_2 ,

$$A = T \left[\begin{array}{cccc} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{array} \right] T^{-1} \, \Rightarrow \, e^{At} = T \left[\begin{array}{cccc} e^{\lambda_1 t} & 0 & 0 & 0 \\ 0 & e^{\lambda_2 t} & t e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{\lambda_2 t} & 0 \\ 0 & 0 & 0 & e^{\lambda_4 t} \end{array} \right] T^{-1}$$

from $AT = \Lambda T$, where $T \in \Re^{4 \times 4}$ is collection of (generalized) eigenvectors.

– Stable if all $\lambda_i \in \text{LHP}$; marginally stable if all $\lambda_i \in \text{LHP}$ except some non-deficient λ_i on jw-axis; unstable if some $\lambda_i \in \text{RHP}$ or deficient λ_i on jw-axis (if deficiency = 2 \rightarrow growth w/ t^2 : [0,0;0,0],[0,1;0,0]).

Ongiun Lee

COLLEGE OF EMERIEES

Similarity Transformation

• Consider the LTI system:

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

- Define coordinate transformation via $x = T\bar{x}$ with non-singular matrix T. We may then think of \bar{x}_i as the component of x along T_i .
- Similarity transformation: with $x = T\bar{x}$, can transform the dynamics s.t.,

$$\dot{\bar{x}} = \bar{A}\bar{x}(t) + \bar{B}u(t), \quad y = \bar{C}\bar{x}(t) + Du$$

where $\bar{A}=T^{-1}AT$, $\bar{B}=T^{-1}B$, $\bar{C}=CT$. This similarity transformation is equivalent with:

- Same eigenvalues: $CE(\bar{A}) = \det[\lambda I \bar{A}] = \det[T^{-1}] \det[\lambda I A] \det[T] = \det[\lambda I A] = CE(A)$
- Same transfer function: $\bar{H}(s) = \bar{C}(sI \bar{A})^{-1}\bar{B} + D = \bar{CT}(sI T^{-1}AT)^{-1}T^{-1}B + D = C(SI A)^{-1}B + D = H(s)$.
- Other properties (e.g., controllability, observability).
- If all eigenvalues are distinct, we may then achieve **modal decomposition**: with x = Tz, T collection of eigenvectors,

 $\dot{z}_i = \lambda_i z_i + \bar{B}_i u$, with mode $T_i \in \Re^n$ and modal freq. λ_i

ENGINEERING

Dongjun Le

Zero-State Response and Convolution

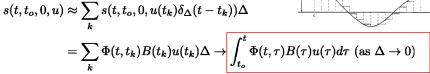
• Consider LTV system:

ystem:
$$\dot{x} = A(t)x + B(t)u, \quad y = C(t)x + D(t)u$$

with state response given by zero-input and zero-state responses:

$$x(t) = \Phi(t, t_o)x(t_o) + s(t, t_o, 0, u([t_o; t]))$$

- To compute the zero-state response, using the unit impulse $\delta_{\Delta}(t-t_k)$, write
- write $u(t) pprox \sum_k u(t_k) \delta_{\Delta}(t-t_k) \Delta$ • Then, from the linearity of state-transition map s,



since, with zero-state condition (i.e., $x(t_k) = 0$), $x(t_{k+1}) = \int_{t_k}^{t_{k+1}} [A(t)x(t) + B(t)u(t_k)\delta_{\Delta}(t-t_k)]dt = B(t_k)u(t_k)$, which will propagate to t via state transition matrix $\Phi(t, t_{k+1})$.

Dongjun Le

ENGINEERIN

Zero-State Response: Proof

• Consider LTV system:

$$\dot{x} = A(t)x + B(t)u, \quad y = C(t)x + D(t)u$$

and denote by x(t) as the zero-state response under u(t) with $x(t_o)=0$. We want to show this $x(t)=s(t,t_o,0,u)$ is the same as

$$z(t) := \int_{t_o}^t \Phi(t, au) B(au) u(au) d au$$

• Note first that $z(t_o) = 0$. Also, using $\Phi(t, \tau) = I + \int_{\tau}^{t} A(\sigma) \Phi(\sigma, \tau) d\sigma$,

$$\begin{split} z(t) &= \int_{t_o}^t \left[I + \int_{\tau}^t A(\sigma) \Phi(\sigma, \tau) d\sigma \right] B(\tau) u(\tau) d\tau \\ &= \int_{t_o}^t B(\tau) u(\tau) d\tau + \int_{t_o}^t \int_{\tau}^t A(\sigma) \Phi(\sigma, \tau) d\sigma B(\tau) u(\tau) d\tau \\ &= \int_{t_o}^t B(\tau) u(\tau) d\tau + \int_{t_o}^t A(\sigma) \int_{t_o}^{\sigma} \Phi(\sigma, \tau) B(\tau) u(\tau) d\tau d\sigma \\ &= \int_{t_o}^t B(\tau) u(\tau) d\tau + \int_{t_o}^t A(\sigma) z(\sigma) d\sigma \end{split}$$

 $_{ ext{ iny Donqjun Lee}} \quad ext{implying } \dot{z} = A(t)z(t) + B(t)u(t) ext{ with } z(t_o) = 0 \Rightarrow z(t) = x(t).$

Output Response

• Consider LTV system:

$$\dot{x} = A(t)x + B(t)u, \quad y = C(t)x + D(t)u$$

with total state-response given by:

$$x(t) = s(t, t_o, x_o, u) = \Phi(t, t_o)x_o + \int_{t_o}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau$$

• Output response is then given by:

$$y(t) = C(t)\Phi(t, t_o)x_o + C(t)\int_{t_o}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

which is linear (i.e., $\alpha(x_1 + u_1) + \beta(x_2 + u_2) \rightarrow \alpha y_1 + \beta y_2$), and consists of free-response (zero-input output) and force-response (zero-state output).

