Frequency Domain Techniques and Loop Shaping

Francis Ch.1-7 Chen Ch. 9

Dongjun Lee (이동준)

Department of Mechanical & Aerospace Engineering Seoul National University

Dongjun Lee

Course Info

• Control Systems I

Introductory graduate-level control course, mainly focusing on linear systems, bridge between System Control Theory (undergrad. classical control) and Control System II (nonlinear/optimal control).

- Instructor: Dongjun Lee (djlee@snu.ac.kr, 301-1517, 880-1724)
- Teaching Assistants:
 - Nguyen Hai-Nguyen (Lead: hainguyen@snu.ac.kr, 301-211, 880-1690)
 - Hoyong Lee, Jeongseob Lee (hylee0428, overjs94@snu.ac.kr, same as above)
- Prerequisites
 - $-\,$ System Control Theory (ME2794.002100) or equivalent; or by the consent of instructor
- Grading
 - 1. HW 20% (score 0/1, 0.5/1, 1/1)
 - 2. Mid-term exam $40\% \ 4/19/2017 \ W \ 7-9:30 pm$
 - 3. Final exam 40% 6/14/2017 W 7-10pm

Dongjun Le

ENGINEERING
COLLEGE OF INCREMENTAL SHOPPING

Course Topics

- 1. Loop shaping and fundamental limitations
- 2. Control design using Youla parameterization, coprime factorization
- 3. Linear system state-space representation and solution
- 4. Stability
- 5. Controllability, observability, canonical decomposition
- 6. Minimal realization, balanced realization
- 7. State-space control design, state estimation, separation principle
- 8. Linear quadratic regulator (LQR)
- 9. Kalman-Bucy filter and linear quadratic Gaussian (LQG)
- 10. Kalman estimation and extended Kalman filtering (EKF)

Dongjun Le

Course Info

- Textbooks
 - Linear System Theory and Design, Chen, Oxford University Press
 - Feedback Control Theory, Doyle, Francis & Tannenbaum, Dover
 - Control System Design, Friedland, Dover
- References
 - Multivariable Feedback Control, Skogestad & Postlethwaite, Willey
 - Control System Design, Goodwin, Gradebe & Salgado, Prentice Hall
 - Linear System Theory, Rugh & Kailath, Prentice Hall
 - Principles of Robot Motion, Choset et al, MIT Press
 - Optimal Control: Linear Quadratic Methods, Anderson & Moore, Dover

Basic Feedback Loop

- Plant P(s), controller C(s), filter F(s), all SISO.
- Exogeneous signals: reference r(t), disturbance d(t), noise n(t).
- Signal signals: tracking error e(t), output y(t), control u(t) (or x_1, x_2, x_3).
- Closed-loop transfer functions:

$$\left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight) = rac{1}{1+PCF} \left[egin{array}{ccc} 1 & -PF & -F \ C & 1 & -CF \ PC & P & 1 \end{array}
ight] \left(egin{array}{c} r \ d \ n \end{array}
ight)$$

• Well-posedness (stronger than stability): all closed-loop TFs exist \Leftrightarrow $1 + P(s)C(s)F(s) \neq 0 \ \forall s \in \mathcal{C} \ (\text{e.g.}, \ P = C = 1, F = -1).$

Donaiun Le

ENGINEERI

Well-Posedness and Proper TFs

• Closed-loop transfer functions:

$$\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \frac{1}{1+PCF} \left[\begin{array}{ccc} 1 & -PF & -F \\ C & 1 & -CF \\ PC & P & 1 \end{array}\right] \left(\begin{array}{c} r \\ d \\ n \end{array}\right)$$

- Ill-posedness arises due to the lack of time to response (cf. integrator).
- CL system well-posed if P(s) is strictly proper and C(s), F(s) are proper.
- G(s) is (strictly) stable if analytic in closed-RHP (i.e., $\text{Re}(s) \geq 0$).
- G(s) is proper if $G(j\infty)$ is finite (i.e., $\deg(N) = \deg(D)$).
- G(s) is strictly proper if $G(j\infty) = 0$ (i.e., $\deg(D) > \deg(N)$).
- CL system well-posed if 1 + P(s)C(s)F(s) is not strictly proper.

ENGINEERING
COLLEGE OF INFERTING
SHOOT ANTIONAL SHEETING

• Closed-loop transfer functions:

$$\left(\begin{array}{c} e \\ y \\ u \end{array} \right) = \frac{1}{1 + PCF} \left[\begin{array}{ccc} 1 & -PF & -F \\ PC & P & -PCF \\ C & -PCF & -CF \end{array} \right] \overline{ \left(\begin{array}{c} r \\ d \\ n \end{array} \right) }$$

- Def: The CL system is internally stable if all nine TFs are stable.
 - Not enough just to ensure stability of input-output TF (i.e., $\frac{PC}{1+PCF}$).
 - Internal instability with unstable pole-zero cancelation (e.g., with $P=\frac{1}{s^2-1},\,C=\frac{s-1}{s+1},\,F=1,\,r\to y$ stable, yet, $d\to y$ unstable)
- Th. 1-1: CL system is internally stable iff no CL poles in $Re(s) \ge 0$.
 - Write P, C, F as coprime polynomials (i.e., with no common factors): $P = \frac{N_P}{M_P}, C = \frac{N_C}{M_C}, F = \frac{N_F}{M_F} \Rightarrow \frac{1}{1 + PCF} = \frac{M_P M_C M_F}{N_P N_C N_F + M_P M_C M_F}.$ $- \text{ CL poles} = \text{zeros of } N_P N_C N_F + M_P M_C M_F = 0 \text{ (w/o PZ-cancelation)}.$

 - $-\text{ CL TF matrix: } \frac{1}{N_PN_C+M_PM_C} \left[\begin{array}{ccc} M_PM_C & -N_PM_C & -M_PM_C \\ M_PN_C & M_PM_C & -M_PN_C \\ N_PN_C & -N_PM_C & M_PM_C \end{array} \right]$
 - (\Leftarrow) obvious; (\Rightarrow) if not, that unstable pole should be canceled in all nine TFs \rightarrow impossible w/ coprimeness among M_{\star}, N_{\star} .

