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Course Info

Control Systems I

Introductory graduate-level control course, mainly focusing on linear systems,
bridge between System Control Theory (undergrad. classical control) and Con-
trol System II (nonlinear/optimal control).

e Instructor: Dongjun Lee (djlee@snu.ac.kr, 301-1517, 880-1724)
Teaching Assistants:

— Nguyen Hai-Nguyen (Lead: hainguyen@snu.ac.kr, 301-211, 880-1690)

— Hoyong Lee, Jeongseob Lee (hylee0428,overjs94@snu.ac.kr, same as above)

Prerequisites

— System Control Theory (ME2794.002100) or equivalent; or by the consent
of instructor

Grading
1. HW 20% (score 0/1, 0.5/1, 1/1)

2. Mid-term exam 40% 4/19/2017 W 7-9:30pm
3. Final exam 40% 6/14/2017 W 7-10pm
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Course Topics

=

Loop shaping and fundamental limitations

Control design using Youla parameterization, coprime factorization
Linear system state-space representation and solution

Stability

Controllability, observability, canonical decomposition

Minimal realization, balanced realization

State-space control design, state estimation, separation principle

Linear quadratic regulator (LQR)
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Kalman-Bucy filter and linear quadratic Gaussian (LQG)

,_.
e

Kalman estimation and extended Kalman filtering (EKF)

©Dongjun Lee

Course Info

e Textbooks

— Linear System Theory and Design, Chen, Oxford University Press
— Feedback Control Theory, Doyle, Francis & Tannenbaum, Dover
— Control System Design, Friedland, Dover

e References

— Multivariable Feedback Control, Skogestad & Postlethwaite, Willey
— Control System Design, Goodwin, Gradebe & Salgado, Prentice Hall
— Linear System Theory, Rugh & Kailath, Prentice Hall

— Principles of Robot Motion, Choset et al, MIT Press

— Optimal Control: Linear Quadratic Methods, Anderson & Moore,
Dover
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Basic Feedback Loop

tracking error d(t) <« disturbance
+ elt +
r(t) — ) C(s) P(s) y(t)

1 ut) 2 N

reference controller plant output
+ noi
F(s) _ n(t) < noise
filter 8 +

Plant P(s), controller C(s), filter F(s), all SISO.

Exogeneous signals: reference r(t), disturbance d(t), noise n(t).

Signal signals: tracking error e(t), output y(¢), control u(t) (or z1, z2, z3)-
Closed-loop transfer functions:

T 1 1 —-PF -F T
2 |=———| ¢ 1 -CF d
T3 1+ PCF PC P 1 n

e Well-posedness (stronger than stability): all closed-loop TFs exist <
14 P(s)C(s)F(s) #0Vs €C (eg, P=C=1,F = —1).
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Well-Posedness and Proper TFs

tracking eror d( t) «— disturbance
+ _e(d) l+
r(t) C(s) 58— P(s) y(t)
™ u(t) 2 N
reference controller plant output
F(s) : +u n(t) €= noise
filter 3 +

T 1 [ 1 —-PF -F r
Z |=———— | C 1 -CF d
T3 14+ PCF | PC P 1 n

e Ill-posedness arises due to the lack of time to response (cf. integrator).

e CL system well-posed if P(s) is strictly proper and C(s), F(s) are proper.

e G(s) is (strictly) stable if analytic in closed-RHP (i.e., Re(s) > 0).
e G(s) is proper if G(joo) is finite (i.e., deg(N) = deg(D)).

e G(3) is strictly proper if G(joo) = 0 (i.e., deg(D) > deg(N)).

e CL system well-posed if 1 + P(s)C(s)F(s) is not strictly proper.

O
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r(t)+ _elt)

Internal Stability =%=

e Closed-loop transfer functions:

e 1 1 —PF -F T
y |=———|Pc P —pcF || 4
u 1+PCF | o _pcF -CF n

e Def: The CL system is internally stable if all nine TFs are stable.

— Not enough just to ensure stability of input-output TF (i.e., %).
— Internal instability with unstable pole-zero cancelation (e.g., with

P= 821—_1, C= %, F =1, r — y stable, yet, d — y unstable)

e Th. 1-1: CL system is internally stable iff no CL poles in Re(s) > 0.

