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Basic Concepts

e System: a collection of elements, that interacts with its environment via
a set of input » € R™ and output y € R?.

— Causal system (current output depends only on past/current inputs,
not future (e.g., y = %u) vs acausal system (e.g., y = su).

— Static (memoryless) system y(t) = h(u(t)) vs dynamic {with mem-
ory) system y(t) = h(t, 2(t,), u([to; t])-

e State: z(t1) € R™ of a causal system at £; is the informaiton needed,
together with the input u : [t1,¢2], to uniquely define the output y at ¢s.

— State z(¢1) at £; contains all the information related to the past input
history of u : [—00,11] to define y(t), YVt > ;1.

— State is not unique (e.g., £1 + Z2, 21 — T2, 3).

— Dimension of system = dimension of minimal state vector € R™.

o Finite-dimensional system (only finite SV needed) vs infinite-dimensional
system (infinite SV necessary, e.g., y(t) = u(t —7)). . .
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Dynamical Systems
e State-space system representation:
(Continuous-time): #(t) = f(z(t),u(t),t), y(t) = h(z(t),u(t),t)
(Discrete-time): z(k+1) = f(z(k),u(k), k), y(k) = h{z(k),u(k), k)

where t € R is time, k € Z is discrete-time index, z € R™ is state vector,
u € RP is input vector, and y € R™ output vector, with f,h being state
dynamics map and output map.

e State transition map: given z, = z(t,) and u([t,, t1]), z(t1) is uniquely
determined, i.e.,

z(t1) = s(t1, 10, To, u([to; t1])

- Semi-group property: Via > t1 > t,, £, € R™ and u([t,; t2]),

S(tz,to, Lo, ’U.([to;tz]) = 5(t21t11 s(t17t07$07 u’(tovtl))7u([t1;t2])
= 8(t2, t1, 71, u([t1; £2])

- Ex) solution by integration: z(t1) = z(t,) + /| tal fz(1),u(r), 7)dr.
- Output map: y(t) = h(s(¢, to, To, u([to; t])), u(t), t) = h’(tr to, To, u([to; t]))-

y 6R
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Linear Dynamical System
e Linear system property: given (z;(to), u:([to; t])) = (zi(t), % (), t > to,

— a(z;(to), wi([to; 1])) — afz;(t), yi(t)) for constant o (homogeneity).
— (@1(to) +z2(to), u1 +uz) = (z1(t) + 22(2), 31 (2) +92(t)) (additivity).
— Superposition property: for any real constants «, 3,

(az1(to) + Bza(to), ur + Puz) — (a1 + B2, a1 + By2)
— Note the scaling applies both to IC and input.

e For linear dynamics £ = f(z,u,t) (i.e., f(ar, + Bz2, cu; + Bug,t) =
of(z1,u1,t) + Bf(z1,u1,t)), we have linear state-transition map:

s(t, t,, 0x] + B3, aus + fug) = as(t, t,, x7,u1) + Bs(t, to, 25, us)

Further, with linear output map (i.e., h{azi + Bz2,0u1 + Pus,t) =
ah(z1,u1,t) + Bh(za, ua, 1)),

h(s(t7 to’ az‘lz + ﬂzg, au) + :3“2)7 t) = y(tv to; ami’ + ,31‘8, auy + ﬂu2)
= ay(t, to, %7, ul) + ﬂy(t, to, T3, u2)
e LTV or LTI system: & = A(t)z + B(t)u, y = C(t)z + D(t)u.
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LTV and LTI Systems

e State-space representation of linear systems:

&= A@t)z(t) + Bl)u(t), y(t) = C)z(t) + D(t)u(t)

where A(t) € R**®, B(t) € R"*P, C(t) € R™*", D(t) € R™*P are state,
input, output and direct feedthrough matrices. If these are constants =
linear time-invariant {LTI); else = linear time-varying (LTV).

e Jacobian linearization of & = f(z,u,t), y = h(z,u,t) around nominal
trajectory = f(Z,4,t), ¥ = h(Z, 4, t) or equilibrium (with z = 0).
— Define deviations & :=z — Z, 4 :=u — 14, § :=y — §. Then,
i+ 4L i
&(t),a(t) *12(t),a(t)
§=y—G=h@E@+5a+%1t) - hE@5t) = Bl H .0+ mlwae b

F=&—3%=f(@+%a+0t) — f@at)=3L

— Ex) £1 = z9,%2 = —% sinzg; £ =tsinx +u? sint, y = costzr + e tu.

o Realization of Y(s) = H(s)U(s). Then, H(s) = Hyp(s) + H(co) with

D = H(00). Further, Hy,(s) = ﬁ[le"_l... + N,]. Then, can obtain
A,B,C,D via Y(s) = [N1s" ! + ... + N,,] X (s) and X(s) = ﬁU(s).
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Linear System Response
e Consider linear system & = A(¢)z + B(t)u with superposition property:

S(t, to, am‘l) + .6-7'"2)1 au; + ,BUZ) = aﬁ(ty to, mtl’v ’11.1) + ﬂs(tv to, IL‘& '"'2)

e Then, we can write the state response z(t) as composed of:

z(t) = s(t,to, To, u) = 8(¢, Lo, Tp + 0,0 + u) = s(, 1, To, 0) + s(t, 6,0, u)

— zero-input response ,—g g, () = s(t,%,,Z,,0) (i.e., response z(t)
only due to IC z, with no input) and

— zero-state response z, 5, —o = 3(¢,t,,0,u) (i.e., response only due
to input % with zero IC).