Internal Stability $r(t) \rightarrow c(t) \rightarrow c($

• Feedback system transfer functions:

$$\left(\begin{array}{c} e \\ y \\ u \end{array}\right) = \frac{1}{1+PCF} \left[\begin{array}{ccc} 1 & -PF & -F \\ PC & P & -PCF \\ C & -PCF & -CF \end{array}\right] \left(\begin{array}{c} r \\ d \\ n \end{array}\right)$$

- Th. 1-2: The CL system is internally stable if and only if:
 - 1. $1 + PCF = \frac{N_P N_C N_F + M_P M_C M_F}{M_P M_C M_F}$ has no zeros in Re(s) \geq 0; and
 - 2. No unstable pole-zero cancelation when the loop-TF PCF is formed.
 - (\Rightarrow) First condition obvious. Also, from Th. 1-1, no unstable zeros of $N_P N_C N_F + M_P M_C M_F \rightarrow$ no unstable pole-zero cancelation possible.
 - (⇐) Will show that, under two conditions, CL poles necessarily stable. Suppose not. Then, $\exists s_o$, s.t., $[N_P N_C N_F + M_P M_C M_F](s_o) = 0$, $\operatorname{Re}(s_o) \geq 0.$
 - 1. Suppose $[M_PM_CM_F](s_o) \neq 0 \rightarrow [\frac{M_PM_CM_F + N_PN_CN_F}{M_PM_CM_F}](s_o) = [1 + PCF](s_o) = 0 \rightarrow \text{contradict to condition 1.}$
 - 2. Suppose $[M_P M_C M_F](s_o) = 0 \rightarrow [N_P N_C N_F](s_o) = 0 \rightarrow \text{unstable}$ PZ-cancelation \rightarrow contradict to condition 2.

Unit Feedback System

• Unit-feedback CL transfer functions with F(s) = 1:

$$\left(\begin{array}{c} e \\ y \\ u \end{array}\right) = \frac{1}{1+PC} \left[\begin{array}{ccc} 1 & -P & -1 \\ PC & P & -PC \\ C & -PC & -C \end{array}\right] \left(\begin{array}{c} r \\ d \\ n \end{array}\right) \xrightarrow[]{r(t)_{+}} e(t) \xrightarrow[]{e(t)} \left(\begin{array}{c} l(t) \\ l(t) \\ l(t) \end{array}\right) \xrightarrow[]{p(t)} \left(\begin{array}{c} l(t) \\ l(t) \\ l(t) \end{array}\right) \xrightarrow[]{e(t)} \left(\begin{array}{c} l(t) \\ l(t) \\ l(t)$$

- Nyquist stability theorem: Construct Nyquist plot of L = PC, indenting to RHP around poles on jw-axis. Let n denote unstable poles of P and C. Then, CL system is internally stable iff Nyquist plot doesn't pass through (-1,0) and encircles it exactly n-times counter-clockwise.
- Sensitivity function $S := \frac{e}{r} = \frac{1}{1+L} = \frac{1}{1+PC} = \frac{M_P M_C}{N_P N_C + M_P M_C}$.
 - Step tracking if S has at least one zero at s=0; ramp tracking if two zeros at s=0 (cf. system type, smaller \rightarrow better performance).
- Complementary sensitivity function $T := \frac{y}{r} = \frac{L}{1+L} = \frac{PC}{1+PC} = \frac{N_P N_C}{N_P N_C + M_P M_C}$.
 - Total transfer function from reference r to output y.
 - S is sensitivity of total TF T against ΔP : $S = \frac{\partial T/T}{\partial P/P}$.
 - -S(s) + T(s) = 1 with T relevant to robust stability.

Dongjun Lee

ENGINEERIN COLLIGI OF INSTRIBIT

Control Parameterization: Stable P

• Unit-feedback transfer functions:

$$\begin{pmatrix} e \\ y \\ u \end{pmatrix} = \frac{1}{1 + PC} \begin{bmatrix} 1 & -P & -1 \\ PC & P & -PC \\ C & -PC & -C \end{bmatrix} \begin{pmatrix} r \\ d \\ n \end{pmatrix} \xrightarrow{r(t) + c(t)} C(s) \xrightarrow{t} C(s) \xrightarrow{t} P(s) \xrightarrow{t} P(s)$$

- Control synthesis: given P, design C s.t., feedback system (1) is internally stable and (2) acquires some desired properties (e.g., tracking).
- Parameterize stabilizing $C \to \text{tweak } C$ to achieve desired properties.
- Th. 1-3: Suppose $P \in \mathcal{S}$, where \mathcal{S} is the set of all stable, proper, real-rational functions. Then, all the stabilizing controllers are given by

$$C = \frac{Q}{1 - PQ}, \quad \forall Q \in \mathcal{S} \qquad \stackrel{\frac{r(\theta : t_0)}{t_0} - \frac{y(t)}{t_0}}{\uparrow} \stackrel{y(t)}{\longleftarrow} \stackrel{\frac{r(\theta : t_0)}{t_0} - \frac{y(t)}{t_0}}{\uparrow} \stackrel{y(t)}{\longleftarrow} \stackrel{y(t)$$

- Affine relation: S = 1 PQ, $T = PQ \rightarrow$ not work for unstable P.
- (Ex) Design ramping tracking control for $P(s) = \frac{1}{(s+1)(s+2)}$.
 - S with at least two zeros at $s = 0 \rightarrow Q = \frac{as+b}{s+1} \rightarrow CL$ stable.
 - $-S = 1 PQ = \frac{s^3 + 4s^2 + (5 a)s + (2 b)}{(s + 1)^2(s + 2)} \rightarrow a = 5, b = 2 \text{ (increase order}[C]).$

Coprime Factorization

• **Bezout identity:** given polynomials $N(s), M(s), \exists$ polynomials X(s), Y(s)

N(s)X(s) + M(s)Y(s) = 1

iff N(s), M(s) are coprime $(X = s + 1, Y = s^2 + s;$ also for integers).

• Coprimeness of TFs: we say $N(s), M(s) \in \mathcal{S}$ are coprime if $\exists X(s), Y(s) \in \mathcal{S}$ \mathcal{S} s.t.,

N(s)X(s) + M(s)Y(s) = 1

This coprimeness of N, M holds is iff N(s), M(s) have no common zero in $\operatorname{Re}(s) \geq 0$ and at $s \to \infty$ (i.e., both N, M can't be strictly proper).