— Write P, C, F' as coprime polynomials (i.e., with no common factors):
P=de o=Ne p_Ngp o 1 ___ __ MpMcMp
Mp? Mg’ Mp 1+PCF NpNoNr+MpMoMp*®
— CL poles = zeros of NpNo Np+MpMcMp = 0 (w/o PZ-cancelation).
MpMc —NpMc —MpMc¢
— CL TF matrix: IVPIVC—}]-—I\JPI\JC MPNC MPMC —MPNC
NpNe —NpMg MpMcg

— (<) obvious; (=) if not, that unstable pole should be canceled in all
nine TFs — impossible w/ coprimeness among M., N,. =
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Internal Stability .

e Feedback system transfer functions:

e 1 1 —PF -F T
vy |l=———|Pc P —pcF || d
u 1+PCF | o« _pcr -CF n

e Th. 1-2: The CL system is internally stable if and only if:

1. 1+ PCF = HeNclrtMeMoMr 144 no zeros in Re(s) > 0; and

2. No unstable pole-zero cancelation when the loop-TF PCF is formed.

— (=) First condition obvious. Also, from Th. 1-1, no unstable zeros of

NpN¢Np+MpMcMp — no unstable pole-zero cancelation possible.

— («=) Will show that, under two conditions, CL poles necessarily sta-

ble. Suppose not. Then, 3s,, s.t., [NeNcNr + MpMcMFr|(s,) =0,

Re(s,) > 0.

1. Suppose [MpMcMF|(s,) # 0 — [MeMEMEtBeNalir|(5,) = [1+
PCF](s,) = 0 — contradict to condition 1.

2. Suppose [MpMcMr|(so) =0— [NpNeNrF](s,) = 0 — unstable
PZ-cancelation — contradict to condition 2.

O
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Unit Feedback System ﬂ D

Unit-feedback CL transfer functions with F(s) = 1:

e 1 1 -P -1 r r(t)+_e(t)
vy |l=——|Pc P -pPc|| 4 :
u 1+PC | "o _pc _¢ n

Nyquist stability theorem: Construct Nyquist plot of L = PC, in-
denting to RHP around poles on jw-axis. Let n denote unstable poles of
P and C. Then, CL system is internally stable iff Nyquist plot doesn’t
pass through (—1,0) and encircles it exactly n-times counter-clockwise.

. e _ 1 _ 1 _ Mpiig
Sensitivity functlon‘S =% = 13L = 1550 = NpNoiMoMg- ‘

— Step tracking if S has at least one zero at s = 0; ramp tracking if
two zeros at s = 0 (cf. system type, smaller — better performance).

; —y¥y__L _ _PC _ NpN¢
Complementary sensitivity functlon‘T =% = 1YL = T4PC — NpNoiMsils ‘

— Total transfer function from reference r to output y.

— S is sensitivity of total TF T against AP: S = %.

—|8(s) +T'(s) = 1|with T relevant to robust stability.

©Dongjun Lee &)

Control Parameterization: Stable P

o Unit-feedback transfer functions:
e 1 1 -P -1
y | = PC P —-PC d
u 1+PC| ¢ _pc -c n

Control synthesis: given P, design C s.t., feedback system (1) is inter-
nally stable and (2) acquires some desired properties (e.g., tracking).

& Parameterize stabilizing C — tweak C to achieve desired properties.

Th. 1-3: Suppose P € S, where § is the set of all stable, proper, real-
rational functions. Then, all the stabilizing controllers are given by

0 NS [y B P
C= =Yg VAES =

e Affine relation: S =1— PQ, T = PQ — not work for unstable P.

e (Ex) Design ramping tracking control for P(s) = m
— S with at least two zeros at s=0— Q = ‘:“:_"1" — CL stable.

(s+1)%(s+2)

- 8=1-PQ= S+ (5oa)et (D) L, 5,b = 2 (increase order[C]).
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Coprime Factorization
e Bezout identity: given polynomials N(s), M(s), 3 polynomials X (s), Y (s)
s.t.,

N(#)X(s)+M(s)Y(s) =1
iff N(s), M(s) are coprime (X = s+ 1,Y = s% + s; also for integers).

e Coprimeness of TFs: wesay N(s), M(s) € S are coprime if 3X(s),Y(s) €
S s.t.,
N($)X(s)+ M(s)Y(s) =1

This coprimeness of N, M holds is iff N(s), M(s) have no common zero in
Re(s) > 0 and at s —» o (i.e., both N, M can’t be strictly proper).

e Coprime factorization: for any real-rational TF G(s), we can always
write its coprime factorization over S s.t.,

G(s) = %, NX+NY =1, NNM,X,YeS8
e (Ex) G(s) = -15 - N(s) = s+1, M(s) = s+1 (all pass). What if

