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Mutual Exclusion

» Today we will try o formalize our
understanding of mutual exclusion

+ We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting
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Mutual Exclusion

* Formal problem definitions
+ Solutions for 2 threads

» Solutions for n threads

* Fair solutions

* Inherent costs
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Warning

* You will never use these protocols
- Get over it

* You are advised to understand them
- The same issues show up everywhere
- Except hidden and more complex

Art of Multiprocessor
Programming



Why is Concurrent
Programming so Hard?

- Try preparing a seven-course banquet
- By yourself

- With one friend

- With twenty-seven friends ...

+ Before we can talk about programs

- Need a language

- Describing time and concurrency
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Time

- "Absolute, true and mathematical
time, of itself and from its own
nature, flows equably without relation

to anything external." (I. Newton,
1689

+ "Time is, like, Nature's way of making
sure that everything doesn't happen
all at once.”" (Anonymous, circa 1968)

R
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Events

*+ An event a, of thread A is
- Instantaneous
- No simultaneous events (break ties)

|

R e——
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Threads

* A thread A is (formally) a sequence
ao, G, ... of events

- "Trace"” model
- Notation: ay & q, indicates order

Ao a, .

1---u*
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Example Thread Events

+ Assign to shared variable
» Assign to local variable

* Invoke method

* Return from method

* Lots of other things ...
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Threads are State Machines

Events are
transitions
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States

- Thread State

- Program counter
- Local variables

- System state
- Object fields (shared variables)
- Union of thread states
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Concurrency

* Thread A
sz o
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Concurrency

* Thread A
sz o
* Thread B

_
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Interleavings

- Events of two or more threads
- Interleaved
- Not necessarily independent (why?)

e ] ]
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Tntervals

* An interval Ay,=(ay,a;) is
- Time between events a;and q,

| |

M -
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Intervals may Overlap
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Intervals may be Disjoint
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Precedence

Interval Ay precedes interval B,

bo

H:m
e i
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Precedence

=N
SR S
* Notation: Ay B

* Formally,
- End event of A, before start event of B

- Also called “happens before” or
"precedes”
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Precedence Ordering

=N
+ Remark: Ay, B,is just like saying
- 1066 AD > 1492 AD,
- Middle Ages > Renaissance,

» Oh wait,
- what about this week vs this month?
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Precedence Ordering

o

i

- Never true that A> A
- If A>B then not true that B> A
- If ASB& B>Cthen A>C

* Funny thing: A B & B A might both
be falsel
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Partial Orders

(you may know this already)

* Irreflexive:

- Never true that A> A

- Antisymmetric:

- If A> Bthen not true that B> A

- Transitive:

-IfA>B&B>CthenASC
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Total Orders

(you may know this already)

+ Also

- Irreflexive

- Antisymmetric
- Transitive

+ Except that for every distinct A, B,
- Either A>3 Bor B> A
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Repeated Events

while (mumble) {

dgy, dj;
}
k-th occurrence
of event q,
[ aok k-th occurrence of

[ Aok ]%n’rerval Ay =(ay.a1)
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Implementing a Counter

temp
value

value;
teTE\iigil\
Make these steps

indivisible using
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Locks (Mutual Exclusion)

public interface Lock {
public void lock();

public void unlock();
}
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Locks (Mutual Exclusion)

[public void Tock(); [~ acquire lock
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Locks (Mutual Exclusion)

[pub'h'c void Tock(Q); ]; acquire lock
[pub'h'c void un'Iock();]> release lock

Art of Multiprocessor
Programming

28



Using Locks

public class Counter {
private long value;
private Lock Tlock;
public long getAndIncrement() {
lock.lock();
try {
int temp = value;
value = value + 1;
} finally {
Tock.unlock();
}

return temp;

}}
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Using Locks

[ Tock.TockQ;

~——=— acquire Lock
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Using Locks

[

} finally {
1ock_un1ock()}; Release lock
} (no matter what)
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Using Locks

|

int temp = value;
value = value + 1;
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Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution
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Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;™ @ be thread j's m-th critical
section execution
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Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