• Coprime factorization: for any real-rational TF G(s), we can always write its coprime factorization over S s.t.,

 $G(s) = rac{N(s)}{M(s)}, \quad NX + NY = 1, \ N, M, X, Y \in \mathcal{S}$

- (Ex) $G(s) = \frac{1}{s-1} \to N(s) = \frac{1}{s+1}$, $M(s) = \frac{s-1}{s+1}$ (all pass). What if $(N, M) = (\frac{1}{(s+1)^2}, \frac{s-1}{(s+1)^2})$ or $(N, M) = (\frac{(s-2)}{(s+1)^2}, \frac{(s-1)(s-2)}{(s+1)^2})$? (Ex: Euclid against $G(s) = \frac{1}{(s-1)(s-2)} \to N = \frac{1}{(s+1)^2}$, $M = \frac{(s-1)(s-2)}{(s+1)^2}$,
- $X = \frac{19s-11}{s+1}, Y = \frac{s+6}{s+1}.$

Youla Parameterization

• Th. 1-4: Consider unit feedback system with possibly unstable $P = \frac{N}{M}$, where $N, M \in \mathcal{S}$ are coprime with $NX + MY = 1, X, Y \in \mathcal{S}$. Then, all the stabilizing controllers are given by

$$C = rac{X + MQ}{Y - NQ}, \quad orall Q \in \mathcal{S}$$

- Main idea of proof:
 - (Lemma 1-1) Let $C = \frac{N_C}{M_C}$ be a comprime factorization. Then, the feedback system is internally stable iff $(NN_C + MM_C)^{-1} \in \mathcal{S}$.
 - (\Leftarrow) Given $Q \in \mathcal{S}$ and C as above, define $N'_C := X + MQ$, $M'_C :=$ Y - NQ (not necessarily coprime) \rightarrow put these into NX + MY = 1, we have $NN'_C + MM'_C = 1$, implying N'_C, M'_C are coprime. Further, CL stable from Lem. 1-1 w/ $NN'_C + MM'_C \in \mathcal{S}$.
 - (\Rightarrow) Suppose internal stability with C and let $C = \frac{N_C}{M_C}$ its coprime factorization. Define $V := (NN_C + MM_C)^{-1} \in \mathcal{S}$ (Lem. 1-1). Define Q s.t., $M_CV =: Y - NQ \rightarrow \text{put this into } NN_CV + MM_CV = 1$ $\rightarrow NN_CV + M(Y - NQ) = 1$. Also, from NX + NY = 1, N(X + NQ) = 1MQ) + M(Y - NQ) = 1. Thus, $N_C V = X + MQ$, and $C = \frac{N_C V}{M_C V} = 1$ $\frac{X+MQ}{Y-NQ}$. Further, $(NX+MY)Q=YN_CV-XM_CV\to Q\in\mathcal{S}$.

Q-Parameterization: Example

• Th. 1-4: Consider unit feedback system with possibly unstable $P = \frac{N}{M}$ where $N, M \in \mathcal{S}$ are coprime with $NX + MY = 1, X, Y \in \mathcal{S}$. Then, all the stabilizing controllers are given by

$$C = rac{X + MQ}{Y - NQ}, \quad orall Q \in \mathcal{S}$$

- S = M(Y NQ) and T = N(X + MQ), still all affine in Q.
- (Ex) Design control C for $P = \frac{1}{(s-1)(s-2)}$ s.t., (1) CL system internally stable; (2) perfect step tracking when d = 0; and (3) rejection of sinusoid disturbance d of 10 rad/s.
 - From Th. 1-4, $C = \frac{X+MQ}{Y-NQ}$ with $Q \in \mathcal{S}$. With this, $H_{r\to y} = T = N(X+MQ)$ and $H_{d\to y} = N(Y-NQ)$.
 - Step tracking/stabilization (dc-gain): $H_{r\to y}(0) = 1 = N(0)[X(0) + y]$ $M(0)Q(0) = 1 \rightarrow Q(0) = 6.$
 - Disturbance rejection (zero at jw): $H_{d\to u}(jw) = 0 = N(10j)[Y(10j) N(10j)Q(10j)] \rightarrow Q(10j) = -94 + 70j.$
 - Three constraints for $Q: Q = a + \frac{b}{s+1} + \frac{c}{(s+1)^2} \to C(s)$.

Pole Placement Control

• Unit feedback system:
$$P = \frac{N_P}{M_P}$$
, $C = \frac{N_C}{M_C}$ coprime polynomials N_{\star} , M_{\star} ,
$$\begin{pmatrix} e \\ y \\ u \end{pmatrix} = \frac{1}{N_P N_C + M_P M_C} \begin{bmatrix} M_P M_C & -N_P M_C & -M_P M_C \\ N_P N_C & N_P M_C & -N_P N_C \\ N_C M_P & -N_P N_C & -N_C M_P \end{bmatrix} \begin{pmatrix} r \\ d \\ n \end{pmatrix}$$

• Pole-placement control: given desired CL-CE F(s) and $N_P(s)$, $M_P(s)$, design $N_C(s), M_C(s)$ s.t.,

$$N_C(s)N_P(s) + M_C(s)M_P(s) = F(s)$$

- From Bezout's identity, there exist coprime polynomials X, Y s.t., $N_PX + M_PY = 1$ iff N_P, M_P are coprime.
- Thus, we can always find a solution $\bar{N}_C(s) = F(s)X(s), \bar{M}_C(s) =$ F(s)Y(s) iff N_P, M_P are coprime (may not stabilizing though).
- General solution: $N_C(s) = \bar{N}_C(s) + M_P(s)Q(s), M_C(s) = \bar{M}_C(s)$ $N_P(s)Q(s)$ for any polynomial Q(s) with

$$C(s) = rac{X(s)F(s) + M_P(s)Q(s)}{Y(s)F(s) - N_P(s)Q(s)}$$

implying that unit-feedback cannot alter open- $H_{r \to y} = \frac{N_C N_P}{N_P N_C + M_P M_C}$ implying that unit-feedback cannot alter open loop zeros \to two-DOF control for model (i.e., pole-zero) matching.