• LTI system: with $\Phi(t, t_o) = e^{A(t-t_o)}$, and $t_o = 0$ and $x(0) = x_o$,

$$y(t) = Ce^{At}x_o + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

$$Y(s) = C(sI-A)^{-1}x_o + [C(sI-A)^{-1}B + D]U(s)$$

where $H(s) = [C(sI-A)^{-1}B + D]$ is the ${f transfer}$ ${f matrix}$.

Impulse Response and Transfer Matrix

• Consider LTV system with its output response:

$$\dot{x} = A(t)x + B(t)u, \quad y = C(t)x + D(t)u$$

$$y(t) = C(t)\Phi(t, t_o)x_o + C(t)\int_{t_o}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

• Impulse response matrix: with zero initial state and unit-impulse input through the *j*-th input channel $u_j(t) = [0; ...; \delta(t-t'); 0; ... 0],$

$$y_i(t) = [C(t)\Phi(t,t')B(t') + D(t)\delta(t-t')]_i \in \Re^m, \ t \ge t'$$

i.e., $y_j(t)$ is a m-dimensional column vector. By collecting this, we can construct $m \times p$ impulse response matrix:

$$h(t,t') = C(t)\Phi(t,t')B(t') + \delta(t-t')\cdot D(t)$$

whose j-th column is output from j-th channel unit-impulse input.

• LTI system: with t' = 0, $h_{\text{impulse}}(t) = Ce^{At}B + \delta(t) \cdot D$. Taking Laplace TF,

$$H_{\text{impulse}}(s) = C(sI - A)^{-1}B + D$$

which is transfer matrix computed before (or directly from $\dot{x} = Ax + Bu, y = Cx + Du$) \Rightarrow transfer matrix is Laplace TF of IR-matrix.

DT-LTV System and Exact Discretization

• Consider LTV discrete-time system:

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad y(k) = C(k)x(k) + D(k)u(k)$$

where $k \in \mathcal{Z}$ is the time-index, $x(k) \in \Re^n$, $u(k) \in \Re^p$, $y(k) \in \Re^m$, $A(k) \in \Re^{n \times n}$, $B(k) \in \Re^n \times p$, $C(k) \in \Re^{m \times n}$ and $D(k) \in \Re^{m \times p}$.

• Simple discretization: with $\dot{x}(t) \approx (x((k+1)T) - x(kT))/T$,

$$x(k+1) = (1+TA)x(k)x(k) + TB(k)u(k), \quad y(k) = Cx(k) + Du(k)$$

- Exact discretization w/ piecewise-continuous input u(k):

$$\begin{split} x(k+1) &= e^{A(k+1)T} x(0) + \int_0^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau \\ &= e^{AT} x(k) + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} Bu(\tau) d\tau = e^{AT} x(k) + \int_0^T e^{A\tau} d\tau Bu(k) \end{split}$$

$$-x(k+1)=A_dx(k)+B_du(k), \ y(k)=Cx(k)+Du(k), \ ext{with} \ A_d=e^{AT}, \ B_d=\int_0^T e^{A au}d au B. \ ext{Also,} \ B_d=A^{-1}(A_d-I)B \ ext{if} \ A \ ext{is nonsingular.}$$

DT-LTV System State Response

• LTV discrete-time system:

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad y(k) = C(k)x(k) + D(k)u(k)$$

• The system is still linear with

$$x(k_1) = s(k_1, k_o, x_o, u([k_o; k_1 - 1])) = s(k_1, k_o, x_o, 0) + s(k_1, k_o, 0, u([k_o: k_1 - 1]))$$

• State-propagation of LTV-DT system:

$$x_{k} = A_{k-1}x_{k-1} + B_{k-1}u_{k-1}$$

$$= A_{k-1}A_{k-2}x_{k-2} + A_{k-1}B_{k-2}u_{k-2} + B_{k-1}u_{k-1}$$

$$\vdots$$

$$= \left[\Pi_{i=k_o}^{k-1} A(i) \right] x(k_o) + \sum_{i=k_o}^{k-1} \left[\Pi_{j=i+1}^{k-1} A(j) \right] B(i) u(i)$$

$$= \Phi(k, k_o) x(k_o) + \sum_{i=k_o}^{k-1} \Phi(k, i+1) B(i) u(i)$$

$$=\Phi(k,k_o)x(k_o)+\sum_{i=k_o}^{k-1}\Phi(k,i+1)B(i)u(i)$$

consisting of zero-input response w/ state transition matrix $\Phi(k, k_o)$ = $A(k-1)A(k-2)...A(k_o) \in \Re^{n \times n}$ and zero-state respons (i.e., convolution).