5—2 s—1)(s—2
(N, M)_(_’fs+1) ,—53+1) ) or (N, M)—(i—)gs_H) ’K_X_rl(s+1) )?
e (Ex: Euclid algorithm) G(s) =

— 19s—11 s+6
X = eSS ’Y s+1°

8—1)(s—2
= e=1=n — N = e M = ST
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Youla Parameterization

e Th. 1-4: Consider unit feedback system with possibly unstable P = M,
where N, M € S are coprime with NX + MY =1, X,Y € §. Then, all
the stabilizing controllers are given by

X+MQ

C=Y—NQ’

vQeS

e Main idea of proof:
— (Lemma 1-1) Let C = 1%% be a comprime factorization. Then, the
feedback system is internally stable iff (NN¢c + MMc)~ ' € S.
— («) Given Q € § and C as above, define N; := X + MQ, M} =
Y — NQ (not necesarily coprime) — put these into NX + MY =1,
we have| NN+ MM} = 1;| implying N¢, M{ are coprime. Further,
CL stable from Lem. 1-1 w/ NN, + MM} € S.

— (=) Suppose internal stability with C' and let C = /< its coprime
factorization. Define V := (NNg + MMg) t e S (Lem 1-1).
Define @ s.t., =1

— NN¢V + M(Y — NQ) = L. Also, from NX + NY =1, N(X +
MQ)+M(Y — NQ) = 1. Thus,[NgV = X + MQJand C = §&7. =

M. Further, (NX + MY)Q =YNgV - XMgV —+ Q€ S.

O
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Q-Parameterization: Example
N

e Th. 1-4: Consider unit feedback system with possibly unstable P = 47,
where N, M € S are coprime with NX + MY =1, X,Y € §. Then, all
the stabilizing controllers are given by

_X+MQ

C_Y—NQ’

VR es

e S=M({Y —NQ) and T = N(X + MQ), still all affine in Q.

e (Ex) Design control C for P = m s.t., (1) CL system internally
stable; (2) perfect step tracking when d = 0; and (3) rejection of sinusoid
disturbance d of 10rad/s.

— From Th. 1-4, C = $3{[8 with Q € S. With this, H,, = T =
N(X + MQ) and Hy,, = N(Y — NQ).

— Step tracking/stabilization (dc-gain): H,_,,(0) =1 = N(0)[X(0) +
M(0)Q(0)] =1 — Q(0) =6.

— Disturbance rejection (zero at jw): Hy,(jw) =0 = N(105)[Y(105)—
N(105)Q(105)] — Q(105) = —94 + 705.

— Three constraints for Q: Q@ =a+ % + ez — C(s)-

©Dongjun Lee

Pole Placement Control

e Unit feedback system: P = ﬁ—i, C= II‘VJ—Z coprime polynomials N, , M,,

e 1 MPMC —NPMC —MPMC T
yl=——— | NpN¢ NpMg —NpNg | |d
NpNc+MpMc | nNopM, —NpNoe -NoMp | \n

u

e Pole-placement control: given desired CL-CE F(s) and Np(s), Mp(s),
design N¢(s), Mc(s) s.t.,

Nc(s)Np(s) + Mc(s)Mp(s) = F(s)

— From Bezout’s identity, there exist coprime polynomials X,Y s.t.,
NpX + MpY =1 iff Np, Mp are coprime.

— Thus, we can always find a solution Ng(s) = F(s)X(s), Mc(s) =
F(s)Y(s) iff Np, Mp are coprime (may not stabilizing though).

— General solution: N¢(s) = N¢(s) + Mp(s)Q(s), Mc(s) = Mc(s) —
Np(s)Q(s) for any polynomial Q(s) with

Cls) = X(EF(s) + Mp(2)Q(s)
Y(s)F(s) — Np(s)Q(s)
- Hy,y= WIJZG-I-I_XJI;TC implying that unit-feedback cannot alter open-

loop zeros — two-DOF control for model (i.e., pole-zero) matching,.
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Pole Placement via Linear Algebra

¢ Pole-placement control: given desired CL-CE F(s) and Np(s), Mp (s),
design N¢(s), Mc(s) s.t., !