Pole Placement via Linear Algebra

• Pole-placement control: given desired CL-CE F(s) and $N_P(s), M_P(s)$, design $N_C(s), M_C(s)$ s.t.,

 $N_C(s)N_P(s) + M_C(s)M_P(s) = F(s)$

• Given $\deg(M_P) = n$, choose $\deg(M_C) = m$ to match $\deg(F) = n + m$. The larger m is (i.e., more DOFs), the more likely can match F(s). Then,

$$N_P(s) = a_{p0} + a_{p1}s + ...a_{pn}s^n$$
, $M_P(s) = b_{p0} + b_{p1}s + ...b_{pn}s^n$, $N_C(s) = a_{c0} + a_{c1}s + ...a_{cm}s^m$, $M_C(s) = b_{c0} + b_{c1}s + ...b_{cm}s^m$, $F(s) = f_0 + f_1s + ...f_{n+m}s^{n+m}$

with $a_{pn} = 0$, $b_{pn} \neq 0$, $b_{cm} \neq 0 \rightarrow f_{n+m} = b_{pn}b_{cm} + a_{pn}a_{cm} = b_{pn}b_{cm} \neq 0$.

• The pole-placement can then be written by linear equation (Chern Ch.9):

$$[S_m]_{(n+m+1)\times 2(m+1)}[b_{co};a_{co};...;b_{cm};a_{cm}]=[f_o;...;f_{n+m}]$$

which has a solution if $2(m+1) \ge n+m+1$ due to the structure of S_m .

• Th. 1-5: For the above problem, for any F(s) with $\deg(F) = n + m$, there always exist a proper $C = \frac{N_C}{M_C}$ with $\deg(C) = m$, if $m \ge n - 1$.

Donaiun Lee

ENGINEERI

Example: Chen 9.2

- For $P = \frac{s-2}{s^2-1}$, design a proper compensator C so that y can track any step response.
 - 1. Choose desired CL poles: $F(s) = (s+2)(s^2+2s+2) = s^3+4s^2+6s+4$.
 - 2. Set up linear pole-placement equation:

$$\begin{bmatrix} -1 & -2 & 0 & 0 \\ 0 & 1 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} b_o \\ a_o \\ b_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 4 \\ 1 \end{pmatrix}$$

with S_m full column rank (i.e., solution exists if $m \ge n - 1$).

- 3. Compute the control law: $C = -\frac{22s+23}{3s+34}$.
- 4. Analyze dc-tracking performance: $T(0) = \frac{P(0)C(0)}{1+P(0)C(0)} = \frac{23}{6}$.
- 5. Design pre-compensator $P(s) = \frac{6}{23}\bar{P}(s), \ \bar{P}(s) \in \mathcal{S}$ with P(0) = 1.

Internal Model Control

• Suppose we want to track a class of reference signal r(t) while rejecting a class of disturbance d(t), given by

particle d(t), given by $r(s) = \frac{\hat{N}_r(s)}{D_r(s)}, \quad d(s) = \frac{\hat{N}_d(s)}{D_d(s)}$

where D_r, D_d are **known**, yet, \hat{N}_r, \hat{N}_d unknown (e.g., any ramp $r(s) = \frac{\hat{N}_r(s)}{s^2}$, any step+sinusoid with known $w d(s) = \frac{\hat{N}_d(s)}{s(s^2+w^2)}$).

- Incorporate this information of r, d into the controller to achieve robust tracking and disturbance rejection \rightarrow internal model control.
- Define $\phi(s)$ to be least common denominator of unstable (i.e., non-vanishing) poles of r(s), d(s) (e.g., $\phi = s^2(s^2 + w^2)$) and incorporate into control.
- $H_{d \to y}(s) = \frac{N_P M_C \phi}{N_P N_C + M_P M_C \phi} \to y(s) = \frac{N_P M_C \phi}{N_P N_C + M_P M_C \phi(s)} \frac{\hat{N}_d(s)}{D_d(s)} = \frac{N_P M_C \phi(s)}{F(s)} \frac{\hat{N}_d(s)}{D_d(s)}$ $\to \text{ with CL-CE } F(s) \text{ Hurwitz}, \ y(\infty) = \lim_{s \to 0} s \frac{N_P M_C \phi(s)}{F(s)} \frac{\hat{N}_d(s)}{D_d(s)} = 0.$
- $H_{r \to e}(s) = \frac{M_P M_C \phi}{N_P N_C + M_P M_C \phi} \to e(s) = \frac{M_P M_C \phi}{N_P N_C + M_P M_C \phi(s)} \frac{\hat{N}_r(s)}{D_r(s)} = \frac{M_P M_C \phi(s)}{F(s)} \frac{\hat{N}_r(s)}{D_r(s)}$ $\to \text{ with CL-CE } F(s) \text{ Hurwitz, } e(\infty) = \lim_{s \to 0} s \frac{M_P M_C \phi(s)}{F(s)} \frac{\hat{N}_r(s)}{D_r(s)} = 0.$

Dongjun Lee

ENGINEERIN

Pole Placement for IMC

• Suppose we want to track a class of reference signal r(t) while rejecting a class of disturbance d(t), given by

$$r(s)=rac{\hat{N}_r(s)}{D_r(s)}, \ \ d(s)=rac{\hat{N}_d(s)}{D_d(s)}$$

• CL pole placement with IMC:

$$N_P(s)N_C(s) + M_P(s)M_C(s)\phi(s) = F(s)$$

where N_P, M_P are coprime. Thus, if no common zeros between $\phi(s)$ and $N_P(s), N_P$ and $M_P\phi$ are coprime \to from **Th.1-5**, \exists a proper $C(s) = \frac{N_C}{M_C}$ if $m \ge n + n_d - 1$, $n = \deg(P)$, $n_d = \deg(\phi)$, $m = \deg(C)$.

- A simplest form of IMC is I-control to reject constant disturbance.
- (Chen Ex 9.3) Design control for $P = \frac{s-2}{s^2-1}$ to track any step reference.
 - IMC $\phi(s) = s$. Then, $m \ge 2 \to \deg[F(s)] = 5$.
 - Choose $F(s) = (s+2)(s^2+4s+5)(s^2+2s+5)$.
 - Solve LA to obtain N_C, M_C : $C(s) = \frac{N_C(s)}{M_C(s)\phi(s)} = -\frac{96.3s^2 + 118.7s + 25}{s(s^2 + 127.3)}$.
 - $-T(0) = \frac{P(0)C(0)}{1+P(0)C(0)} = 1$ (de-tracking). $H_{d\to y}(0) = \frac{P(0)}{1+P(0)C(0)} = 0$

Dongjun Lee (constant disturb. rejection)