DT-LTV System Response

• LTV discrete-time system:

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad y(k) = C(k)x(k) + D(k)u(k)$$

• LTV-DT system state response:

$$x(k) = \Phi(k,k_o)x(k_o) + \sum_{i=k_o}^{k-1} \Phi(k,i+1)B(i)u(i), \;\; \Phi(k,k_o) := \Pi_{i=k_o}^{k-1}A(i)$$

• LTV-DT system output response:

$$y(k) = C(k)\Phi(k, k_o)x_o + C(k)\sum_{i=k_o}^{k-1}\Phi(k, i+1)B(i)u(i) + D(k)u(k)$$

$$= C(k)\sum_{i=k_o}^{k-1}\Phi(k, i+1)B(i)u(i) + D(k)u(k) \quad (\text{if } x_o = 0)$$

$$= \sum_{i=k_o}^{k}\left[C(k)\Phi(k, i+1)B(i) + \delta(k-i)D(i)\right]u(i) = \sum_{i=k_o}^{k}H(k, i)u(i)$$

where $H(k,i) = 0 \ \forall k < i$, and $H(k,i) := C(k)\Phi(k,i+1)B(i) + D(i)\delta(k-i)$ is impulse response matrix with unit-impulse $\delta(k-i)$ at i=k.

Dongjun Le

MIN ENGINEERI

DT-LTV System Transition Matrix

• DT LTV system:

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad y(k) = C(k)x(k) + D(k)u(k)$$

• LTV-DT system state response:

$$x(k) = \Phi(k, k_o) x(k_o) + \sum_{i=k_o}^{k-1} \Phi(k, i+1) B(i) u(i), \quad \Phi(k, k_o) := \prod_{i=k_o}^{k-1} A(i)$$

• DT-LTV state-transition matrix:

$$\Phi(k, k_o) := \prod_{i=k_o}^{k-1} A(i) = A(k-1)A(k-2)...A(k_o+1)A(k_o)$$

 $-\Phi(k_1,k_o)$ exists and is unique $\forall k_1 \geq k_o$.

$$-\Phi(k+1,k_o) = A(k)\Phi(k,k_o), \Phi(k_1,k-1) = \Phi(k_1,k)A(k-1).$$

– If
$$k_1 < k_o$$
, $\Phi(k_1, k_o)$ exists & unique iff $A(k)$ invertible $\forall k_1 \le k < k_o$.

 $-\Phi^{-1}(k_1,k_o)$ exsits and is given by

$$\Phi^{-1}(k_1, k_0) = A^{-1}(k_0)A^{-1}(k_0)..A^{-1}(k_1 - 1)$$

iff A(k) invertible $\forall k_0 \leq k \geq k_1 - 1$.

 $-\Phi(k_2,k_o)=\Phi(k_2,k_1)\Phi(k_1,k_o)$ only for $k_o\leq k_1\leq k_2;\ \forall k_o,k_1,k_2$ iff A(k) invertible.

DT-LTI System Response

• DT-LTI system:

$$x(k+1) = Ax(k) + Bu(k), \quad y(k) = Cx(k) + Du(k)$$

• DT-LTI system response: with $\Phi(k,0) := \prod_{i=0}^{k-1} A = A^k,$

$$x(k) = A^k x(0) + \sum_{i=k_0}^{k-1} A^{k-i-1} B(i) u(i)$$

• Jordan form:

$$A = T \left[\begin{array}{cccc} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{array} \right] T^{-1} \ \Rightarrow \ A^k = T \left[\begin{array}{cccc} \lambda_1^k & 0 & 0 & 0 \\ 0 & \lambda_2^k & k \lambda_2^{k-1} & 0 \\ 0 & 0 & \lambda_2^k & 0 \\ 0 & 0 & 0 & \lambda_4^k \end{array} \right] T^{-1}$$

stable if all $|\lambda_i| < 1$; marginally stable if all $|\lambda_i| < 1$ with some $|\lambda_i| = 1$, yet, not deficient; unstable if some $|\lambda_i| > 1$ or some deficient $|\lambda_i| = 1$.

<u>DT-LTI System Response and z-Transform</u> • DT-LTI system:

$$x(k+1) = Ax(k) + Bu(k), \quad y(k) = Cx(k) + Du(k)$$

- z-transform: $X(z) := \mathcal{Z}[x(k)] = \sum_{k=0}^{\infty} x(k)/z^k$.
- z-transfrom of x(k+1):

Ansform:
$$X(z):=\mathcal{Z}[x(k)]=\sum_{k=0}^\infty x(k)/z^k$$
. Inside the unit circle corresponds to the ordinary of the splane $z=z$ ansform of $z=z$ ansfo

• z-transform of DT-LTI system (w/ $(zI-A)^{-1}z=\mathcal{Z}[A^k], \frac{z}{z-a}=\mathcal{Z}[a^k]),$

$$X(z) = (zI - A)^{-1}zx(0) + (zI - A)^{-1}BU(z)$$

$$Y(z) = C(zI - A)^{-1}zx(0) + C(zI - A)^{-1}BU(z) + DU(z)$$

• Transfer matrix $H(z) := C(zI - A)^{-1}B + D$ (i.e., z-transform of impulse response): stable if all poles are within unit circle, unstable if some are outside unit circile, marginally stable if on the circle.