P @ or e
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Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

@ or e

[%_) csm |
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Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

" & or ¢

[%-) csm |
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Deadlock-Free

®

+ ITf some thread calls lock()
- And never returns

- Then other threads must complete lock()
and unlock() calls infinitely often

+ System as a whole makes progress
- Even if individuals starve
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Starvation-Free

®

- If some thread calls lock()
- It will eventually return

» Individual threads make progress
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Two-Thread vs n -Thread
Solutions

- Two-thread solutions first
- Tllustrate most basic ideas
- Fits on one slide

- Then n-Thread solutions
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Two-Thread Conventions

class .. implements Lock {

// thread-local index, 0 or 1
public void lock() {

int 1 = ThreadID.get();

int j 1 - 1;
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Two-Thread Conventions

[int i

ThreadID.get();
int j 1 1]

— 'I y

Henceforth: i is current
thread, j is other thread
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LockOne

class LockOne implements Lock {
private volatile boolean[] flag =
hew boolean[2];
public void lock() {
flag[i] = true;
while (flag[jl) {}
}
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LockOne

|flag[i]
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LockOne

while (flag[j]) {}

Set my flag

Wait for other
flag to go false
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LockOne Satisfies Mutual
Exclusion

+ Assume €S, overlaps CSgk

» Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

- Derive a contradiction

Art of Multiprocessor 46
Programming



From the Code

» write,(flag[A]=true) >
read,(flag[B]==false) >CS,

+ writeg(flag[B]=true) >
ready(flag[A]==false) > CSg

class Lockone implements Lock {

public void Tock() {
flag[i] = true;
while (flag[jl) {}
}
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From the Assumption

» read,(flag[B]==false) >
writeg(flag[B]=true)

- ready(flag[A]==false) >
write,(flag[B]=true)
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Combining

* Assumptions:
- read,(flag[B]==false) 2> writey(flag[B]=true)
- readp(flag[A]==false) > write,(flag[A]=1rue)

* From the code
- write,(flag[A]=true) 2> read,(flag[B]==false)
- writeg(flag[B]=true) 2> ready(flag[A]==false)
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Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)
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Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
readg(flag[A]==false) > write,(flag[A]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)
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Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

,«==pready(flag[A]==false) > write,(flag[A]=true)

4
lllllllllllllllllll ann?®

- wrivxflag[A]ﬂ'rue) - read,(flag[B]==false)
- writeg(flag[B]=true) > ready(flag[A]==false)
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Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
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,«==pready(flag[A]==false) > write,(flgg[A]l=true)
: A

= - wruVA(flag[A]ﬂ'rue) - read,(flag[B]==false)
. - writeg(flag[B]=true) > ready(flag[A]==false)
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Combining

- readds 1g[B]=true)

i1'e( lgg[A]=1rue)

- wrikf€,(flag[A]=true) 2> read,(flag{B]==false)
- wriT ead(flag[A]==false)
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Cyclel
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Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[j1){} while (flag[il){}

- Sequential executions OK
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LockTwo

public class LockTwo implements Lock {
private volatile int victim;

public void lock() {

victim = 1;

while (victim == i) {};

}

public void unlock() {}
}
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LockTwo

e ama

Y

[V'ict1'm =15
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LockTwo

Wait for

[wh11e (victim

permission
= i) {};
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LockTwo

Nothing to do

[pub11c void unlock() {}
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LockTwo Claims

- Satisfies mutual exclusion

- If thread 1in CS public void LockTwo() {
- Thenvictim == ] victim = i;
- Cannot be both O and 1 }

- Not deadlock free

- Sequential execution deadlocks
- Concurrent execution does not
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Peterson's Algorithm

public void Tock() {

flag[i] = true;

victim = 1;

while (flag[j] && victim == 1) {};
}

public void unlock() {

flag[i] = false;

}

Art of Multiprocessor
Programming

62



Peterson's Algorithm

Announce I'm

[Flag[i]