ENGINEERING
COLLEGE OF ENGINEERING
MEDICAL SHIPERING

 $\sum_{t=0}^{t} n(t)$

Model Matching Control

- So far, we have been working on CL pole placement control (i.e., F(s)), yet, CL system behavior also (possibly severely) depends on zeros as well.
- Model matching problem: given P, design a proper C s.t., the CL behavior $H_{r\to u}(s)$ matches with a desired TF $H_o(s)$.
- Unit feedback can do arbitrary pole-placement F(s), yet, not general model matching $H_o(s) \to \text{FF}$ pre-compensator $C_1 + \text{FB}$ control C_2 .
- Even with two-DOF control, not arbitrary $H_o(s)$ implementable due to OL-dynamics P(s) (e.g., $H_{r\to y} = \frac{N_P N_1}{N_P N_2 + M_P M_2}$ w/ unmovable zeros of P).
- Th. 1-6: Consider $P = \frac{N_P}{M_P}$. Then, $H_o(s) = \frac{E(s)}{F(s)}$ is implementable iff:
 - 1. CL-CE F(s) is Hurwitz.
 - 2. $\deg(F) \deg(E) \ge \deg(M_P) \deg(N_P)$ (relative degree can't decrease).
 - 3. All zeros of $N_P(s)$ with zero/positive real parts are also zeros of E(s)(non-minimum phase zeros not removable).

Model Matching Procedure

Given $P = \frac{N_P}{M_P}$ and $H_o = \frac{E}{F}$ (satisfying **Th. 1-6**), design proper $C_1 = \frac{N_1}{M_C}$ and $C_2 = \frac{N_2}{M_C}$ s.t., $H_{r \to y}(s) = H_o(s)$ while ensuring CL internal stability.

- 1. Define coprime \bar{E}, \bar{F} s.t., $\frac{H_o}{N_P} = \frac{\bar{E}}{FN_P} = \frac{\bar{E}}{\bar{F}}$.

 May attempt $H = \frac{PC_1}{1+PC_2} = \frac{N_PN_1}{M_PM_C+N_PN_2} = H_o = \frac{\bar{E}N_P}{\bar{F}} \rightarrow N_1 = \bar{E}$ and solve M_C, N_2 from $M_PM_C + N_PN_2 = \bar{F}$ with coprime N_P, M_P \rightarrow typically, deg(\bar{F}) not enough (e.g., improper C_2 w/ HO P).
- 2. Augment $\bar{F}(s)$ w/ a Hurwitz $\hat{F}(s)$ s.t., $\deg(\bar{F}\hat{F}) \geq 2n-1$, $n = \deg(M_P)$.
- 3. Rewrite $H_o=\frac{\bar{E}\hat{F}N_P}{\bar{F}\hat{F}}=H=\frac{N_PN_1}{M_PM_C+N_PN_2},$ and choose/solve for N_2,M_C :

$$N_1(s) = ar{E}(s)\hat{F}(s), \quad M_P(s)M_C(s) + N_P(s)N_2(s) = ar{F}(s)\hat{F}(s)$$

which has a solution N_2, M_C , since N_P, M_P coprime and $m = \deg(M_C) =$ $\deg(\bar{F}\hat{F}) - \deg(M_p) \ge n - 1$ (cf. **Th. 1-5**).

4. $C_2 = \frac{N_2}{M_C}$ is proper (**Th. 1-5**) Also, for $C_1 = \frac{\bar{E}\hat{F}}{M_C} = \frac{N_1}{M_C}$, from item 2 of **Th. 1-6**, $\deg(\bar{F}\hat{F}) - \deg(\bar{E}\hat{F}N_P) \ge \deg(M_P) - \deg(N_P) \to \deg(\bar{E}\hat{F}) = \deg(N_1) \le \deg(\bar{F}\hat{F}) - \deg(M_P) = n + m - n = m \to C_1$ also proper.

Model Matching: Example 9.8 Chen

- (Ex 9.8) Given $P = \frac{s-2}{s^2-1}$, match $H_o(s) = \frac{-(s-2)(4s+2)}{(s+2)(s^2+2s+2)}$.
 - $H_o(s)$ ensures step and ramp tracking: $H_o=rac{-4s^2+6s+4}{s^3+4s^2+6s+4}$
 - $-H_o(s)$ is implementable:
 - Compue $\bar{E}(s), \bar{F}(s)$: $\frac{H_o}{N_P} = \frac{\bar{E}}{\bar{F}} = \frac{-(4s+2)}{s^3+4s^2+6s+4}$.
 - Compute $\hat{F}(s)$: $\deg(\bar{F}\hat{F}) \geq 2n-1=3 \rightarrow \hat{F}=1$.
 - Compute C_1 via direct substitution and Bezout: $N_1=-(4s+2)$, $M_C=s+34/3 \rightarrow C_1=\frac{-(4s+2)}{s+34/3}$.
 - Compute C_2 via Bezout: $C_2 = \frac{-(22s+23)}{3s+34}$.

Dongjun Lee

MPR ENGINEERI

Nominal Performance

• We have considered tracking of step, ramp or sinusoid sign freq. Yet, in practice, often, need to track signals with fr

- For tracking, ideally, we want $||S||_{\infty} = \frac{e}{r} \equiv 0 \rightarrow \text{impossib}$
- Nominal performance: $||W_pS||_{\infty} < 1$, where $W_p(s) \in S$ is frequency-dependent performance weight:
 - $-W_p(s) = \frac{100}{(s+1)^3}$ for tracking up to 1rad/s with error less than 1/100.
 - $-W_p(s) = \frac{s/M + w_B^*}{s + w_B^*A}$ for CL bandwidth w_B^* (w/ $|W_p(jw_B^*)| \approx 1$), LF track $|e_{ss}| < A < 1$ and HF max peak of |S(jw)| < M (stability).
- Signal norm of $u(t) \in \Re$:
 - Defining properties: (1) $||u|| \ge 0$; (2) ||u|| = 0 iff $u(t) \equiv 0$; (3) $||au|| = |a| \cdot ||u||$; (4) $||u + v|| \le ||u|| + ||v||$.
 - 2-norm: $||u||_2 := \sqrt{\int_{-\infty}^{+\infty} |u(t)|^2 dt}; \infty$ -norm $||u||_{\infty} := \sup_t |u(t)|,$
- System norm of H(s) (or h(t)):
 - -\[\infty\]-norm: $||H||_{\infty}:=\sup_{w}|H(jw)|$ with $||y||_{2}=||H||_{\infty}||u||_{2}$ (via Parseval's identity); if $u(t)=A\sin wt$, $w\in\Re$, $||y||_{\infty}=||H||_{\infty}A$.