N¢(s)Np(s) + Mc(s)Mp(s) = F(s)

e Given deg(Mp) = n, choose deg(M¢c) = m to match deg(F) = n+ m.
The larger m is (i.e., more DOFs), the more likely can match F(s). Then,

Np(8) =apo + ap18+ ...apns™, Mp(8) = byo + bp15 + ...bpns™,
Ng(8) = aeo + Gc18 + ---Gem8™, Mo (8) = bep + b1 s + -.-bems™,
F(s)= fo+ fis + - fagms™T™

with apn = 0, bpn, # 0, bem 7 0 = frtm = bpnbem + ApnBem = bpnbem 7 0.

e The pole-placement can then be written by linear equation (Chern Ch.9):

[Sm](n+m+1)x2(m+1) [bco; Qco; -5 bems; a'cm] = [fo; ---;fn—l—m]

which has a solution if 2(m + 1) > n+ m + 1 due to the structure of S,,.

e Th. 1-5: For the above problem, for any F(s) with deg(F) = n + m,
there always exist a proper C = %g— with deg(C) =m,ifm >n—1.

©Dongjun Lee

Example: Chen q.2

e For P = =5 1,
step response.

design a proper compensator C so that y can track any

1. Choose desired CL poles: F(s) = (s+2)(s2+2s+2) = s3+4s2+6s+4.

2. Set up linear pole-placement equation:

-1 2| 0 0 bo 4
0 1([-1 =2 a, | _ |6
1 0 0 1 bl |4
0 0 1 0 a1 1
with 8, full column rank (i.e., solution exists if m > n — 1).
3. Compute the control law: C = — 232_:_;_"323

4. Analyze dec-tracking performance: T(0) = %9()0—%% =32,
5. Design pre-compensator P(s) = 5 P(s), P(s) € S with P(0) =1.

oDongjun Lee




Internal Model Control

e Suppose we want to track a class of reference signal r(t) while reJectlng a
class of disturbance d(t) given by

r(s) = Dl - g(s) = Nal9)

D r(8)? Da(s)

where D,., Dy are known, yet, N,, N; unknown (e.g., any ramp r(s) =

M_)_ , any step+sinusoid with known w d(s) = S(s#"_‘_%,)z—))

e Incorporate this information of r,d into the controller to achieve robust
tracking and disturbance rejection — internal model control.

e Define ¢(s) to be least common denominator of unstable (i.e., non-vanishing)
poles of 7(s),d(s) (e.g., ¢ = s*(s® + w?)) and incorporate into control.

— NpM, _ Np M, N, _| NeMgé(s) N,
* Hisy(s) = mpmeiniottos = Y5) = NoNotMaros ) ngg O ) 928
— with CL-CE F(s) Hurwitz, y(oo) = lim,_,o s%ﬁ;ﬁ(s) g:gg =0.
_ MpM, _ Mp M, Nq(s) _ |MpMgé(s) N,
e Hy ,c(s) = Nchﬁ-MiaJm —e(s) = NpNG+PMpcll?}c¢(s) D,g% = PF(i) @) D,E:;
— with CL-CE F(s) Hurwitz, e(co) = lim,_,o s%ﬂﬁ% =0.

©Dongjun Lee

Pole Placement for IMC

e Suppose we want to track a class of reference signal r(t) while rejecting a

class of disturbance d(t), given by ( ) j_l(t) .
r(t o(s
& (s) . + '\/12’3§¢2(.5-5 ‘;) P(s Y
a(s)

r(s) = D) d(s) = gdg"")
e CL pole placement with IMC:
Np(s)Nc(s) + Mp(s)Mc(s)é(s) = F(s)

+ n(f)

where Np, Mp are coprime. Thus, if no common zeros between ¢(s) and
Np(s), Np and Mp¢ are coprime — from Th.1-5, 3 a proper C(s) =
ifm >n+mng—1, n=deg(P), ng = deg(d), m = deg(C).

e A simplest form of IMC is I-control to reject constant disturbance.

e (Chen Ex 9.3) Design control for P = 52
— IMC ¢(s) = s. Then, m > 2 — deg[F(s)] = 5.
— Choose F(s) = (s + 2)(s? + 45+ 5)(s® + 25 + 5).

to track any step refernece.

— Solve LA to obtain No, Mg: C(s) = gagsisy = — 2831825
C .
- T(0) = % = 1 (de-tracking). Hy,(0) = % =0

o Dongjun Lee (constant disturb. rejection) (2]




Model Matching Control

e So far, we have been working on CL pole placement control (i.e., F(s)),
yet, CL system behavior also (possibly severely) depends on zeros as well.

e Model matching problem: given P, design a proper C s.t., the CL
behavior H,_,,(s) matches with a desired TF H,(s).

e Unit feedback can do arbitrary pole-placement F(s), yet, not general
model matching H,(s) — FF pre-compensator C; + FB control Cs.