Stability and Norms

- IO-stability (or BIBO-stability): any bounded input produces bounded output \Rightarrow related to zero-state response and transfer function.
- Internal stability: state evolution is bounded for any initial conditions with zero-input ⇒ related to zero-input response.
- For LTI systems, internal stability implies IO-stability, but not vice versa (e.g., pz-cancelation: $\dot{x}_1 = x_2, \dot{x}_2 = 4x_1, \ y = x_2 2x_1 \Rightarrow \lambda(A) = \{2, -2\}, \ H(s) = 1/(s+2)$).
- For LTV systems, internal stability not necessarily implies IO-stability.
- Signal ∞ -norm of $u(t) \in \Re^n$: $||u(\cdot)||_{\infty} := \sup_t ||u(t)||_{\infty} = \sup_t (\max_i |u_i(t)|)$, where $||x(t)||_{\infty} := \max_i |x_i|$ is vector ∞ -norm.
- Matrix induced ∞ -norm of $A \in \Re^{n \times n}$:

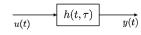
$$||A||_{i,\infty}:=\sup_xrac{||Ax||_\infty}{||x||_\infty}=\max_j\sum_i|A_{ji}|$$

i.e., $||Ax||_{\infty} \le \max_{j} \sum_{i} (|A_{ji}| \max_{k} |x_{k}|) =: ||A||_{i,\infty} ||x||_{\infty}.$

Dongjun Lee

ENGINEERI

IO-Stability



• **Def:** We say a system $H: u \mapsto y$ is IO-stable (or BIBO-stable) if $\exists M \ge 0$ s.t., for **any bounded** u(t),

$$||y(\cdot)||_{\infty} \leq M \cdot ||u(\cdot)||_{\infty}$$

• For LTV system: $\dot{x} = A(t)x + B(t)u, y = C(t)x + D(t)u$, zero-state response is given by:

$$y(t) = C(t) \int_{t_o}^t \Phi(t,\tau) B(\tau) u(\tau) d\tau + D(t) u(t) = \int_{t_o}^t h(t,\tau) u(\tau) d\tau$$

where $h(t,\tau) := C(t)\Phi(t,\tau)B(\tau) + \delta(t-\tau)\cdot D(t)$ is impulse response matrix.

• Th. 5: CT-LTV system is IO-stable iff

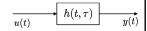
$$\sup_t \int_{t_o}^t ||h(t,\tau)||_{i,\infty} d\tau \le M, \quad \forall t \ge t_o$$

• For SISO LTI system: $||y(\cdot)||_{\infty} = \sup_t |\int_0^t h(t-\tau)u(\tau)d\tau| = \sup_t |\int_0^t h(\alpha)u(t-\alpha)d\alpha| \le u_{\max} \int_0^{\infty} |h(\alpha)|d\alpha \Rightarrow \text{i.e., BIBO stable if } \int_0^{\infty} |h(\alpha)|d\alpha \le M < \infty$ (i.e., impulse response h(t) is absolutely integrable).

Dongjun Lee

ENGINEERING

IO-Stability Proof



Th. 5: CT-LTV system is IO-stable iff

$$\sup_t \int_{t_o}^t ||h(t,\tau)||_{i,\infty} d\tau \le M, \quad \forall t \ge t_o$$

• Sufficiency (\Leftarrow): from $y(t) = \int_{t_o}^t h(t,\tau)u(\tau)d\tau$, for all $t \ge t_o$,

$$\begin{split} ||y(\cdot)||_{\infty} &= \sup_{t} ||\int_{t_o}^{t} h(t-\tau)u(\tau)d\tau||_{\infty} \leq \sup_{t} \int_{t_o}^{t} ||h(t-\tau)u(\tau)||_{\infty}d\tau \\ &\leq \sup_{t} \int_{t_o}^{t} ||h(t,\tau)||_{i,\infty} ||u(\tau)||_{\infty}d\tau \leq ||u(\cdot)||_{\infty} \sup_{t} \int_{t_o}^{t} ||h(t,\tau)||_{i,\infty}d\tau \\ &\stackrel{\text{definition of induced norm}}{\text{definition of induced norm}} \end{split}$$

• Necessity (⇒): Suppose not. Consider SISO LTI for simplicity. Then,

$$|y(t)| = |\int_0^t h(lpha) u(t-lpha) dlpha| o \infty$$

 $\text{if we choose bounded input } u(t) \text{ s.t., } u(t-\alpha) = \begin{cases} 1 & \text{if } h(\alpha) \geq 0 \\ -1 & \text{if } h(\alpha) < 0 \end{cases}.$

• Th. 5: CT-LTV system is IO-stable iff

$$\sup_{t} \int_{t}^{t} ||h(t,\tau)||_{i,\infty} d\tau \le M, \ \forall t \ge t_{o}$$

- **Th. 5-M1:** CT-LTI system is IO-stable (or BIBO-stable) iff every $h_{ii}(t)$ is absolutely integrable.
 - The above condition can be rewritten by

$$\int_0^\infty ||h(t)||_{i,\infty} dt = \int_0^\infty \max_j \sum_i |h_{ji}(t)| dt \le M$$

with the remaining arguments going similarly as before.

- Th. 5-M2: CT-LTI system with a proper rational transfer matrix H(s)is BIBO-stable iff every pole of every component $H_{ij}(s)$ has a negative real part.
 - For BIBO-stability, H(s) should be strictly stable (i.e., poles strictly

Poles of H(s) is a subset of eigenvalues of A.