Z intferested
true,
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Peterson's Algorithm

Announce I'm
interested

Lrue; Defer to other

flag[il]
1CtIm
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Peterson's Algorithm

Announce I'm
interested

Defer to other

& victim = 1) 11;)

Wait while other
iInterested & I'm
the victim
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Peterson's Algorithm

Announce I'm
interested

Defer to other

& victim = 1) 11;)

Wait while other
}[ﬂ ag[i] = \fﬂSﬁ] interested & I'm
No Tonger the victim
interested
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Mutual Exclusion

flag[i]
victim = 1i;
while (flag[j] && victim == i) {};

true;

+ If thread O in « If thread 1 in
critical section, critical section,
- flag[0]=true, - flag[1]=true,
—victim =1 —victim =0

Cannot both be true

Art of Multiprocessor 67
Programming



Deadlock Free

while (flag[j] && victim == i) {};

- Thread blocked

- only at while loop
- only if it is the victim

* One or the other must not be the victim
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Starvation Free

Thread 1 blocked
only if j repeatedly public void TockO {

f1 = .
re-enters so that e e

while (flag[j] && victim == i) {};
flag[j] == true and

victim == i public void unlockO {
When j re-enters , f120fi] = false;

- it sets victim to j.

- S0 1 getsin
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The Filter Algorithm for n
Threads

There are n-1 "waiting rooms" called
levels

+ At each level
- At least one enters level
- At least one blocked if
many try €S
* Only one thread makes it through

ncs

\ /
\ /
\ /
\ |
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Filter

class Filter implements Lock {

volatile int[] level; // level[i] for thread i
volatile int[] victim; // victim[L] for Tlevel L

public Filter(int n) { 0 |.

n-1

level = new intlnl; |ovel [oJo|4]o]o]o]o]|o]

victim = new int[n];
for (int i = 1, 1< n; i++) {
level[1] =

1 \

Thread 2 at level 4

Art of Multiprocessor
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Filter

class Filter implements Lock {

public void lock(){
for (int L=1; L <n; L++) {
level[1] L;
victim[L] = 1;
while ((dk != 1 Tevel[k] >= L) &&
victim[L] == 1 );

3}
public void unlock() {

level[1] = 0;
1}
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Filter

[for (intL=1; L <n; L++) {

One level at a time
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Filter

[ Tevel[i]
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Filter

[victim[L] = i;

Give priority to
anyone but me
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Filter

Wait as long as someone else is at same or
higher level, and I'm designated victim

while ((d k != 1) level[k] >= L) &&
victim[L] == 1);
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Filter

while ((d k != 1) level[k] >= L) &&
victim[L] == 1);

N—

Thread enters level L when it completes
the loop
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Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level L=n-1

ncs L=0
\ [L=1
/
\ /
\ |
L=n-2
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Induction Hypothesis

* No more than n-L+1 at level L-1
» Induction step: by contradiction

- Assume all at level

L-1 enter level L ncs assume
- A last to write \ / /
victim[L] \ | L-1 has n-L+1
\ [ L has n-L

» B is any other \
CS
thread at level L prove
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Proof Structure

ncs

Assumed to enter L-1

/

dla, n-L+1 = 4
\' " 'Y nle1:-4
Last to \ \
write CS / i
victim[L] By way of contradiction

all enter L

Show that A must have seen
B at level L and since victim[L] ==
could not have entered
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From the Code

(1) writeg(level[B]=L)=>writey(victim[L]=B)

|

level[i] = L;
victim[L] = 1;
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From the Code

(2) write,(victim[L]=A)=>read,(level[B])

victim[L] = 1;

[wh'i'le (3@ k = 1) level[k] >= L)]
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By Assumption

(3) writeg(victim[L]=B)=>write,(victim[L]=A)

By assumption, A is the last
thread to write victim[L]
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Combining

(1) writeg(level[B]=
(3) writeg(victim[L

Observations

L) writeg(victim[L]=B)

J=B)=>write,(victim[L]=A)