— Recall SISO TF case: Y(s) = H(s)U(s) + H(s)[IC].

e Fundamental matrix: A matrix X (t) € R**" is a fundamental matrix
of & = A(t)z, if ‘

X() = ABX() |

with non-singular X (t,) for some %,. £ #
— X(t) is non-singular Vt: if singular at ¢; > t, — 3 non-zero v s.t.,
z(t1) = X(t1)v = 0. Then, z(¢) = X (t)v is a solution, thus, w/ ¢ —
to, Z(to) = X (to)v = 0 — contradiction (no information collapse):@?
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Transition Matrix
e Consider the LTV system

& = A(t)z + B(t)u

with zero-input response $(t,%,,%,,0). Then, since linear (e.g., using
(X(t), X (£,))), it can be represented by transition matrix ®(¢,%,) €

§Rnx'n.

s(t,t0,Z0,0) = B(t,15)z0
®(t,t,) = X(t) X 1(t,) with ®(t,,t,) = I.
- 2&(t,t,) = A(t)®(t, t,) (ie., @ is a fundamental matrix).

— B(t,t,) = (¢, t1)®(t1, t0)-

- ®71(t,t,) = D(to, t).

— ®(t,1,) is non-singular V¢ > ¢, (i.e., no information collapse).
— 2-B(t,to) = —B(t, ) A(to)-

o LTI system: 2&(t,t,) = AR(t,1,), B(to,to) = I — B(t,t,) = eAl—t),

o LTV system: 2&(t,t,) = AE)B(t, t,) — B(t, t,) # eleo AT,
with e4f = T + At + A2 4

8%
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Formulas for Transition Matrix
e Consider transition matrix ®(¢,t,) of LTV system & = A(¢t)z+ B(t)u with

7]
aq)(tato) = A2t L), P(torto) =1

e Picard iteration:

— Implicit integration equation: ®(t,%,) =1+ ftto A(T)®(7,t,)dT.

— k-th iteration: ®ri1(t,t,) = I—l—_];t A(T)Pr(7,to)dT w/ @1(t,1,) = I.

— Peano-Baker formula:

1 t T
®(t,t,) = I+/ A(my)dm +/ A(m) [/ A(‘rz)de] dr + ...
to to to

e For the LTI system with & = Az + Bu,

— Peano-Baker formula:

Bt t,) = [+ Alste) 4 AWt | Altto)

— Laplace transform: s®(s) — I = A®(s) — ®(s) = (sI — A)~ L.

-1 0 T 0
_A=[ ; 2]_>(31_A)—1=[ g ]—><I>(t,0)
oDongjun Lee — (s+D)(s+2) s+2 i3]




Jordan Form and Multiplicity

e Consider LTI system Z = Az + Bu with transition matrix

+ ...

343
1

®(t,0) = et = [ 4 4 4 A% | A2

e Recall the eigen-problem of A, ie., Av; = \;v;, where \; € C and v; € C™
are eigenvalue and eigenvector. Then, for each A,

algebraic multiplicity of A; > geometric multiplicity of A;

i.e., order of (s — A;) in CE > number of independent eigenvectors.

¢ Jordan form: for A € %4 with deficient A,
M 0 0 0 eMt 0 0
_ 0 )\2 1 0 —1 At _ 0 e)‘“t te)‘“t 0 —1
A=T| o 0 x o |T =e"=T| ¢ ¢ = o |T
0 0 0 Mg 0 0 0 ert

from AT = AT, where T € R4*4 is collection of (generalized) eigenvectors.

— Stable if all A; € LHP; marginally stable if all A; € LHP except some
non-deficient A; on jw-axis; unstable if some \; € RHP or deficient A;
on jw-axis (if deficiency = 2 — growth w/ ¢%: [0,0;0,0],[0,1;0,0]).
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Similarity Transformation
e Consider the LTI system:

t=Azx+ Bu, y=Cz+ Du

e Define coordinate transformation via z = Tz with non-singular matrix 7.
We may then think of Z; as the component of z along T;.

e Similarity transformation: with = T'Z, can transform the dynamics
s.t.,
z = AZ(t) + Bu(t), y=Cz(t)+ Du
where A =T AT, B=T71B, C = CT. This similarity transformation
is equivalent with:
— Same eigenvalues: CE(A) = det[A\—A] = det[T""] det[\]—A] det[T] =
det[A] — A] = CE(A)
— Same transfer function: H(s) = C(sI — A)"'B+ D = CT(sI —
T-1AT)"'T~'B + D = C(SI — A)~'B + D = H(s).
— Other properties (e.g., controllability, observability).