e Even with two-DOF control, not arbitrary H,(s) implementable due to

OL-dynamics P(s) (e.g., Hr—y = % w/ unmovable zeros of P).
e Th. 1-6: Consider P = $£. Then, H,(s) = F( ) is implementable iff:

1. CL-CE F(s) is Hurw1tz.
2. deg(F)—deg(E) > deg(Mp)—deg(Np) (relative degree can’t decrease).

3. All zeros of Np(s) with zero/positive real parts are also zeros of E(s)
(non-minimum phase zeros not removable).

©Dongjun Lee

Model Matching Procedure
Given P = TDZ? and H, = & L (satisfying Th. 1-6), design proper C; = —1- and
Cy= & s.t., Hyy(s) = H, (s) while ensuring CL internal stability.

1. Define coprime E, F s.t.,

e May attempt H = 151(562 = MPI‘IIV;-{-VI]VPNZ =H, = E%IP- -+ Ni=E
and solve M¢, Ny from MpM¢g + NpNy = F with coprime Np, Mp

— typically, deg(F) not enough (e.g., improper Cy w/ HO P).

2. Augment F(s) w/ a Hurwitz F'(s) s.t., deg(FF) > 2n — 1, n = deg(Mp).

3. Rewrite H, = m"— =H= m—gg’%lvm, and choose/solve for Ny, M¢:

Ni(s) = E(s)F'(s), Mp(s)Mc(s) + Np(s)Na(s) = F(s)F (s)

which has a solution Ny, M, since Np, Mp coprime and m = deg(M¢) =
deg(FF) — deg(M,) > n— 1 (cf. Th. 1-5).

4. Cy = N is proper (Th. 1-5) Also, for Cy = Ei = ﬁ—;, from item 2 of

Th. 1 6 deg(FF) deg(EFNp) > deg(Mp) — deg(Np) — deg(EF) =
deg(N1) < deg(FF) — deg(Mp) = n+m — n =m — C; also proper.

-
oDongjun Lee {2
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Model Matching: Example 9.8 Chen

o (Ex 9.8) Given P = 574, match H,(s) = (=55 ramady-

. —4e2
— H,(s) ensures step and ramp tracking: H, = %

— H,(s) is implementable:

— Compue E(s), F(s): 4= =% = ;%.

— Compute F(s): deg(FF)>2n—1=3 » F=1.

— Compute C; via direct substitution and Bezout: N3 = —(4s + 2),

Mg =s+34/3 > C = 3512,
— Compute C; via Bezout: Cy = j;a?j__+34231

8%

©Dongjun Lee
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Nominal Performance :

e We have considered tracking of step, ramp or sinusoid sign
freq. Yet, in practice, often, need to track signals with fr;

=
>

(@8)

Wg

For tracking, ideally, we want ||S||c = £ =0 — impossit —

Nominal performance: ||W,S||« < 1, where Wy(s) € S is frequency-
dependent performance weight:

— Wp(s) = % for tracking up to lrad/s with error less than 1/100.

— W,(s) = ‘*ﬁ‘fwg;? for CL bandwidth w¥ (w/ |W,(jw})| ~ 1), LF
track |ess| < A < 1 and HF max peak of |S(jw)| < M (stability).

Signal norm of u(t) € R:
— Defining properties: (1) |[u|]| > 0; (2) ||u|| = 0 iff u(t) = 0; (3)
llaul| = la] - [|ull; (4) [lu + ]| < ||ull + ||v]].

— 2-norm: ||ul|z := ij:: |w(%)|2dt; oo-norm ||u||eo := sup, |u(t)],

System norm of H(s) (or h(t)):

~| co-norm: ||H|loo := sup,, |H (jw)| with |[yllz = [|Hlloo||ull2 (via Paz-
seval’s identity); if u(t) = Asinwt, w € R, ||y||oo = || H||0 4- .

oDongjun Lee
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Multiplicative Uncertainty -

e So far, we have rather neglected uncertainty in system, wﬁw‘ s
only degrade performance but also destabilize CL system. =~

e Goal: maintain CL-system stability (i.e., robust stability) ... 2 2 "

performance (i.e., robust performance) in the presence of uncertainty.

e Multiplicative uncertainty: plant perturbed by uncertainty given by

P=(1+W.A)P, ZE=w,A = |PU9-RG)| < W, (juw)|

where W,, € S is uncertainty weight (e.g., large for HP), A € § is (any)
nominal uncertainty with ||A||e < 1 w/0 unstable pole cancelation of P
(i-e., allowable uncertainty).