IO-Stability and CT-LTI Response

• **Th. 5.2:** Suppose a SISO CT-LTI system with impulse response h(t) is BIBO-stable. Then,

$$y(t) \rightarrow aH(0)$$
 if $u(t) = a$; and $y(t) \rightarrow |H(jw_o)| \sin(w_o t + \angle H(jw_o))$ if $u(t) = \sin w_o t$

- If
$$u(t) = a$$
, with $H(s) = \int_0^\infty h(\tau)e^{-s\tau}d\tau$,

$$y(t) = \int_0^t h(\tau) u(t-\tau) d\tau = a \int_0^t h(\tau) d\tau \ \Rightarrow \ y(t) \to a \int_0^\infty h(\tau) d\tau = a H(0)$$

- From $H(jw_o) = \int_0^\infty h(\tau) e^{-jw_o\tau} d\tau = \int_0^\infty h(\tau) [\cos w_o\tau - j \sin w_o\tau] d\tau$, Re $[H(jw_o)] = \int_0^\infty h(\tau) \cos w_o\tau d\tau$ and Im $[H(jw_o)] = -\int_0^\infty h(\tau) \sin w_o\tau d\tau$. Also, if $u(t) = \sin w_o t$, output is given by $y(t) = \int_0^t h(\tau) \sin w_o t d\tau$. Thus, from absolute integrability of h(t), the integrands exist and

$$egin{aligned} y(t) & o \sin w_o t \int_0^\infty h(au) \cos w_o au d au - \cos w_o t \int_0^\infty h(au) \sin w_o au d au \ & = \sin w_o t \mathrm{Re}[H(jw_o)] + \cos w_o t \mathrm{Im}[H(jw_o)] = |H(jw_o)| \sin(w_o t + \angle H(jw_o)) \end{aligned}$$

onaiun Lee

IO-Stability of CT-LTV and DT-LTI Systems

• Th. 5-M3: CT-LTV system with $h(t,\tau) = C(t)\Phi(t,\tau)B(\tau) + \delta(t-\tau)D(t)$ is IO-stable (or BIBO-stable) iff $||D(\cdot)||_{\infty} \leq M_1$ and

$$\int_{t_o}^t ||C(t)\Phi(t,\tau)B(\tau)||_{i,\infty}d\tau \leq M_2, \quad \forall t \geq t_o$$

• Consider DT-LTV system, with its zero-state output response given by

$$y(k) = C(k) \sum_{i=k_o}^{k-1} \Phi(k, i+1)B(i)u(i) + D(k)u(k) = \sum_{i=k_o}^{k} h(k, i)u(i)$$

with impulse response $h(k,i)=C(k)\Phi(k,i+1)B(i)+\delta(k-i)D(i)$. BIBO-stability would then have something with absolute summability of h(k,i), i.e., $\sum_{i=0}^k ||h(k,i)||_{i,\infty} \leq M, \ \forall k \geq i$.

- Th. 5-MD1: DT-LTI system with impulse response matrix $h(k) \in \Re^{m \times p}$ is BIBO-stable iff $h_{ij}(k)$ is absolutely summable.
- Th. 5-MD2: DT-LTI system with proper rational transfer matrix H(z) is BIBO-stable iff every pole of every $H_{ij}(z)$ has a magnitude less than 1.

Dongjun Lee

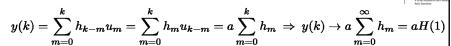
ENGINEERING

IO-Stability and DT-LTI Response

• Th. 5-D2: Suppose a SISO DT-LTI system with impulse response sequence h(k) is BIBO-stable. Then,

$$egin{aligned} y(k) &
ightarrow aH(1) & ext{if } u(k) = a ext{; and} \ y(k) &
ightarrow |H(e^{-jw_o})| \sin(w_o t + \angle H(e^{-jw_o})) & ext{if } u(k) = \sin w_o k \end{aligned}$$

- If
$$u(k) = a$$
, with $H(z) = \sum_{i=1}^{\infty} h(k)z^{-k}$,



- From
$$H(e^{-jw_o}) = \sum_{m=0}^{\infty} h_m e^{-jw_o m} = \sum_{m=0}^{\infty} h_m [\cos w_o m - j \sin w_o m],$$
 Re $[H(e^{-jw_o})] = \sum_{m=0}^{\infty} h_m \cos w_o m$ and Im $[H(e^{-jw_o})] = -\sum_{m=0}^{\infty} h_m \sin w_o m$ Also, if $u(k) = \sin w_o k$, output is given by $y(k) = \sum_{m=0}^{k} h_m \sin w_o (k - m) = \sin w_o k \sum_{m=0}^{k} h_m \cos w_o m - \cos w_o k \sum_{m=0}^{k} h_m \sin w_o m.$ Thus, from absolute summability of $h(k)$, summations exist $(w/k \to \infty)$ and

$$y(k) \to \sin w_o k \operatorname{Re}[H(e^{-jw_o})] + \cos w_o k \operatorname{Im}[H(e^{-jw_o})]$$
$$= |H(e^{-jw_o})| \sin(w_o k + \angle H(e^{-jw_o}))$$

Donaiun Le

ENGINEERI

Internal Stability

• Recall the zero-input responses of FD linear systems:

$$x(t) = \Phi(t, t_o)x(t_o), \quad x(k) = \Phi(k, k_o)x(k_o)$$

where $\Phi(t,t_o)=e^{A(t-t_o)}$ and $\Phi(k,k_o)=\Pi_{i=k_o}^{k-1}A$ for CT/DT LTI systems.