— If all eigenvalues are distinct, we may then achieve modal decom-
position: with z = Tz, T collection of eigenvectors,

% = Mizi + Bju, with mode T; € ®™ and modal freq. \;

R
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Zero-State Response and Convolution
e Consider LTV system:

& =A({)z + B(t)u, y=C{t)z+ D(t)u

@™
u(O)T u|t l

SN

with state response given by zero-input and zero-state responses:

z(t) = (¢, 10)x(ts) + s(t, 1o, 0, u([ts; t]))

e To compute the zero-state response, using the unit impulse da(t — ix),

write

w(t) m Y ute)da(t — tx)A
k —\X

e Then, from the linearity of state-transition map s, | : v

5(tto, 0,u) = ) 8(t, b0, 0, u(te)da(t — tx))A AR
k

= Zé(t,tk)B(tk)u(tk)A - /t ®(t, 7)B(T)u(r)dr (as A — 0)
k to

since, with zero-state condition (i.e., z(tx) = 0), z(tk+1) = ftiHl [A®)z )+
B(t)u(tg)oa(t — tx)]dt = B(tg)u(ty), which will propagate to ¢ via state
transition matrix ®(¢, tg41)-
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Zero-State Response: Proof
e Consider LTV system:

&= A(t)r+ B(t)u, y=C()z+ D(t)u

and denote by z(t) as the zero-state response under u(t) with z(t,) = 0.
We want to show this z(t) = s(t,t,,0,u) is the same as

2(t) = / (¢, 7)B(r)u(r)dr

to

o Note first that 2(t,) = 0. Also, using ®(t,7) = I + [ A(0)®(0,7)do,
o(t) = /t [I + / A(0)®(o, T)da] B(r)u(r)dr

— [ B(yum)dr + /t A(0)®(o, 7)do B(r)u(r)dr

to o VT

= | B(t)u(r)dr + /t A(o) /t Y ®(o, 7)B(T)u(r)drdo

to .

_ /:B(T)U(T)dﬂr /tt A(0)2(0)do

implying = A(#)2(£) + Bt)u(t) with 2(ts) = 0 = 2(t) = z(t).
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Output Response
e Consider LTV system:

=A@z + B{t)u, y=C@{)z+ D(t)u

with total state-response given by:
t
z(t) = s(t, to, To,u) = B(t, o)z, + / ®(t, 7)B(r)u(r)dr
to

e QOutput response is then given by:

y(t) = C)2(t,to)z0o + C(t)/t ®(t, 7)B(1)u(r)dr + D(t)u(t)

which is linear (i.e., a(z1 +u;1) + B(z2 +u2) = ay1 + Byz), and consists of
free-response (zero-input output) and force-response (zero-state output).

e LTI system: with ®(¢,t,) = eA¢~%), and t, = 0 and z(0) = =,,
¢
y(t) = Ce?z, +C / eAt=7) Bu(r)dr + Du(t)
0
Y (s) = C(sI — A)~'z, + [C(sI — A)"'B + D|U(s)

where H(s) = [C(sI — A)~'B + D] is the transfer matrix.

8%
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Impulse Response and Transfer Matrix

e Consider LTV system with its output response:

¢ =A({t)z + B(t)u, y=C(t)z+ D(t)u

t
y(t) = C()®(t,t0)x, + C(2L) / ®(t, 7)B(T)u(r)dr + D(t)u(t)
to
e Impulse response matrix: with zero initial state and unit-impulse input
through the j-th input channel u;(t) = [0;...; 8(t — t'); 0;...0],
y;(t) = [C()2(t,t)B(t') + D(t)o(t —t')]; € R™, t >V

i.e., y;(¢) is a m-dimensional column vector. By collecting this, we can
construct m X p impulse response matrix:

| h(t,¥) = C()®(t,t)B([) +6(t— ') - D(t) |

whose j-th column is output from j-th channel unit-impulse input.

o LTI system: with ¢’ = 0, Aimpuise(t) = Ce !B +§(t) - D. Taking Laplace
TF,
Himpuise(s) = C(sI — A)"'B+ D

which is transfer matrix computed before (or directly from & = Az +
Bu,y = Cz + Du) = transfer matrix is Laplace TF of IR-matrix.
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DT-LTV System and Exact Discretization

e Consider LTV discrete-time system:

z(k+1) = A(k)z(k) + B(k)u(k), y(k)= C(k)z(k)+ D(k)u(k)

where k € Z is the time-index, z(k) € R", u(k) € R?, y(k) € R™,
A(k) € ®**™ B(k) € " x p, C(k) € R™*" and D(k) € R™>P.

e Simple discretization: with £(¢) = (z((k + 1)T) — z(kT))/T,
z(k+1) = (1 + TA)z(k)z(k) + TB(k)u(k), y(k) = Cz(k)+ Du(k)
e Exact discretization w/ piecewise-continuous input u(k):
— Response of CT-LTI system: z(k) = e4*Tz(0)+ fOkT eA*T=7) Bu(r)dr.
i !