— Given scattered gain/phase measurements (Mg, dix) at w;:
L el .
| Mzt — 1| < (W)
— Nominal P(s) =1 /s? perturbed by delay up to 7 = 0.1s with P =

ek = |5 -1 = e ™ — 1| < |Wy(jw)| for W, = 52

©Dongjun Lee
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Robust Stability

e Given P and uncertainty information W,, design control law C to ensure
robust stability for any plant P € P := {(1 + W, A)P}.

e Th. 1-7: Assume C stabilizes nominal plant P, with PC and PC having
same number of RHP-poles. Then, C provides robust stability for any
plant P € P iff ||W,T||oo < 1, where T = lf—gc.

— (<) Convert feedback diagram and apply small-gain theorem.
— (=) Suppose not, ie., |W,(jw)T(jw)| > v > 1. Consider Nyquist

1+ L=1+PC=(1+L)(1+AW,T)

where 1+ L # 0 with # of encirclement same as OP RHP-poles.
Then, can find A w/ |A(jw)| = 1/ < 1, LA(jw) = -7 + LW, T at
w — L touches (—1,0) — unstable — contradiction.

e Small gain theorem: Let Hy and H; be (possibly nonlinear) stable sys-
tems with finite IO-gains ||H||, ||Hz||. If ||H1|| - ||Hz|| < 1, their feedback
system is also stable.

oDongjun Lee
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Robust Performance

e Given P and uncertainty W,,, design control C to ensure robust stability
and robust performance for any plant P € P := {(1 + W, A)P}, i.e.,

IWuTllo <1, |[WpSlleo <1, VPEP

where § = L. =

L= ke Then,||WS||°°—|1+AWTH <1

e Th. 1-8: A necessary and sufficient condition for RP (also RS) is

I [WpS| + WuT] |, <1

— (<) |[WuT||o < 1o0bvious. Also, |||W,S|+|WaT||leo < 1— |[WpS|+

W, 5| [W,S|
IWuT| <1 = gy <1 ”1+AWu < |l <1

W, WS
- ) | r] <1 [, < ] <.
e Maximum tolerable uncertainty ||A]|e < 8-

~ RS: 1+ L=(1+L)(1+AW,T) = |BW.T| < 1 = 8 < e

_ . W,S W,S 1-|W, S|
RP: ”—u “w <l-— |—1_quT|‘ <l—=f< H—W"T -

©Dongjun Lee

Graphical Representations

e Nominal performance: ||[W,S||oo <1
11+ L(jw)| > [Wp(jw)l, Yw

5

G

¢ Robust stability: ||W,T||eo <1
11+ L(jw)| > [Wu(jw) L(jw)|, Yw

e Robust performance: |||WpS|+ [WoT||oo <1
11+ L(jw)| > [Wp(jw)| + [Wu(jw)L(jw)|, Vw

O
oDongjun Lee &)
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RP Design Example

e Nominal plant (integrator): P = 1.
~ ot 2
e Perturbed plant: P = %ms,_{_‘bs % i }_,P = s,_“:_z"c'fui";f"_’:”?‘ .

Performance specification: w, = 20rad/s, de-tracking error < 1%

5
Design performance weight function: W, = %.

Uncertainty: w, € [200,500]Hz, ¢ € [0.1,0.5].

o Design uncertainty weight function: W,, = % — W, = 9: _:1-2(2130 .
w_ W

w ww, wW,
102 ' 102 _ — 102 _ —— 102

-10 10
10 10710 1010 10

ol 12
10 -12 -12 10
104 P 10712 — 10 4
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RP Design Example
e Perturbed plant: P =1

W, = 9s(s+200) 100

k
ms?+bs+k” T (s41500)27 TP T (g54+1)5°

e w, € [200,500]Hz, ¢ € [0.1,0.5); w, = 20rad/s, dc-tracking error < 1%.
e Design P-control C(s) = K s.t., |||[WpS| + [W,T||eo < 1.

— Design K for NP: K = 600 and check RS and RP.

— Decrease K improves RS, yet, degrades RP — P-control can’t satisfy
both (or reduce performance W, — — or improve system-ID W,——).

— More complicated control — Loop shaping.