- Def. 5.1: Linear systems is Lyapnunov stable (or marginally stable) if every bounded IC x_o produces bounded zero-input response x; asymptotically stable if, for all bounded ICs x_o , MS and $x \to 0$.
 - For MS $\Rightarrow \Phi$ should be bounded: For AS $\Rightarrow \Phi$ should converge to zero.
- Th. 5-4: CT-LTI system $\dot{x} = Ax$ is MS iff all $\lambda_i(A)$ are in LHP with some jw-axis being non-deficient; AS iff all $\lambda_i(A)$ are strictly within LHP.
- Th. 5-D4: DT-LTI system $x_{k+1} = Ax_k$ is MS iff all $\lambda_i(A)$ are in UC with some on UC being non-deficient; AS iff all $\lambda_i(A)$ strictly within UC.

$$e^{At} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 & 0 \\ 0 & e^{\lambda_2 t} & t e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{\lambda_2 t} & 0 \\ 0 & 0 & 0 & e^{\lambda_4 t} \end{bmatrix} T^{-1}, \ A^k = T \begin{bmatrix} \lambda_1^k & 0 & 0 & 0 \\ 0 & \lambda_2^k & k \lambda_2^{k-1} & 0 \\ 0 & 0 & \lambda_2^k & 0 \\ 0 & 0 & 0 & \lambda_4^k \end{bmatrix} T^{-1}$$

• Not applicable to LTV systems...

Lyapunov Stability - Definition

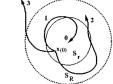
Def. 2.1: Consider an autonomous system

$$\dot{x} = f(x), \quad f(0) = 0$$

 $f: \mathcal{D} \to \Re^n$ locally Lipschitz on \mathcal{D} and $0 \in \mathcal{D}$. Then, equilibrium x = 0 is

• Lyapunov stable, if, $\forall \epsilon > 0, \ \exists \delta(\epsilon) > 0 \text{ s.t.},$

$$||x(0)||<\delta \Longrightarrow ||x(t)||<\epsilon, \ \forall t\geq 0$$



- unstable, if it is not stable
- asymptotically stable, if it is stable and we can find $\delta' > 0$ s.t.

$$||x(0)|| < \delta' \Longrightarrow ||x(t)|| \to 0$$

• exponentially stable if $\exists \alpha, \gamma, \delta' > 0$ s.t.,

$$||x(0)|| < \delta' \Longrightarrow ||x(t)|| \le \alpha ||x(0)||e^{-\gamma t}$$

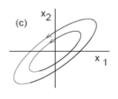
• globally asymptotically stable, if asymptotically stable for any $\forall x(0) \in \Re^n$.

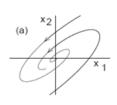
Dongjun L

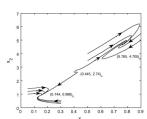
Lyapunov Stability - Examples

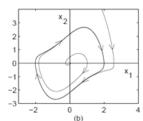
Lyapunov stable, if, for any $\epsilon > 0$, there exits $\delta(\epsilon) > 0$ s.t.,

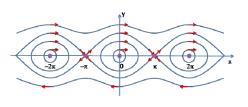
$$||x(0)|| < \delta \Longrightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0$$











satisfy defintion: 1) for some ϵ or 2) $\forall \delta$, $\exists \epsilon$

Dongjun Lee

CT-LTI Lyapunov Theorem

Th. 5.5: $A \in \Re^{n \times n}$ is Hurwitz (AS) iff, for any $Q \succ 0$, \exists a unique $P \succ 0$ s.t.

$$PA + A^TP = -Q$$
 (Lyapunov equation)

- Lyapunov analysis: for $\dot{x}=Ax$, define $V=\frac{1}{2}x^TPx\Rightarrow\dot{V}=-x^TQx<0$ unless $V=0\Rightarrow V(t)\to 0$ (AS, in fact, ES).
- Can be used to find Lyapunov function: given $A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$, choose any $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \succ 0$. Then, solve for $P = \begin{bmatrix} 1.5 & -0.5 \\ -0.5 & 1.0 \end{bmatrix} \succ 0$.
- (Sufficiency \Rightarrow): Given $Q \succ 0$, define $P := \int_0^\infty e^{A^T t} Q e^{At} dt \succ 0$, which exists (from AS) and PD. Then,

$$PA + A^T P = \int_0^\infty e^{A^T t} Q e^{At} A dt + \int_0^\infty A^T e^{A^T t} Q e^{At} dt$$

$$= \int_0^\infty \frac{d}{dt} \left(e^{A^T t} Q e^{At} \right) dt = \left. e^{A^T t} Q e^{At} \right|_0^\infty = -Q$$

(Necessity \Leftarrow): Define λ, v s.t., $Av = \lambda v \Rightarrow v^*A^* = v^*\bar{A}^T = v^*A^T = \bar{\lambda}v^*$. Further, $-v^*Qv = v^*(PA + A^TP)v = (\lambda + \bar{\lambda})v^*Pv$ where $v^*Qv > 0$ and $v^*Pv > 0 \Rightarrow \lambda(A)$ in LHP (i.e., A is Hurwitz).