(k+1)T
z(k+1) = eAEDTL(0) + / eAEUT—7) By (r)dr A -
0 TN

(k+1)T T
= eATz(k) + / eAE+DT=7) By(r)dr = eATx(k) + / e dr Bu(k)
kT 0

— z(k+1) = Agz(k) + Bau(k), y(k) = Cz(k) + Du(k), with Ag = 4T,
By = fOT eA"drB. Also, By = A~}(Aq — I)B if A is nonsingular.
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DT-LTV System State Response

o LTV discrete-time system:
z(k+1) = A(k)z(k) + B(k)u(k), y(k) = C(k)z(k)+ D(k)u(k)

e The system is still linear with
m(kl) = s(klr ko, To, u([ko; kl_]-]) = S(kl, ko, To, 0)+s(k17 ko, 0, u([ko : kl_]-]))

e State-propagation of LTV-DT system: u(®
u(0) T |

g = Ag—1Zp—1 + Br_1up—1

= Ap_ 1A o2+ Ax_1Bg_oup_2 + By _up_1 —|—|—é—>

k-1
= [0 AG)] =(ko) + Y [TE2),, AG)] B(i)u(i)
i=ko
k—1
= &k, ko) (ko) + Y ®(k, i+ 1)B(i)u(3)

i=ko

consisting of zero-input response w/ state transition matrix ®(k,k,) =
A(k—1)A(k—2)...A(ko) € R™ ™ and zero-state respons (i.e., convolution):
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DT-LTV System Response

e LTV discrete-time system:

z(k + 1) = A(k)z(k) + B(k)u(k), y(k) = C(k)z(k) + D(k)ulk)

o LTV-DT system state response:

k-1
(k) = B(k, ko)a(ko) + Y ®(k,i +1)B(@)u(i), ®(k, ko) =T, A(d)
e LTV-DT system output ;::;)onse:
k—1
y(k) = C(k)®(k, ko), + C(k) Y ®(k, i+ 1)B(i)u(i) + D(k)u(k)
i=ko
k—1
=C(k) ) ®(k,i +1)B()u(i) + D(k)u(k) (if z, =0)
i=ko
k k
=Y [C(k)®(k,i+1)B() + 5(k — ) D(i) u(@) = > H(k,iyu(i)
1=k, i=k,

where H(k,i) = 0Vk < i, and H(k,1) := C(k)®(k,i+1)B(i)+D(3)6(k—1)
is impulse response matrix with unit-impulse §(k — 7) at i = k.
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DT-LTV System Transition Matrix
e DT LTV system:

z(k + 1) = A(k)z(k) + B(k)u(k), y(k) = C(k)z(k)+ D(k)u(k)

e LTV-DT system state response:

k-1
(k) = Bk, ko)z(ko) + Y _ ®(k,i+ 1)B@)u(i), B(k,k,) =I5 A(i)
i=ko

e DT-LTV state-transition matrix:

B(k, ko) :=II}=0 A(i) = Ak — 1)A(k — 2)...A(Ko + 1) A(ko)

— ®(k1,k,) exists and is unique Vk; > k.
— Bk + 1, k) = A(k)®(k, ko), B(ky, k — 1) = ®(k1, k) Ak — 1).
— If k1 < ko, ®(k1, k,) exists & unique iff A(k) invertible Vk; < k < k,.
— & 1(ky, k,) exsits and is given by
O ky, ko) = A7 (k) A (ko). A" (ky — 1)

iff A(k) invertible Vk, <k > k; — 1.

- @(kQ,ko) = q)(kz,kl)q,(khko) only for ko S kl S kz; Vko,kl,kz iff
oDongjun Lee A(k) invertible. i)




DT-LTI System Response
e DT-LTI system:

z(k + 1) = Az(k) + Bu(k), y(k) = Cz(k)+ Du(k)

Z-Plane
Outside the

e DT-LTI system response: with ®(k,0) := II*_ 1 4 = A*,

k—1
z(k) = AFz(0) + Z A1 B(i)u(d)
i=k,
k—1 )
y(k) = CA*z(0) + Y CA* "~ Bu(i) + Du(k)
e Jordan form: =0
M 0 0 O Moo 0 0
_ 0 X 1 0 |, k_ 0 X kMY 0 |
A=T! g o xn o |T 24=T1 ¢ % N o]|T
0 0 0 X\ 0 o 0 X

stable if all |\;| < 1; marginally stable if all [A;| < 1 with some |X;| = 1,
yet, not deficient; unstable if some |X;| > 1 or some deficient |X\;| = 1.
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DT-LTI System Response and z-Transform
e DT-LTI system:

z(k+ 1) = Az(k) + Bu(k), y(k) = Cz(k)+ Du(k)

