몬테카른로 방사선해석 (Monte Carlo Radiation Analysis)

Variance Reduction: Practices

SNU/NUKE/EHK

Variance Reduction Methods

- Variance reduction by
 - (1) stratification of using sub-regions in the domains of certain variables, which does not change the distribution from which samples are selected; or
 - (2) importance sampling or biasing, which changes the distributions from which the samples are selected.
 - The key issue for such change is to leave the mean value of the result unchanged while reducing the variance of the sample values.

Modification of Distribution

• One can select the values of a variable from a modified distribution function

$$V'(x) = V(x)f(x)/g(x),$$
 (1)

- The modified distribution V'(x) guarantees the same answer as the original distribution V(x).
- Careful selection of g(x) can leads to a reduction in variance of the result or a gain in calculational efficiency.
- Efficiency ε is defined as "inversely proportional to the product of the sampling variance and the amount of labor expended in obtaining the estimate":

$$\varepsilon = \frac{1}{T \sigma^2}, \qquad (2)$$

where T = the run time and σ^2 = variance of result.

SNU/NUKE/EHK

Importance Sampling: Source Biasing

• To sample from a biased source distribution in which the probability of selecting a source particle of high importance, one that makes a relatively large contribution to the result, is greater than that of selecting a particle of low importance.

Ex. Source Biasing: leakage of particles from a slab

- Problem Definition:
 - an isotropic source of monoenergetic particles emitted uniformly throughout a homogeneous slab of scattering and absorbing material.
 - Calculate the probability of a particle escaping from the slab.
- Key points in simulation:
 - The probability varies strongly with the source location, which requires the source biasing in location.
 - Focus only on the Z-coordinates of particles' locations.

Importance Sampling: Survival Biasing

- To avoid killing particles by absorption, while still playing a fair game.
 - Particles are never killed by absorption.
 - To ensure a fair game, a weight W is set to the particle leaving the collision:

$$W_{after} = W_{before} \times (/ - \Sigma_a / \Sigma_t)$$

• May take quite a time in computation for tracking particles with small weights, which would make small contributions to the result.

Ex. Survival Biasing: particles passing through a slab

- Problem Definition:
 - a parallel beam of monoenergetic neutrons normally incident on a homogeneous slab.
 - Assume the isotropic scattering in the L system.
 - Calculate the probability of a particle being transmitted through or reflected from the slab.
- Keypoints in simulation:
 - A particle track is terminated by transmission, reflection, or absorption. \rightarrow by transmission and reflection only.
 - The variance reduction must be sufficient to compensate the effects of increased run time.

Importance Sampling: Russian Roulette

- To spend the computation effort on tracking particles that have a chance of contributing significantly to the result.
 - The score contribution of a particle is always proportional to its weight.
 - RR is a means of killing light-weight particles while maintaining a fair-game.
 - The total weight of particles that are tracked is conserved by assigning the weight carried by the particles that are killed to that of the surviving particles.

Importance Sampling: Russian Roulette (cont.) <u>Method 1</u>

- Set the lower limit of particle weight for tracking, W_L .
- The particle is killed with some fixed probability p_{k} .
- Compare the weight W of each particle entering a zone or experiencing a collision with $\rm W_L$.
 - If $W \ge W_L$, the tracking continues with no change.

- If
$$W < W_L$$
, take a random number ξ .
if $\xi < p_k$, the particle is killed.
if not, the particle survives and is assigned with a new weight

 $W' = W/(/-p_k)$ $p_k \cdot O + q_k \cdot W' = W; W' = W/q_k = W/(/-p_k)$

• If the new weight is still below W_L , the process is repeated.

Importance Sampling: Russian Roulette (cont.)

<u>Method 2</u>

- Set the lower limit of particle weight for tracking, W_L .
- The weight of the surviving particles are fixed as $W_{A^{\circ}}$
- Compare the weight W of each particle entering a zone or experiencing a collision with $\rm W_L$.
 - If $W \ge W_L$, the tracking continues with no change.
 - If $W < W_L$, the particle is subject to Russian roulette and is killed with the probability.

 $p_k = / - W/W_A$ $(p_k \cdot O + q_k \cdot W_A = W; q_k = W/W_A; p_k = / - q_k)$

Take a random number ξ . If $\xi < p_k$, the particle is killed. if not, the particle is assigned the weight W_{A^k} - $W_A > W_1$ compensated with large p_k .

Importance Sampling: Russian Roulette (cont.) <u>Method 2 (cont.)</u>

• Since the probability of the particle surviving is equal to W/W_A and the game is played only if $W < W_L$, the ratio W_L/W_A controls the probability with which a particle survives the game.

- If $(W \le) W_L \ll W_A$, few particles subjected to RR would survive.

Hence it is customary to set W_A within an order of magnitude of W_L .

- Set $p_k = I - W/W_A \sim 0.9 \ (\geq I - W_L/W_A)$ for W_L of choice.

• The value of W_L and thus the value of W_A can vary throughout the geometry.

Ex. Russian Roulette: particles passing through a slab

- Problem Definition:
 - a parallel beam of monoenergetic neutrons normally incident on a homogeneous slab.
 - Assume the isotropic scattering in the L system.
 - Calculate the probability of a particle being transmitted through or reflected from the slab.
- Keypoints in simulation:
 - For thin regions, playing the RR game only after collisions would save the run time by eliminating the expenditure of computation for the particles that have a high probability of passing through the region without suffering a collision.