CT-LTV Lyapunov Theorem

Consider linear time-varying system

$$\dot{x} = A(t)x, \quad x(t_0)$$

with x=0 equilibrium. Then, $x(t)=\Phi(t,t_o)x(t_o)$, where $\Phi(t,t_o)$ is the state transition matrix (e.g., $\Phi(t, t_o) = e^{A(t-t_o)}$ for LTI system).

Ex) Consider
$$\dot{x} = A(t)x$$
 with $A(t) = \begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t\cos t \\ -1 - 1.5\sin t\cos t & -1 + 1.5\sin^2 t \end{bmatrix}$.
Then, $\operatorname{eig}(A(t)) = -0.25 \pm 0.25\sqrt{7}j$. Yet, $\Phi(t,0) = \begin{bmatrix} e^{0.5t}\cos t & e^{-t}\sin t \\ -e^{0.5t}\sin t & e^{-t}\cos t \end{bmatrix}$

Th. 5.5V: Suppose \exists smooth bounded $P(t) \succ 0$ s.t.

$$\dot{P}(t) + P(t)A(t) + A^{T}(t)P(t) = -Q(t)$$

with $Q(t) \succ 0$. Then, x = 0 is AS. Also, if A(t) is continuous and bounded and $x \to 0$ (i.e., AS), for any $Q(t) \succ 0$, $\exists P(t) \succ 0$ satisfying Lyapunov equation.

- (\Rightarrow) Lyapunov analysis with $V = \frac{1}{2}x^T P(t)x \rightarrow \dot{V} = -x^T Q(t)x < 0$ unless
- $V(t) = 0 \to x \to 0 \text{ (i.e., AS, in fact, ES)}.$ (\(\Lefta\) Choose $V(x,t) = x^T P(t)x$. Also, given Q(t), $P(t) = \int_t^\infty \Phi^T(\tau,t)Q(\tau)\Phi(\tau,t)d\tau$

CT-LTV Lyapunov Analysis

Th. 8.2 (R): Consider CT-LTV system $\dot{x} = A(t)x$. Denote, at each t, the largest and smallest eigenvalues of $A(t) + A^{T}(t)$ by $\lambda_{\max}(t)$ and $\lambda_{\min(t)}$. Then,

$$||x_o||e^{\frac{1}{2}\int_{t_o}^t \lambda_{\min}(\sigma)d\sigma} \leq ||x(t)|| \leq ||x_o||e^{\frac{1}{2}\int_{t_o}^t \lambda_{\max}(\sigma)d\sigma}, \quad \forall t \geq t_o$$

where $||\cdot||$ is the vetor (i.e., Euclidean) 2-norm.

• Define $V(t) = ||x(t)||^2$. Then,

$$|\lambda_{\min}(t)||x(t)||^2 \le \frac{dV}{dt} = x^T(t)(A^T(t) + A(t))x(t) \le \lambda_{\max}(t)||x(t)||^2$$

i.e.,
$$V(t_o)e^{\int_{t_o}^t \lambda_{\min}(\sigma)d\sigma} \leq V(t) \leq V(t_o)e^{\int_{t_o}^t \lambda_{\max}(\sigma)d\sigma}$$
, for all $t \geq t_o$.

• Cor. 8.2-1: CT-LTV system is stable if

$$\int_{\tau}^{t} \lambda_{\max}(\sigma) d\sigma \leq \gamma, \quad \forall t, \tau, \text{ s.t., } t \geq \tau$$

• Cor. 8.2-2: CT-LTV system is ES if

$$\int_{\tau}^{t} \lambda_{\max}(\sigma) d\sigma \leq -\lambda(t-\tau) + \gamma, \quad \forall t, \tau, \text{ s.t., } t \geq \tau$$

Dongjun Lee

MIX ENGINEERI

CT-LTV Stability w/ Perturbation -I

Th. 8.6 (R): Suppose CT-LTV system $\dot{x} = A(t)x$ is ES with continuous/bounded A(t). Then, \exists a small enough $\beta > 0$ s.t.,

$$\dot{z} = [A(t) + F(t)]z$$

is also ES if $||F(t)|| \le \beta$, where $||\cdot||$ is matrix 2-norm (other norms also work).

• From Lyapunov theorem, $\exists P(t), Q(t) \succ 0$ s.t.,

$$\dot{P}(t) + A(t)^T P(t) + A(t) P(t) = -Q(t)$$

where $P(t) := \int_t^\infty \Phi^T(\sigma, t) Q(t) \Phi(t, \sigma) d\sigma$. Then,

$$[A(t)+F(t)]^T P(t)+P(t)[A(t)+F(t)]+\dot{P}(t)=F^T(t)P(t)+P(t)F(t)-Q(t)$$

where LHS is PD if ||F(t)|| small enough, since P(t) bounded (from ES).

- ES is robust against bounded perturbation.
- This robustness also true for CT-LTI systems.
- If CT-LTV system is AS, stability is in general fragile.