Z-Plane

o z-transform: X(z) := Z[z(k)] = Y pop z(k)/2*.

e z-transfrom of z(k + 1):

Zlz(k+1)] = ix(k + l)z_k = zi-’ﬂ(k + l)z—(k+1)

k=0 k=0
=2z |)_z(j)z7 +2(0) — 2(0) | = 2X(2) — 22(0)
=0

o z-transform of DT-LTI system (w/ (zI — A) ™'z = Z[A¥], ;% = Z[a¥]),

X(z) = (2I — A)'2z(0) + (21 — A) ' BU(2)
Y(z) = C(zI — A)'2z(0) + C(2I — A)"'BU(2) + DU(2)

e Transfer matrix H(z) := C(zI — A)™'B + D (i.e., z-transform of impulse
response): stable if all poles are within unit circle, unstable if some are
outside unit circile, marginally stable if on the circle. P
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Stability and Norms

e I0-stability (or BIBO-stability): any bounded input produces bounded
output = related to zero-state response and transfer function.

e Internal stability: state evolution is bounded for any initial conditions
with zero-input = related to zero-input response.

e For LTI systems, internal stability implies IO-stability, but not vice versa
(e.g., pz-cancelation: &1 = za, %2 = 421, y = T2 — 221 = A(4) = {2, -2},
H(s)=1/(s+2)).

e For LTV systems, internal stability not necessarily implies 10-stability.

e Signal co-norm of u(t) € R™: ||u(-)||co = supy |[u(t)||ec = sup, (max; |u;(t)|),
where ||2()||co := max; |z;| is vector co-norm.

e Matrix induced oo-norm of A € R7*":

A:
14l 0 = sup Ll = masc 37 |45
[

Le., ||Az]lo < max; 3 ; (|Ajzi| maxy [zx]) =: || Alli,col|2]]oo-

oDongjun Lee
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10-Stability pr RGN ey

o Def: We say a system H : u — y is IO-stable (or BIBO-stable) if 3 M > 0
s.t., for any bounded u(t),

(Moo < M - {[u(-)]|oo

For LTV system: £ = A(t)z + B(t)u,y = C(t)z + D(t)u, zero-state re-
sponse is given by:

y(t) = C(t)/; &(t, 7) B(r)u(r)dr + D(t)u(t) =/t h(t, T)u(r)dr

where h(t, 7) := C(t)®(t, 7) B(1)+3(t—7)-D(t) is impulse response matrix.

Th. 5: CT-LTV system is IO-stable iff

t
sup / I, T)licodr < M, ¥t >t,
t to

e For SISO LTI system: ||y(-)||oc = sup; | fot h(t—7)u(r)d7| = sup, | fot h{c)u(t—
a)da| < Umax fy |h(e)|da = i.e., BIBO stable if [ |h(a)|da <M < oo

(i-e., impulse response h(t) is absolutely integrable).

11



|0-Stability Proof

Th. 5: CT-LTV system is IO-stable iff

t
sup / IIh(t, Plicodr < M, Vit
t to

e Sufficiency (<): from y(t) = fti k(t, T)u(r)dr, for all t > i,
t t
I9C)loo = supll [ At = ryur)drlloo < sup [ 11t = ru(r) e
¢ ’ ¢
<oup [ It P lool s < s [ 10,7l s
to to
e Necessity (=>): Suppose not. Consider SISO LTT for simplicity. Then,

w(®)] = | /0 h(u(t — a)da] — 0o

1 i >
if we choose bounded input u(t) s.t., u(t — a) = { 1 1: Zga; ; g
-1 if h(a

©Dongjun Lee

10-Stability of CT-LTI System

e Th. 5: CT-LTV system is IO-stable iff

14
sup / [|h(t, T)||i,c0dT < M, Vt > t,
t to

e Th. 5-M1: CT-LTI system is IO-stable (or BIBO-stable) iff every hy;(t)
is absolutely integrable.

— The above condition can be rewritten by

O o0
| U@ lsondi = [ max 3 o < b
0 0 p

with the remaining arguments going similarly as before.

e Th. 5-M2: CT-LTI system with a proper rational transfer matrix H(s)

is BIBO-stable iff every pole of every component H;;(s) has a negative
real part.

— For BIBO-stability, H(s) should be strictly stable (i.e., poles strictly
within LHS).

oo — Poles of H(s) is a subset of eigenvalues of A.