Importance Sampling: Splitting

- To induce particles to have roughly equal weights

 A wide disparity in particle weight leads to a wide disparity in scores contributed by these particles.
 - Approximately equal scores produce low variance.
- Splitting is to keep the weights of the particles below some maximum value W_H while RR is to keep the weights of particles above some minimum value W_L .
 - When RR and splitting are used in combination, one can define a "weight window" such that the weights of particles are restricted to values in this range:

$$W_L \leq W \leq W_H$$

Importance Sampling: Splitting (cont.)

- If $W > W_H$ (some higher weight limit),
 - The particle is split into a fixed number n_k with a new weight W':

$$W' = W/n_k$$
 .

If W' is still greater than W_{H} , splitting is played again until W' become less than W_{H} .

- The particle may be split into $\{W/W_H\} + 1\}$ particles, by which the new weight W' is always less than W_{H} .
- If one has a target value of $W' = W_T$, there are produced n particles of weight $W' = W_T$ and one particle of weight $W' = W_R = W - nW_T$ where $nW_T \le W \le (n+1)W_T$.

Ex. Splitting & RR: particles passing through a slab

- Keypoints in simulation:
 - The best choice of W_L and W_H depend on the size of an importance region.
 - A narrow weight window in a large region might result in more time spent in splitting and killing particles than in tracking them.
 - With a large number of regions, the efficiency may be decreased by imposing excessive boundary crossings.

Importance Sampling: Exponential Transformation

In a deep-penetration transport

- An accurate answer requires a thorough sampling of the phase space near the detector.
- A fair-game plays by biasing particle flow toward the area of interest and thus increasing the fraction of computation devoted to the sampling of the important region of phase space.
- Exponential transformation or path stretching
 - to sample flight paths greater than one mfp when a particle is moving toward the detector while sampling flight paths shorter than one mfp when a particle is moving away from the detector.

In an unbiased calculation

• The flight path of a particle is selected from the distribution $p(\eta)$ given by

$$p(\eta)d\eta = e^{-\Sigma_t \eta} \Sigma_t d\eta . \qquad (3)$$

• Such a sampling results in a path length x as given by

$$x = \frac{-\ln \xi}{\Sigma_t}.$$
 (4)

SNU/NUKE/EHK

In a biased calculation

• Define an artificial interaction probability $p*(\eta)$ such that

$$p^{*}(\eta)d\eta = e^{-\Sigma_{t}^{*}\eta}\Sigma_{t}^{*}d\eta , \quad (5) \text{ where } \Sigma_{t}^{*} = \Sigma_{t} - g(r, E, \vec{\Omega}) \quad (6)$$

where $g(r, E, \vec{\Omega})$ can be positive or negative depending on location, energy, and direction of the particle as long as one maintains $\Sigma_t^* > 0$ at locations where $\Sigma_t > 0$.

• Select a new flight path by using the modified cross section

$$x^* = \frac{-\ln \xi}{\Sigma_t^*}.$$
 (7)

In a biased calculation (cont.)

ΟΥ

- If g(r,E,Ω) > 0, x* is longer than the unmodified flight path x (path stretching): x* > x.
- To make a fair game at the selected x^* , $p(x^*)W = p^*(x^*)W^*$ (8)

$$W^* = W \cdot \frac{\Sigma_t}{\Sigma_t - g(r, E, \vec{\Omega})} e^{-g(r, E, \vec{\Omega})x^*}$$
(9)

- For $g(r, E, \vec{\Omega}) > 0$, $W^* < W$ for larger x^* and $W^* > W$ for smaller x^* .
- necessary to restrict $g(r, E, \vec{\Omega}) < \Sigma_{\tau}$.

In a biased calculation (cont.)

• Define a normalized exponential transform parameter ρ $\rho = g(r, E, \vec{\Omega}) / \Sigma_t$, (10)

such that $-l < \rho < l$ and thus $-\Sigma_t < g(r, E, \vec{\Omega}) < \Sigma_t$.

• One can define B as

$$B = \frac{l}{l - \rho} = \frac{\Sigma_t}{\Sigma_t^*} \qquad \left(\frac{l}{2} < B < \infty\right) \qquad (ll)$$
Then $g(r, E, \vec{\Omega}) = \Sigma_t \left(l - \frac{l}{B}\right) \qquad (l2) \qquad \text{and} \qquad \boxed{x^* = Bx.} \qquad (l3)$
from (4) and (7)

SNU/NUKE/EHK

In a biased calculation (cont.)

- Substituting (12) into (9) gives
 - $W^* = WBe^{-\Sigma_t x^* \left(I \frac{I}{B} \right)} . \qquad (I4) \qquad \text{not } \Sigma_t \text{ but } \Sigma_t^*$
- It is common to define p as follows:
 - If the direction of travel of a particle following a collision is $\vec{\Omega}$ and the unit vector from the collision point to a detector is $\vec{\Omega}$ ', one may define

 $\rho = \rho_0 \vec{\Omega} \cdot \vec{\Omega}' \qquad \text{where} \quad \rho_0 > 1. \tag{15}$

- The maximum value of the stretching parameter $\rho_{max} = \rho_0$ - $\rho = \rho_0$ when the particle is directed toward the detector; $\rho = -\rho_0$ when it is directed away from the detector.

Homework #4