NP: C-150 RS RP
10° PN
\\ 100 , /\\
o 10 /
e \ \\ / \ a
\ 102 o // / \
10° \\ yZ // N\
\\\ /7 102 /
104 / /
\ / /
\ 10° // 4 /
\ % 107/
\
107 10
10° 10° 10° 10° 10° 10°
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Loop Shaping

e Loop shaping: graphical technique to shape loop-transfer function L(s) =
P(s)C(s) to satisfy RP and internal stability:

[[[WpS| + [WuT ||l < 1
if such control law exists, where S = L and T = 74 7 L

e Typically, L should have large gain in LF (for performance) and low gain in
HF (for robust stability). More precisely, basic loop shaping condition:

|IL(Gw)| > (L5 (LF),  |L(jw)| < *5h2el (HF)

e Simplest loop shaping: lead (to increase w, while improving PM) and lag
(to increase tracking in LF w/o affecting GM/PM).

S )

7 ™, Pt
7, >
v/ 7o -,
7%

|Gyl DESIRED LOOPSHAPE

B(T)

Magn)

PERFORMANCE 73\ NN\ ™,
BOUND. N
A
6(S) 4
o(L) :

DESIRED CROSSOVER &, b
foDongjun Lee i

\ \C  ROBUSTNESS

Phase (deg)

Loop Shaping: Derivation
e Stability-performance trade-off: A necessay condition for L(s) to sat-
isfy RP is

min{le(]’U))l, |Wu(_7'lU)|} < 1, Y Z 0 c‘an‘tal\owh'@h performance &

high uncertainty at same band

i.e., both |Wp| and |W,,| can’t be larger than 1 at the same time.

— Suppose not, ie., at w’, |Wp| > 1 and [W,| > 1. WLG, assume
|Wp| > |Wy|. Then, at o/,

(WpS| + [WoT| 2 [WaS| + [WoT| = [WuS| + [Wu(l - 8)| 2 [Wa| 2 1

e Now, define I'(w) := |IIV_KLI| Jml Then, RP iff T'(w) < 1 Vaw.| Also,

Wo [+ Wl | L Wy |[+|Wa|-|L
| p|l_LLu|| |Sr(w)s| p|1_|Lu| |

— (LF) |Wp| >>1> |W,| and |[L| >>1 —

Wol=1 (W, Woltl W,
\L| > =y & =y 1L > Tway = oy

— (HF) |Wy| >> 1> |W,| and |L| << 1 —

LW o 1 1 Wyl 1-|W,l
Ll < w1 = Tl B < 5wl ® T ®

oDongjun Lee
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Loop Shaping: Conditions
e We assume stable/minimum-phase P(s) (i.e., no RHP pole/zero) to avoid
unstable/non-minimum-phase L = PC (general case — Doyle Ch. 8).

e A necessay condition for Wy, W,,: min{|W,(jw)|, |[Wu(jw)|} < 1.
o HF roll-off of L should be at least as fast as that of P (proper C).

e Slop of |L| at crossover frequency we (i-e., |L{jw.)|) should be as gentle
as possible (—20[dB/dec] to —40[dB/dec]).

e Loop shaping is based on approximation: NS, RP shoul be checked a
posterior (RP assumes RS, RS assumes NS).

e Bode’s gain formula: For a non-minimum phase stable L with all positive
coefficients, its phase ZL{jw,) is uniquely given by: with v := In(w/w,),

I
LL(Gwy) = _/ din|L| = |wtw,|
7T Joo dv |w — w,

%JL' = ¢ at Wo, LL(jw,) = —

- The stiffer the slop of |L(jw,)| is, the less the PM is.

- For system w/ RHP-zeros, phase angle larger than minimum angle above.

R

where, if constant slop -

©Dongjun Lee )
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Loop Shaping: Procedure
1. For stable/minimum-phase nominal plant P, design W,, W, s.t.,

min{|Wp|, [W.|} <1, Vw

2. On (logw,20log|L|) plane, plot LF and HF bounds:

|Wa

Wl 1—|Wy|
1_|Wu|’

Wy| >> 1> |[W,| (LF
Wol >> 1> Wl (LF)

, Wl >> 1> |W,| (HF)

3. Construct a desired loop-TF candidate L = PC s.t., ;
e |L| is above (or below) the LF (or HF) bounds.
e Roll-off of L at HF at least as fast as P.

e Slop of L at crossover frequency as gentle as possible (< —40dB/dec).

4. Check RP by observing if |W,S| + |W,T| < 1.
5. Check NS by ensuring roots of 1+ L(s) =0 in LHP.
6. Determine the controller C(s) = L(s)/P(s).

16



Loop Shaping: Example

e Nominal plant; P = 1 perturbed plant: P= %—m 32_{_“,,3 5"

8

e w, € [200,500]Hz, ¢ € [0.1,0.5); w, = 20rad/s, dc-tracking error < 1%

¢ Do loop shaping to design C(s) s.t., |||WpS| + |WaT|||eo < 1.
— Check L(s) with C(s) = 180, i.e., L(s) = 1801 — violate LF bound.