(2) write,(victim[L]=A)=>read,(level[B])
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Combining Observations

(1) writeg(level[B]=L)=>

(3) writeg(victim[L]=B)=>write,(victim[L]=A)
(2) 2 read,(level[B])

public void Tock() {
for (int L =1; L < n; L++) {
level[i] = L;
victim[L] = 1i;
while ((3k != 1) level[k] >= L)
&& victim[L] == i) {};
1} 85
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Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=>write,(victim[L]=A)

(2) %dA(Ievel[B]) ]
Thus, A read level[B] 2 L,

A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor 86
Programming



No Starvation

* Filter Lock satisfies properties:
- Just like Peterson Alg at any level
- S0 ho one starves

» But what about fairness?
- Threads can be overtaken by others
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Bounded Waiting

+ Want stronger fairness guarantees
» Thread not "overtaken” too much
* Need to adjust definitions ...
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Bounded Waiting

» Divide Tock() method into 2 parts:

- Doorway interval:

* Written D,

» always finishes in finite steps
- Waiting interval:

- Written W,

- may take unbounded steps
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r-Bounded Waiting

* For threads A and B:
- If D,k > Dg
» A's k-th doorway precedes B's j-th doorway
- Then €S,k > CSgi*r

» A's k-th critical section precedes B's (j+r)-th
critical section

» B cannot overtake A by more than r times
- First-come-first-served means r = 0.
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Fairness Again

* Filter Lock satisfies properties:

- No one starves
- But very weak fairness

* Not r-bounded for any r!
- That's pretty lame...

Art of Multiprocessor
Programming

91



Bakery Algorithm

- Provides First-Come-First-Served
- How?
- Take a "number”

- Wait until lower numbers have been
served

» Lexicographic order

- (a,i) > (b))
*Ifa>b,ora=bandi> |
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Bakery Algorithm

class Bakery implements Lock {
volatile boolean[] flag;
volatile Label[] Tlabel;
public Bakery (int n) {

}

flag = new boolean[n];

Tabel = new Label[n];

for (int i = 0; i < n; i++) {
flag[i] = false; label[i] = 0;

}
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Bakery Algorithm

volatile boolean[] flag;

latile Label[] label;
volatile Label[] Tabe 0 '. ‘n-l

LELF e 1f1f [+ ]f |f]
[ofo]4]o]o[5]0]0]

"

CS
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Bakery Algorithm

class Bakery implements Lock {

public void lock() {
flag[i] = true;
Tlabel[1] max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]

&& (label[i],i) > (label[k],k));
}
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Bakery Algorithm

Doorway

i

AN

lag[i] = true;
abel[1] = max(label[0], ..,T1abel[n-1])+1;
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Bakery Algorithm

I'm interested
[Flagli]l = true{
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Bakery Algorithm

Take increasing
label (read labels
in some arbitrary

/\ or'der')

[1abe1[i] = max(label[0], ..,1abel[n-11)+1;]
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Bakery Algorithm

Someone is
interested

|while (3k flag[k]
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Bakery Algorithm

Someone is
interested

while [(dk flaglk
&& (label[i],1) > (label [k],k));]

V

With lower (label,i)
in lexicographic order
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Bakery Algorithm

class Bakery implements Lock {

public void unlock() {
flag[i] = false;

}

}
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Bakery Algorithm

No longer

intferested
| flaglil = false;

labels are always increasing
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No Deadlock

* There is always one thread with
earliest label

+ Ties are impossible (why?)
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First-Come-First-Served

° If DA > DB'I'hen A'S class Bakery implements Lock {
label is earlier public void Tock(O {
. flag[i] = true;
- write,(label[A]) > e T = el T -
readp(label[A]) 2 .., Tabe1[n-11)+1;
. while (3k flag[k]
writeg(label[B]) 2 o TS =
readp(flag[A]) }(1abe1 [KI,k));

- So B is locked out
while flag[A] is
true
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Mutual Exclusion