Dongjun Le

ENGINEERING

Multiplicative Uncertainty

- So far, we have rather neglected uncertainty in system, we only degrade performance but also destabilize CL system.
- Goal: maintain CL-system stability (i.e., robust stability)
- Multiplicative uncertainty: plant perturbed by uncertainty given by

$$\tilde{P} = (1 + W_u \Delta) P, \quad \frac{\tilde{P} - P}{P} = W_u \Delta \Rightarrow \left| \frac{\tilde{P}(jw) - P(jw)}{P(jw)} \right| \leq |W_u(jw)|$$

where $W_u \in \mathcal{S}$ is uncertainty weight (e.g., large for HP), $\Delta \in \mathcal{S}$ is (any) nominal uncertainty with $||\Delta||_{\infty} < 1$ w/o unstable pole cancelation of P (i.e., allowable uncertainty).

- Given scattered gain/phase measurements (M_{ik}, ϕ_{ik}) at w_i : $\left|\frac{M_{ik}e^{j\phi_{ik}}}{M_ie^{j\phi_i}} 1\right| < |W_u(jw_i)|$
- Nominal $P(s)=1/s^2$ perturbed by delay up to $\tau=0.1s$ with $\tilde{P}=e^{-\tau s}\frac{1}{s^2}\Rightarrow |\frac{\tilde{P}}{P}-1|=|e^{-j\tau w}-1|<|W_u(jw)|$ for $W_u=\frac{0.21s}{0.1s+1}$.

Dongjun Lee

Robust Stability

- Given P and uncertainty information W_u , design control law C to ensure robust stability for any plant $\tilde{P} \in \mathcal{P} := \{(1 + W_u \Delta)P\}$.
- Th. 1-7: Assume C stabilizes nominal plant P, with PC and $\tilde{P}C$ having same number of RHP-poles. Then, C provides robust stability for any plant $\tilde{P} \in \mathcal{P}$ iff $||W_uT||_{\infty} < 1$, where $T = \frac{PC}{1+PC}$.
 - (⇐) Convert feedback diagram and apply small-gain theorem.
 - (\Rightarrow) Suppose not, i.e., $|W_u(jw)T(jw)| \ge \gamma \ge 1$. Consider Nyquist plot of $\tilde{L} = \tilde{P}C$ w.r.t. (-1,0)-point:

$$1 + \tilde{L} = 1 + \tilde{P}C = (1 + L)(1 + \Delta W_u T)$$

where $1+L\neq 0$ with # of encirclement same as OP RHP-poles. Then, can find Δ w/ $|\Delta(jw)|=1/\gamma\leq 1$, $\angle\Delta(jw)=-\pi+\angle W_uT$ at $w\to \tilde{L}$ touches $(-1,0)\to \text{unstable}\to \text{contradiction}$.

• Small gain theorem: Let H_1 and H_2 be (possibly nonlinear) stable systems with finite IO-gains $||H_1||, ||H_2||$. If $||H_1|| \cdot ||H_2|| < 1$, their feedback system is also stable.

Robust Performance

• Given P and uncertainty W_u , design control C to ensure **robust stability** and **robust performance** for any plant $\tilde{P} \in \mathcal{P} := \{(1 + W_u \Delta)P\}$, i.e.,

$$||W_uT||_{\infty} < 1, \quad ||W_p\tilde{S}||_{\infty} < 1, \quad \forall \tilde{P} \in \mathcal{P}$$

where
$$\tilde{S} = \frac{1}{1+\tilde{L}} = \frac{1}{1+\tilde{P}C}$$
. Then, $||W_p \tilde{S}||_{\infty} = \left\|\frac{W_p S}{1+\Delta W_u T}\right\|_{\infty} < 1$

• Th. 1-8: A necessary and sufficient condition for RP (also RS) is

$$|| |W_p S| + |W_u T| ||_{\infty} < 1$$

- $\begin{array}{l} -\ (\Leftarrow)\ ||W_uT||_{\infty} < 1\ \text{obvious. Also,}\ |||W_pS| + |W_uT|||_{\infty} < 1 \to |W_pS| + \\ |W_uT| < 1 \to \frac{|W_pS|}{1 |W_uT|} < 1 \to \left\|\frac{W_pS}{1 + \Delta W_uT}\right\|_{\infty} \leq \left\|\frac{|W_pS|}{1 |W_uT|}\right\|_{\infty} < 1. \end{array}$
- $\ (\Rightarrow) \ \left\| \frac{W_p S}{1 + \Delta W_u T} \right\|_{\infty} < 1 \rightarrow \left\| \frac{W_p S}{1 |W_u T|} \right\|_{\infty} \le \left\| \frac{W_p S}{1 + \Delta W_u T} \right\|_{\infty} < 1.$
- Maximum tolerable uncertainty $||\Delta||_{\infty} \leq \beta$:
 - RS: $1 + \tilde{L} = (1 + L)(1 + \Delta W_u T) \rightarrow |\beta W_u T| < 1 \rightarrow \beta < \frac{1}{||W_u T||_{\infty}}$
 - $\text{ RP: } \left\| \frac{W_p S}{1 + \Delta W_u T} \right\|_{\infty} < 1 \rightarrow \left| \frac{W_p S}{1 \beta |W_u T|} \right| < 1 \rightarrow \beta < \left\| \frac{1 |W_p S|}{W_u T} \right\|_{\infty}.$

Ongiun Lee

ENGINEERI

Graphical Representations

• Nominal performance: $||W_p S||_{\infty} < 1$ $|1 + L(jw)| > |W_p(jw)|, \forall w$

• Robust stability: $||W_uT||_{\infty} < 1$ $|1 + L(jw)| > |W_u(jw)L(jw)|, \ \forall w$

• Robust performance: $|||W_pS| + |W_uT|||_{\infty} < 1$ $|1 + L(jw)| > |W_p(jw)| + |W_u(jw)L(jw)|, \ \forall w$