10-Stability and CT-LTI Response

e Th. 5.2: Suppose a SISO CT-LTI system with impulse response h(t) is
BIBO-stable. Then,

y(t) = aH(0) if u(t) = a; and
y(t) = |H (jwo)| sin(wet + LH(jw,)) if u(t) = sinwet

— If u(t) = a, with H(s) = [;° h(r)e*"dr,

y(t) = /0 h(T)yu(t—r)dr = a,/(; h(r)dr = y@t) — a./ooo h(r)dr = aH(0)

— From H(jw,) = [;° h(r)e 3"dr = [° h(r)[cos woT — j sinw,T]dr,
Re[H (jw,)] = f;° h(7) cos wordr and Im[H (jw,)] = — f;° h(7) sinw,rdr.
Also, if u(t) = sinw,t, output is given by y(t) = fg h(7) sinw,(t —
T)dT = sinw,t fg h(7) cosweTdT — cosw,t fot h(7)sinw,rdr. Thus,
from absolute integrability of h(t), the integrands exist and

o0 (o]
y(t) = sinw,t / h(7) cosw,TdT — cos w,t / h(7) sinw,TdT
0 0

= sin wytRe[H (jw,)] + cos wotIm[H (jw,)] = |H (jw,)| sin(wot + LH(E?wo))

©Dongjun Lee

10-Stability of CT-LTV and DT-LTI Systems

e Th. 5-M3: CT-LTV system with k(t,7) = C(¢)®(¢, 7) B(7)+6(t—71)D(t)
is IO-stable {or BIBO-stable) iff || D(-)||cc < M; and

t
/ ICOB(E ) Bl codr < Ma, V> t,
to

e Consider DT-LTV system, with its zero-state output response given by

k—1 k
y(k) = C(k) Y ®(k,i+1)B(i)u(i) + D(k)yu(k) = Y _ h(k,i)u(i)
i=k, i=ko

with impulse response h(k, ) = C(k)®(k,i+1)B(i)+6(k—i)D(i). BIBO-
stability would then have something with absolute summability of h(k, %),
ie., 3 o bk, 8)|lico < M, VE > .

e Th. 5-MD1: DT-LTI system with impulse response matrix h(k) € R™*P
is BIBO-stable iff h;;(k) is absolutely summable.

e Th. 5-MD2: DT-LTI system with proper rational transfer matrix H(z)
is BIBO-stable iff every pole of every H;;(2) has a magnitude less than 1.

ey
oDongjun Lee B4
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10-Stability and DT-LTI Response

e Th. 5-D2: Suppose a SISO DT-LTI system with impulse response se-
quence h(k) is BIBO-stable. Then,

y(k) — aH(1) if u(k) = a; and
y(k) — [H(e )| sin(w,t + LH(e ™)) if u(k) = sinwok

— If u(k) = a, with H(2) = 3.2, h(k)z7¥,

k k k o
y(k) = Z he—mum = Z hmtk—m =a Z hm = yk) = a Z hy, = aH(1)
m=0 m=0 m=0 m=0

— From H(e™#e) = 30" hype 7We™ = 3% | by [cos wom—j sin wom],

Re[H(e79%°)] = Y">°_ ) hum coswom and Im[H (e=9%2)] = — Y2 hy, sinwem

Also, if u(k) = sin wyk, output is given by y(k) = Zf;;:o B sinw, (k—

m) = sinwyk Zﬁ;:o Ry COSwW,mM — cOSWok an=0 hp, sinw,m.
Thus, from absolute summability of h(k), summations exist (w/ k —

00) and _ ‘
y(k) — sinw,kRe[H (e™7"°)] + cos wokIm[H (e~7*)]

= |H(e 7| sin(wok + ZH(e 9°))

©Dongjun Lee &)

Internal Stability

e Recall the zero-input responses of FD linear systems:

z(t) = (L, to)xz(to), z(k) = P(k, ko)z(ko)

where ®(t,t,) = eA(t~%) and ®(k, k,) = II;_;} A for CT/DT LTI systems.

e Def. 5.1: Linear systems is Lyapnunov stable (or marginally sta-
ble) if every bounded IC z, produces bounded zero-input response z;
asymptotically stable if, for all bounded ICs «,, MS and = — 0.

- For MS = @ should be bounded; For AS = ® should converge to zero.

e Th. 5-4: CT-LTI system & = Az is MS iff all A;(A) are in LHP with
some jw-axis being non-deficient; AS iff all A;(A) are strictly within LHP.

e Th. 5-D4: DT-LTI system zp41 = Az is MS iff all A;(A) are in UC
with some on UC being non-deficient; AS iff all A;(A) strictly within UC.

et 0 0 0 DL 0 0
Aat Agt k k-1
At _ 0 € te 0 —1 E_ 0 A2 k)\z 0 —1
=T g o e o [T-A=T| o 5 x o|T
0 0 0 e 0 0 0 Xk

e Not applicable to LTV systems...