° SLIppOSZ A Cmd B in class Bakery implements Lock {

CS together public void Tock() {
flag[i]l] = true;
» Suppose A has labe1[i] = max(label[0],
. .., label[n-1])+1;
earlier label e
- && (label[i],

- When B en’rer'ed, 1T (1abel [k],k))(;a ellil, ) >

must have seen d

- flag[A] is false, or
- label[A] > label[B]
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Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false
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Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) >
write,(flag[A]) @ Labeling,
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Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) >
write,(flag[A]) @ Labeling,

* Which contradicts the assumption
that A has an earlier label
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Bakery Y232K Bug

class Bakery implements Lock {

public void lockO {
flag[i] = true;
label[i] = max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]

&& (label[i],i) > (label[k],k));
}
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Bakery Y232K Bug

Mutex breaks if
Tabel[i] overflows

[1abel1[i] = max(Tabel[0], ..,Tabel[n-11)+1; |
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Does Overflow Actually
Matter?

- Yes

- Y2K

- 18 January 2038 (Unix time_t rollover)
- 16-bit counters

 No

- 64-bit counters

* Maybe

- 32-bit counters
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Does Overflow Actually
Matter?

+ 32bit counters

- Signed integer : (- 23!, 231 - 1)
* In seconds, (-78 years, 78 years)
- Unsigned : (0, 232)
* In seconds, 136 years
» Unix time_t
- Started at Jan 1, 1970
- On Jan 19, 2038, overflow

Art of Multiprocessor
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Timestamps

* Label variable is really a timestamp

* Need ability to

- Read others’ timestamps

- Compare them

- Generate a later timestamp

- Can we do this without overflow?
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The Good News

- One can construct a
- Wait-free (no mutual exclusion)
- Concurrent
- Timestamping system
- That never overflows
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The News

* One can construct a

-'(Wai’r—freelno mutual exclusion)
\. J

- Timestamping system
- That never overflows
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Instead ...

* We construct a Sequential
Timestamping system

- Same basic idea

- But simpler
+ Uses mutex to read & write
atomically
* No good for building locks

- But useful anyway
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Precedence Graphs

» Timestamps form directed graph
- Edge x to y

- Means x is later timestamp

- We say x dominates y
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Unbounded Counter Precedence

Graph
Qf_ 02_ 94_ '94. ......

- Timestamping = move tokens on graph

* Atomically
- read others' tokens
- move mine

» Ignore tie-breaking for now
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Unbounded Counter Precedence
Graph
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Unbounded Counter Precedence
Graph

takes O takes1 takes 2
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Two-Thread Bounded
Precedence Graph
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Two-Thread Bounded
Precedence Graph
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Two-Thread Bounded
Precedence Graph
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Two-Thread Bounded
Precedence Graph
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Two-Thread Bounded
Precedence Graph T?

and so on ...
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Three-Thread Bounded
Precedence Graph?

i
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Three-Thread Bounded
Precedence Graph?
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Three-Thread Bounded
Precedence Graph?

rm‘ 0 2<1<0
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Three-Thread Bounded
Precedence Graph?

1<0<3

0,

129



Three-Thread Bounded
Precedence Graph?

rm‘e

I'll go next

3<2<«1
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Three-Thread Bounded
Precedence Graph?

rm‘e

1<0<3

Isit OK. ?
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How about this ?
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How about this ?
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How about this ?
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Graph Composition
e N

T3=T2*T2 \ /

Replace each vertex with a
copy of the graph
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Three-Thread Bounded
Precedence Graph T3

ol
&

Art of Multiprocessor 136
Programming

o)
" 4



Three-Thread Bounded
Precedence Graph T3

-<11<22

£ 858
Q@q@‘

and so on...
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Three-Thread Bounded
Precedence Graph T3

2?7?
O 20| < |02

( G \ 02| «<|10

’g‘ @ 10] < |20

== 4
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ITn General

Tk = T2* Tk-1 Q label size =
¥ % KY =
K threads need 3k Q Q lé:,QZ(B )
nodes ( > \

'Q\ VQ\
36 A4

~
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Deep Philosophical Question

* The Bakery Algorithm is
- Succinct,
- Elegant, and
- Fair.
* Q: So why isn't it practical?
+ A: Well, you have to read N distinct
variables
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Shared Memory

» Shared read/write memory locations
called Registers (historical reasons)

* Come in different flavors

- Multi-Reader-Single-Writer (Flag[])
- Multi-Reader-Multi-Writer (Victim[])
- Not interesting: SRMW and SRSW
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Theorem

At least N MRSW (multi-
reader/single-writer) registers are
needed to solve deadlock-free
mutual exclusion.