RP Design Example

- Nominal plant (integrator): $P = \frac{1}{s}$.
- Perturbed plant: $\tilde{P} = \frac{1}{s} \frac{k}{ms^2 + bs + k} \rightarrow \frac{\tilde{P} P}{P} = \frac{s^2 + 2\zeta w_n s}{s^2 + 2\zeta w_n s + w_n^2}$.
- Performance specification: $w_c = 20 \text{rad/s}$, dc-tracking error $\leq 1\%$
- Design performance weight function: $W_p = \frac{100w_c^5}{(s+w_c)^5}$.
- Uncertainty: $w_n \in [200, 500]$ Hz, $\zeta \in [0.1, 0.5]$.
- \bullet Design uncertainty weight function: $W_u = \frac{9s}{s+1500} \to W_u = \frac{9s(s+200)}{(s+1500)^2}$

RP Design Example

- Perturbed plant: $\tilde{P} = \frac{1}{s} \frac{k}{ms^2 + bs + k}$. $W_u = \frac{9s(s + 200)}{(s + 1500)^2}$, $W_p = \frac{100}{(\frac{9}{20} + 1)^5}$.
- $w_n \in [200, 500]$ Hz, $\zeta \in [0.1, 0.5]$; $w_c = 20$ rad/s, dc-tracking error $\leq 1\%$.
- Design P-control C(s) = K s.t., $|||W_p S| + |W_u T|||_{\infty} < 1$.
 - Design K for NP: K = 600 and check RS and RP.
 - Decrease K improves RS, yet, degrades RP \rightarrow P-control can't satisfy both (or reduce performance W_p or improve system-ID W_u --).
 - More complicated control \rightarrow Loop shaping.

Loop Shaping

ullet Loop shaping: graphical technique to shape loop-transfer function L(s)=P(s)C(s) to satisfy RP and internal stability:

$$|||W_{p}S| + |W_{u}T|||_{\infty} < 1$$

if such control law exists, where $S = \frac{1}{1+L}$ and $T = \frac{L}{1+L}$.

 $\bullet\,$ Typically, L should have large gain in LF (for performance) and low gain in HF (for robust stability). More precisely, basic loop shaping condition:

$$|L(jw)| > \frac{|W_p|}{1-|W_u|} \text{ (LF)}, \quad |L(jw)| < \frac{1-|W_p|}{|W_u|} \text{ (HF)}$$

• Simplest loop shaping: lead (to increase w_c while improving PM) and lag (to increase tracking in LF w/o affecting GM/PM).

Loop Shaping: Derivation

• Stability-performance trade-off: A necessary condition for L(s) to satisfy RP is

$$\min\{|W_p(jw)|, |W_u(jw)|\} < 1, \quad \forall w \ge 0$$

can't allow high performance 8 high uncertainty at same band

i.e., both $|W_n|$ and $|W_n|$ can't be larger than 1 at the same time.

- Suppose not, i.e., at w', $|W_p| \ge 1$ and $|W_u| \ge 1$. WLG, assume $|W_p| \geq |W_u|$. Then, at w',

$$|W_p S| + |W_u T| \ge |W_u S| + |W_u T| = |W_u S| + |W_u (1 - S)| \ge |W_u| \ge 1$$

• Now, define $\Gamma(w):=\frac{|W_p|}{|1+L|}+\frac{|W_uL|}{|1+L|}$. Then, RP iff $\Gamma(w)<1\ \forall w$. Also,

$$|L| < \tfrac{1 - |W_p|}{|W_u| - 1} \approx \tfrac{1 - |W_p|}{|W_u|}, \quad |L| < \tfrac{1 - |W_p|}{1 + |W_u|} \approx \tfrac{1 - |W_p|}{|W_u|}$$

ENGIN

Loop Shaping: Conditions

- We assume stable/minimum-phase P(s) (i.e., no RHP pole/zero) to avoid unstable/non-minimum-phase L = PC (general case \rightarrow Doyle Ch. 8).
- A necessay condition for W_p, W_u : $\min\{|W_p(jw)|, |W_u(jw)|\} < 1$.
- HF roll-off of L should be at least as fast as that of P (proper C).
- Slop of |L| at crossover frequency w_c (i.e., $|L(jw_c)|$) should be as gentle as possible (-20[dB/dec] to -40[dB/dec]).
- Loop shaping is based on approximation: NS, RP shoul be checked a posterior (RP assumes RS, RS assumes NS).
- Bode's gain formula: For a non-minimum phase stable L with all positive coefficients, its phase $\angle L(jw_o)$ is uniquely given by: with $\nu := \ln(w/w_o)$,

$$\angle L(jw_o) = rac{1}{\pi} \int_{\infty}^{+\infty} rac{d \ln |L|}{d
u} \ln rac{|w+w_o|}{|w-w_o|} d
u$$

where, if constant slop $\frac{d \ln |L|}{d \nu} = c$ at w_o , $\angle L(j w_o) = -\frac{c \pi}{2}$.

- The stiffer the slop of $|L(jw_c)|$ is, the less the PM is.
- For system w/ RHP-zeros, phase angle larger than minimum angle above.

Donaius I o

Loop Shaping: Procedure

1. For stable/minimum-phase nominal plant P, design W_p , W_u s.t.,

$$\min\{|W_p|,|W_u|\}<1,\ \forall w$$

2. On $(\log w, 20 \log |L|)$ plane, plot LF and HF bounds:

$$\frac{\left|W_{p}\right|}{1-\left|W_{u}\right|}, \quad \left|W_{p}\right| >> 1 > \left|W_{u}\right| \left(\text{LF}\right) \quad \frac{1-\left|W_{p}\right|}{\left|W_{u}\right|}, \quad \left|W_{u}\right| >> 1 > \left|W_{p}\right| \left(\text{HF}\right)$$

- 3. Construct a desired loop-TF candidate L = PC s.t.,
 - |L| is above (or below) the LF (or HF) bounds.
 - Roll-off of L at HF at least as fast as P.
 - Slop of L at crossover frequency as gentle as possible (<-40 dB/dec).
- 4. Check RP by observing if $|W_p S| + |W_u T| < 1$.
- 5. Check NS by ensuring roots of 1 + L(s) = 0 in LHP.
- 6. Determine the controller C(s) = L(s)/P(s).