O
oDongjun Lee (&2
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Lvyapunov Stability - Definition

Def. 2.1: Consider an autonomous system

&= f(z), £(0)=0

e Lyapunov stable, if, Ve > 0, 3(¢) > 0 s.t.,

lz@O)ll <6 = |lz@)ll <&, VE>0

e unstable, if it is not stable

e asymptotically stable, if it is stable and we can find §' > 0 s.t.

|z(0)]] < 6" = [l=(#)I| = O

e exponentially stable if 3ev,vy,6 > 0 s.t.,

llz)Il < &' = llz@®)I| < allz(0)]le™™

e globally asymptotically stable, if asymptotically stable for any Vz(0) € R".
tQDons un Lee \EH: .

Lvyapunov Stability - Examples

Lyapunov stable, if, for any € > 0, there exits d(e) > 0 s.t.,

|z(0)]] <& = [lz@)|l <€, VE>0

Xg - X
(c) ”/ (a) )
— )
] / /J / Xy

(0445, 274),
(0.144, 0,888,

0 01 02 03 04 05 08 07 08 09

satisfy defintion: 1) for some € or 2) V4, Je
lepongjunLee E_ﬁ: g




CT-LTI Lyapunov Theorem

Th. 5.5: A € R**" is Hurwitz (AS) iff, for any Q > 0, 3 a unique P > 0 s.t.

PA+ATP=—-Q (Lyapunov equation)

e Lyapunov analysis: for & = Az, define V = %xTPa: =>V=—2TQr<0
unless V =0 = V(t) — 0 (AS, in fact, ES).

e Can be used to find Lyapunov function: given A = [ (1) :} ], choose
any Q = [ (1) (1] ] > 0. Then, solve for P = [ _1(']55 _10(')5 ] > 0.

e (Sufficiency =>): Given @ > 0, define P := [ eA"tQeAtdt > 0, which
exists (from AS) and PD. Then,

PA+ ATP = / e tQeAt Adt + / ATeA Qe dt
0

o0
— d ( ATt At _ ATt At _
_/0 dt( Qe )dt " Qe ’0_ @

o (Necessity <): Define \,v s.t., Av = dv = v*A* = v* AT =v* AT =
Further, —v*Qv = v* (PA + ATP)’U = (A + A)v*Pv where v*Qu > 0 a.nd
v*Py >0 = A(A) in LHP (i.e., A is Hurwitz).

©Dongjun Lee &)

CT-LTV Lyapunov Theorem

Consider linear time-varying system

z=At)z, z(t,)

with £ = 0 equilibrium. Then, z(t) = ®(¢,%,)x(t,), where ®(t,t,) is the state
transition matrix (e.g., ®(t,t,) = eA(t~%) for LTI system).

. . . —1+4+1.5cos’t 1—1.5sintcost
Ex) Consider & = A(t)z with A(t) = { —1—15sintcost —1+1.5sin%t ]
0-5 cost e *sint ]

0-5tsint e *cost

Then, eig(A(t)) = —0.25 + 0.25v/7j. Yet, ®(t,0) = [ _ee

Th. 5.5V: Suppose 3 smooth bounded P(t) > 0 s.t.
P(t) + P(t)A(t) + AT(£)P(t) = —Q(2)

with Q(¢) > 0. Then, z = 0 is AS. Also, if A(¢) is continuous and bounded and
z — 0 (i.e., AS), for any Q(¢) > 0, IP(t) > 0 satisfying Lyapunov equation.

e (=) Lyapunov analysis with V = 1zTP(t)z — V = —zTQ(t)z < 0 unless
V(t)=0 — z — 0 (ie., AS, in fact, ES).

e («=) Choose V (z,t) = z7 P(t)z. Also, given Q(t), P(t) = [, ®7(r, t)Q('r)<I>(h'r, t)dr.

oDongjun Lee
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CT-LTV Lyapunov Analysis

Th. 8.2 (R): Consider CT-LTV system & = A(t)z. Denote, at each ¢, the
largest and smallest eigenvalues of A(t) + AT (t) by Amax(t) and Amin¢)- Then,

“xo”e% ftta Amin(0)do < ||x(t)|| < ”za”e% f:a Amu(o)do', V> t,

where || - || is the vetor (i.e., Euclidean) 2-norm.

e Define V(t) = ||z(t)||>. Then,
Amin (@) [l2@®)|* < G = 2T (£)(AT (1) + A(®)2(2) < Amax ()] |2(D)|?