— Shape L(s) w/ Lead — L(s) = 1801 %":1 — violate HF bound.

— Shape L(s) w/ Lag — L(s) = 180%%% — LF/HF bounds

satisfied. Loop Shaping: C=180(s+1)/(s/10+1)x(s/100+1)/(s/10+1)

©Dongjun Lee

Loop Shaping: Example

e Nominal plant; P = 1. perturbed plant: P = e m

_ 95!5-}-200! _ 100
* Wu = Giasonyz: Wo = & +05"

e Do loop shaping to design C(s) s.t., |||[WpS| + |[WuT||lo < 1.

— With C(s) = 180=tL a1 _, 1 F/HF bounds satisfied.
10 +1 1041

— Check RP via Bode plot of |W,S| + |[W,T.
— Check NS via CL CE: CL poles —0.9925, —99.5023 + 90.457.

RS-LS RP-LS

NP-LS
. 10°

10° T = 10°

oDongjun Lee
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Waterbed Effects

e Bode’s integral theorem for sensitivity function: Suppose L(s) has
relative-degree > 1, has M RHP poles p; (with Re(p;) > 0), and k =
lim,_,00 SL($) (e.g., k = 0 if relative-degree > 2). Then,

/000 In |S(jw)|dw = —kg +m- ZRe(p,)

i=1

— If you “push down” |S(jw)| at some frequency-band, it is lead into
“swelling-up” at another frequency-band.

— Overall level of |S(jw)| will increase if open-loop system is unstable
with fast poles (difficult to stabilize).

o Bode’s integral theorem for complementary sensitivity function:
Suppose L(s) has at least 1 pole at 0, M RHP zeros z;, with k, =
lim,_,¢ sL(s) (e.g., ky = oo if type > 2). Then,

1 T 1
— In|T( - N2
/0 5 In|T(jw)|dw ok, +7 E p

i=1

— Waterbed effect for |T'(jw)|.
— Overall level of |T'(jw)| increase w/ RHP-zeros (bad for performance).

©Dongjun Lee

RHP Poles and RHP Zeros

¢ Effect of combined RHP zeros/poles: Suppose L(s) has N, RHP-
zeros z; and N, RHP-poles p;. Then, Vj =1,..,N,,i=1,..,, N,

P ) 2;—pi

Ny Np
IWpSlleo > [T EEZHWo(25)l,  [[WaTlloo > [T 224 W (25))
i=1

i=1

e It would be extremely difficult to control if RHP-pole and RHP-zero are
close with each other (i.e., unstable mode nearly uncontrollable/unobservable).

1. Suppose L(s) has RHP-pole p and RHP-zero 2. Then, S(p) =
0,T(p) =1and S(z) =1,T(z) =0.
2. Then, we can write S = SgpSmp = :—_T_%Smp where S, is all-pass

with |Sap(jw)| = 1 and |Smp(jw)| = |S(jw)|. Further, [Smp(2)| =
1S(2)|/1S20(2)| = I3551-

3. Moreover, from maximum modulus theorem,

”WPS”OO = Sulep(jw)Smp(jw)| > sup |Wp(3)Smp(3)|
w Re(s)>0

> Wy (2)||Smap(2)] = [Wip(2)| 222

|2—p|

e W, =W, =1, [|Y)]eo > le_i-gll and ||T)|ec > JI%I[’ again, shows difficulty
of control. =

oDongjun Lee
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Bandwidth Limitation with RHP Poles/Zeros

e RHP-poles typically require aggressive/fast control to stabilize. RHP-
zeros typically require non-aggressive/slow control due to inverse response.

e Effect of RHP zeros: approximate bound for the open-loop bandwidth
wp of L(s) is given by

|z|/4  if Re(2) >> Im(z)
wp R we < < |2|/2.8  if Re(z) = Im(z2)
2| if Re(z) << Im(z)

- CL-BW wy, is limited by z and should be slower w.r.t. 2.
- RHP-zeros close to origin is bad.

¢ Effect of RHP-poles: w¢o = wp > 2p, i.e. should be fast enough to
stabilize RHP-pole.

o It would be extremely difficult to control system w/ RHP-poles and RHP-
zeros close with each other; w/ slow RHP-zeros and fast RHP-poles.

1s2—

e Ex) inverted pendulum: G;(s) = me and Ga{s) = = Tm)s)

(e.g., short/light rod, small m/M, large m).

©Dongjun Lee
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