ENGINEERING

Loop Shaping: Example

- Nominal plant; $P = \frac{1}{s}$. perturbed plant: $\tilde{P} = \frac{1}{s} \frac{k}{ms^2 + bs + k}$.
- $w_n \in [200, 500]$ Hz, $\zeta \in [0.1, 0.5]; w_c = 20 \mathrm{rad/s},$ dc-tracking error $\leq 1\%$
- Do loop shaping to design C(s) s.t., $|||W_pS| + |W_uT|||_{\infty} < 1$.
 - Check L(s) with C(s) = 180, i.e., $L(s) = 180\frac{1}{s} \rightarrow \text{violate LF bound.}$
 - Shape L(s) w/ Lead \to $L(s) = 180\frac{1}{s}\frac{s+1}{\frac{s}{10}+1}$ \to violate HF bound.
 - Shape L(s) w/ Lag $\rightarrow L(s) = 180\frac{1}{s}\frac{s+1}{\frac{s}{10}+1}\frac{\frac{s}{100}+1}{\frac{s}{10+1}} \rightarrow \text{LF/HF}$ bounds satisfied

Dongjun Lee

ENGINEERIN COLLAGE OF ENGINEERIN MODIL AND FORM

Loop Shaping: Example

- Nominal plant; $P = \frac{1}{s}$. perturbed plant: $\tilde{P} = \frac{1}{s} \frac{k}{ms^2 + bs + k}$.
- $W_u = \frac{9s(s+200)}{(s+1500)^2}$, $W_p = \frac{100}{(\frac{s}{20}+1)^5}$.
- Do loop shaping to design C(s) s.t., $|||W_pS| + |W_uT|||_{\infty} < 1$.
 - With $C(s)=180\frac{s+1}{\frac{8}{10}+1}\frac{\frac{8}{100}+1}{\frac{8}{10+1}}\to \text{LF/HF}$ bounds satisfied.
 - Check RP via Bode plot of $|W_pS| + |W_uT|$.
 - Check NS via CL CE: CL poles $-0.9925, -99.5023 \pm 90.45j$.

Waterbed Effects

• Bode's integral theorem for sensitivity function: Suppose L(s) has relative-degree ≥ 1 , has M RHP poles p_i (with $Re(p_i) > 0$), and k = $\lim_{s\to\infty} sL(s)$ (e.g., k=0 if relative-degree ≥ 2). Then,

$$\int_0^\infty \ln |S(jw)| dw = -k rac{\pi}{2} + \pi \cdot \sum_{i=1}^M \mathrm{Re}(p_i)$$

- If you "push down" |S(jw)| at some frequency-band, it is lead into "swelling-up" at another frequency-band.
- Overall level of |S(jw)| will increase if open-loop system is unstable with fast poles (difficult to stabilize).
- Bode's integral theorem for complementary sensitivity function: Suppose L(s) has at least 1 pole at 0, M RHP zeros z_i , with $k_v =$ $\lim_{s\to 0} sL(s)$ (e.g., $k_v = \infty$ if type ≥ 2). Then,

$$\int_0^\infty rac{1}{w^2} \ln |T(jw)| dw = -rac{\pi}{2k_v} + \pi \cdot \sum_{i=1}^M rac{1}{z_i}$$

- Waterbed effect for |T(jw)|.
- Overall level of |T(jw)| increase w/RHP-zeros (bad for performance).

RHP Poles and RHP Zeros

• Effect of combined RHP zeros/poles: Suppose L(s) has N_z RHPzeros z_j and N_p RHP-poles p_i . Then, $\forall j=1,..,N_z, i=1,..,N_p$,

$$||W_p S||_{\infty} \geq \prod_{i=1}^{N_p} \frac{|z_j + \bar{p}_i|}{|z_j - p_i|} |W_p(z_j)|, \quad ||W_u T||_{\infty} \geq \prod_{i=1}^{N_p} \frac{|\bar{z}_j + p_i|}{|z_j - p_i|} |W_p(z_j)|$$

- It would be extremely difficult to control if RHP-pole and RHP-zero are close with each other (i.e., unstable mode nearly uncontrollable/unobservable).
 - 1. Suppose L(s) has RHP-pole p and RHP-zero z. Then, S(p) =0, T(p) = 1 and S(z) = 1, T(z) = 0.
 - 2. Then, we can write $S = S_{ap}S_{mp} = \frac{s-p}{s+p}S_{mp}$ where S_{ap} is all-pass with $|S_{ap}(jw)| = 1$ and $|S_{mp}(jw)| = |S(jw)|$. Further, $|S_{mp}(z)| =$ $|S(z)|/|S_{zp}(z)| = |\frac{z+p}{z-p}|.$
 - 3. Moreover, from maximum modulus theorem,

$$||W_pS||_{\infty} = \sup_w |W_p(jw)S_{mp}(jw)| \geq \sup_{\mathrm{Re}(s) \geq 0} |W_p(s)S_{mp}(s)|$$

$$|| \geq W_p(z) || S_{mp}(z) | = |W_p(z)| \frac{|z+p|}{|z-p|}$$

 $\geq W_p(z)||S_{mp}(z)| = |W_p(z)|\frac{|z+p|}{|z-p|}$ • If $W_p = W_u = 1$, $||S||_{\infty} \geq \frac{|z+p|}{|z-p|}$ and $||T||_{\infty} \geq \frac{|z+p|}{|z-p|}$, again, shows difficulty of control.

Bandwidth Limitation with RHP Poles/Zeros

- RHP-poles typically require aggressive/fast control to stabilize. RHP-zeros typically require non-aggressive/slow control due to inverse response.
- Effect of RHP zeros: approximate bound for the open-loop bandwidth w_B of L(s) is given by

$$w_B pprox w_C \le egin{cases} |z|/4 & ext{if } \operatorname{Re}(z) >> \operatorname{Im}(z) \ |z|/2.8 & ext{if } \operatorname{Re}(z) = \operatorname{Im}(z) \ |z| & ext{if } \operatorname{Re}(z) << \operatorname{Im}(z) \end{cases}$$

- CL-BW w_c is limited by z and should be slower w.r.t. z.
- RHP-zeros close to origin is bad.
- Effect of RHP-poles: $w_C \approx w_B > 2p$, i.e. should be fast enough to stabilize RHP-pole.
- It would be extremely difficult to control system w/ RHP-poles and RHP-zeros close with each other; w/ slow RHP-zeros and fast RHP-poles.
- Ex) inverted pendulum: $G_1(s) = \frac{-g}{s^2(Mls^2 (M+m)g)}$ and $G_2(s) = \frac{ls^2 g}{s^2(Mls^2 (M+m)g)}$ (e.g., short/light rod, small m/M, large m).