Le., V(to)elto (@) < v 4y < V(g,)elio Mmax(9)do g a1l ¢ > ¢,
e Cor. 8.2-1: CT-LTV system is stable if

t
/ Amax(0)do <«, Vi, 7, 8t,t>7
-

e Cor. 8.2-2: CT-LTV system is ES if

13
/ Amax(0)do < =X{Et—T7)+v, Vi, 7, st,t2>7

©Dongjun Lee &)

CT-LTV Stability w/ Perturbation -l

Th. 8.6 (R): Suppose CT-LTV system & = A(t)z is ES with continuous/bounded
A(t). Then, 3 a small enough 8 > 0 s.t.,

2 =[A(t) + F(t)]z

is also ES if ||F(¢)|| < B, where || - || is matrix 2-norm (other norms also work).

e From Lyapunov theorem, 3 P(£), Q(t) > 0 s.t.,
P@t)+ A)TP(t) + A P(t) = —Q(t)
where P(t) := [° ®T(0,t)Q(t)®(t,0)do. Then,
[A(t)+F(®)]" P(t)+ P($)[A(t) + F(t)]+ P(t) = FT (t)P(£)+P() F(t) - Q(t)
where LHS is PD if ||F(t)|| small enough, since P(t) bounded (from ES).
e ES is robust against bounded perturbation.

e This robustness also true for CT-LTI systems.
e If CT-LTV system is AS, stability is in general fragile.

O
oDongjun Lee (&2
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CT-LTV Stability w/ Perturbation - Il

Th. 8.5 (R): Suppose CT-LTV system & = A(t)z is stable. Then, 3 a small
enough £ > 0 s.t.,

z=[A(t) + F(t))=
is also stable if [ ||F(o)||do < B, V7 > 0.

e Using convolution: z(t) = ®(¢,t,)2, + ftt ®(t,0)F(0)z(c)do, where, from
stability, ||®(t,0)|| < v Vt,0,t > 0.

e Taking the 2-norm: ||z(8)|| < ||| + ftt,, ~||F(o)|l||2(c)||do, i.e., an im-
plicit inequality w.r.t., ||2()||-

e From Gronwall-Bellman inequality: ||z(¢)|| < ’y||zo||effto YE@INdT < )12, ]|,
Yt > t,, i.e., stable.

e Lem. 3.2 (Gronwall-Bellman): For continuous ¢(t), v(t) with v(¢) > 0,
Vi > t,, . t
¢(t) <9+ / v(@)p(o) = ¢(t) < el ?()d
to

- r(t) = ¢ + [ v(o)do = #(t) = v(H)¢(t) < v(t)r(t) = multiplying
e Jo v o & [r(p)e Fo "] < 0 = g(t) < r(t) < el VO

e However small persistent perturbation can destabilize CT-LTV systems.

©Dongjun Lee

DT-LTI Lyapunov Theorem

Th. 5-D5: A € R**" has p(A) < 1 (i.e., DT-LTI AS) iff, for any @ >~ 0, 3 a
unique P > 0 s.t.

ATPA— P=-Q (Lyapunov equation)

e Lyapunov analysis: for zx1 = Az, define Vi, = %.’sza: = Ve — Ve =
12l (ATPA — Pz = — 321 Qz < 0 unless Vi = 0 = Vi — 0 (AS).

e (Sufficiency =): Given @ > 0, define P :=3 > (AT)™QA™ > 0, which
exists (from AS) and PD. Then,

ATPA—P= i AT(ATYmQA™ A — i (AT)mQA™

m=0 m=0
= Y (ATymQa™ - Y (ATyQA™ = —Q
m=1 m=0

e (Necessity <=): Define A, v s.t., Av = dv = v*A* = v* AT = v* AT = ™.
Further,
—v*Qu = v*(ATPA - P)v = (|]A? — 1)v*Pv

where v*Qu > 0, v*Pv > 0 = [A(4)]2 < 1 (i.e., p(4) < 1= DT-LTI AS).

oDongjun Lee
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10-Stability and Internal Stability

e LTI system stability conditions:

o0
/ ICeA B+ 6(t)Dljicodt < M (BIBO) and Ai(A) € LHP (AS)
0

— AS implies BIBQ, but not vice versa (e.g., pz-cancelation).
— BIBO excludes marginal stability.

e LTV system stability conditions:
/ [|IC@#)®(t, T)B(T) + 8(t — ) D(2)|];,00dt < M (BIBO)
0
[|®(E, 7)||i,00 > 0 ast — oo (AS)

— AS may not even imply BIBO (since only AS, not ES as for LTT).
— AS implies BIBO, if ES and C(t), B(t) bounded.

©Dongjun Lee

Basic Feedback Loop

tracking error d(t) < disturbance
N() l ®)
+ et +
r(t) —0—>| C(s) —50 P(s) v(®)
/ -f m u(t) %2 N

reference controller plant output
+ n{t) < noise

F(S) 73 o ( )

filter

ld(t)
T_(t)__'f ﬂ C(s) (:) ¥ P(s) y(t)

+§ n(t)

d(t)
(t) c(s + y(t)
’ _+ _"Mév(s§¢)(s) u(+t) P(s)

+4 n(t)

O
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Basic Feedback Loop

WUR-NN P y(e)
i Q) o] P
7@ "L Q) p(s) |20
u(t)
L(fl(t) (t)
LONIPTR ‘Tu(;;w P(s) | Y
LT + +n(t)
u(t) A7) y(t)
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