Dongjun Lee

ENGINEERING
COLLIGI OF INSURIESING
STORY AND ONLY ENGINEERING

CT-LTV Stability w/ Perturbation - II

Th. 8.5 (R): Suppose CT-LTV system $\dot{x} = A(t)x$ is stable. Then, \exists a small enough $\beta > 0$ s.t.,

$$\dot{z} = [A(t) + F(t)]z$$

is also stable if $\int_{\tau}^{\infty} ||F(\sigma)|| d\sigma \leq \beta, \forall \tau \geq 0.$

- Using convolution: $z(t) = \Phi(t, t_o)z_o + \int_{t_o}^t \Phi(t, \sigma)F(\sigma)z(\sigma)d\sigma$, where, from stability, $||\Phi(t, \sigma)|| \leq \gamma \ \forall t, \sigma, \ t \geq \sigma$.
- Taking the 2-norm: $||z(t)|| \leq \gamma ||z_o|| + \int_{t_o}^t \gamma ||F(\sigma)|| ||z(\sigma)|| d\sigma$, i.e., an implicit inequality w.r.t., ||z(t)||.
- From Gronwall-Bellman inequality: $||z(t)|| \le \gamma ||z_o|| e^{\int_{t_o}^t \gamma |F(\sigma)|| d\sigma} \le \gamma ||z_o|| e^{\gamma \beta}$, $\forall t \ge t_o$, i.e., stable.
- Lem. 3.2 (Gronwall-Bellman): For continuous $\phi(t), v(t)$ with $v(t) \ge 0$, $\forall t \ge t_o$, $\phi(t) \le \psi + \int_{-t}^{t} v(\sigma)\phi(\sigma) \Rightarrow \phi(t) \le \psi e^{\int_{t_o}^{t} v(\sigma)d\sigma}$
 - $\begin{array}{l} -r(t) \,=\, \psi \,+\, \int_{t_o}^t v(\sigma) d\sigma \,\Rightarrow\, \dot{r}(t) \,=\, v(t) \phi(t) \,\leq\, v(t) r(t) \,\Rightarrow\, \text{multiplying} \\ e^{-\int_{t_o}^t v(\sigma) d\sigma} \,\Rightarrow\, \frac{d}{dt} \left[r(t) e^{-\int_{t_o}^t v(\sigma) d\sigma} \right] \,\leq\, 0 \,\Rightarrow\, \phi(t) \,\leq\, r(t) \,\leq\, \psi e^{\int_{t_o}^t v(\sigma) d\sigma}. \end{array}$
- However small persistent perturbation can destabilize CT-LTV systems.

DT-LTI Lyapunov Theorem

Th. 5-D5: $A \in \Re^{n \times n}$ has $\rho(A) < 1$ (i.e., DT-LTI AS) iff, for <u>any</u> $Q \succ 0$, \exists a unique $P \succ 0$ s.t.

$$A^T P A - P = -Q$$
 (Lyapunov equation)

- Lyapunov analysis: for $x_{k+1}=Ax_k$, define $V_k=\frac{1}{2}x_k^TPx\Rightarrow V_{k+1}-V_k=\frac{1}{2}x_k^T(A^TPA-P)x_k=-\frac{1}{2}x_k^TQx_k<0$ unless $V_k=0\Rightarrow V_k\to 0$ (AS).
- (Sufficiency \Rightarrow): Given $Q \succ 0$, define $P := \sum_{m=0}^{\infty} (A^T)^m Q A^m \succ 0$, which exists (from AS) and PD. Then,

$$A^{T}PA - P = \sum_{m=0}^{\infty} A^{T} (A^{T})^{m} Q A^{m} A - \sum_{m=0}^{\infty} (A^{T})^{m} Q A^{m}$$
$$= \sum_{m=1}^{\infty} (A^{T})^{m} Q A^{m} - \sum_{m=0}^{\infty} (A^{T})^{m} Q A^{m} = -Q$$

• (Necessity \Leftarrow): Define λ, v s.t., $Av = \lambda v \Rightarrow v^*A^* = v^*\bar{A}^T = v^*A^T = \bar{\lambda}v^*$. Further,

$$-v^*Qv = v^*(A^T P A - P)v = (|\lambda|^2 - 1)v^* P v$$

where $v^*Qv > 0$, $v^*Pv > 0 \Rightarrow |\lambda(A)|^2 < 1$ (i.e., $\rho(A) < 1 \Rightarrow$ DT-LTI AS).

Dongjun Le

IO-Stability and Internal Stability

• LTI system stability conditions:

$$\int_0^\infty ||Ce^{At}B + \delta(t)D||_{i,\infty}dt \le M \quad \text{(BIBO)} \quad \text{and} \quad \lambda_i(A) \in \text{LHP} \quad \text{(AS)}$$

- AS implies BIBO, but not vice versa (e.g., pz-cancelation).
- BIBO excludes marginal stability.
- LTV system stability conditions:

$$\begin{split} &\int_0^\infty ||C(t)\Phi(t,\tau)B(\tau)+\delta(t-\tau)D(t)||_{i,\infty}dt \leq M \quad \text{(BIBO)} \\ &||\Phi(t,\tau)||_{i,\infty} \to 0 \quad \text{as } t \to \infty \quad \text{(AS)} \end{split}$$

- AS may not even imply BIBO (since only AS, not ES as for LTI).
- AS implies BIBO, if ES and C(t), B(t) bounded.

Dongjun Le

ENGINEERI