N registers like Flag[]...
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Proving Algorithmic

Impossibility ﬂ
!

*To show no algorithm exists: | |

* assume by way of contradiction
onhe does, !

* show a bad execution that cS
violates properties:

* in our case assume an alg for deadlock

free mutual exclusion using < N registers
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Proof: Need N-MRSW Registers

Each thread must write to some register
} }

write. write.
! ! !

CS CS CS

..can't tell whether A is in critical
section
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Upper Bound

» Bakery algorithm
- Uses 2N MRSW registers

* So the bound is (pretty) tight

* But what if we use MRMW registers?
- Like victim[] ?
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Bad News Theorem

At least N MRMW multi-
reader/multi-writer registers are
needed to solve deadlock-free
mutual exclusion.

(So multiple writers don't help)

Art of Multiprocessor
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Theorem (First 2-Threads)

Theorem: Deadlock-free mutual
exclusion for 2 threads requires at
least 2 multi-reader multi-writer
registers

Proof: assume one register suffices
and derive a contradiction
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Two Thread Execution

\ /
\ /
\ /

CS CS

» Threads run, reading and writing R
» Deadlock free so at least one gets in
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Covering State for One
Register

B has to write to the register
before entering CS, so stop it just
before
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Proof: Assume Cover of 1

A runs, possibly writes to the
register, enters CS

CS
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Proof: Assume Cover of 1

8 2
‘/BRuns, first

| | obliterating
any trace of A,
l then also enters
the critical
CS CS section
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Theorem

Deadlock-free mutual exclusion for 3
threads requires at least 3 multi-
reader multi-writer registers
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Proof: Assume Cover of 2

a 4 B8

| |
| |
| |
\{ \{

Only 2 registers
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Run A Solo

a 4 B8

| |
| |
| |
\{ \{

Writes to one or both
cs registers, enters CS
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Obliterate Traces of A

a a4 A
L

Other threads obliterate
CS evidence that A entered CS
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Mutual Exclusion Fails

a 4 A
L

CS looks empty, so
CS CS another thread
gets in
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Proof Strategy

» Proved: a contradiction starting from
a covering state for 2 registers

* Claim: a covering state for 2
registers is reachable from any state
where CS is empty
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Covering State for Two

* If we run B through CS 3 times, B must
return twice to cover some register, say R;
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Covering State for Two

a4 a

| |
| |
| |
\{ \{

+ Start with B covering register R, for the 15t fime
* Run A until it is about to write to uncovered R,
+ Are we done?
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Covering State for Two

a4 a

| |
| |
| |
\{ \{
| | |

* NO! A could have written to R,
* S0 CS no longer looks empty

Art of Multiprocessor
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Covering State for Two

a4 a

| |
| |
| |
\{ \{
| | |

* Run B obliterating traces of A in R,
* Run B again until it is about to write to R,

- Now we are done
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Inductively We Can Show

a a B3

I I I
| | |
I I I
\{ \{ \/
| | | |

» There is a covering state

- Where k threads not in CS cover k distinct
registers

- Proof follows when k = N-1
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Summary of Lecture

* In the 1960's many incorrect
solutions to starvation-free mutual

exclusion using RW-registers were
published...

» Today we know how to solve FIFO N
thread mutual exclusion using 2N
RW-Registers
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Summary of Lecture

* N RW-Registers inefficient
- Because writes "cover” older writes

Need stronger hardware operations
- do not have the "covering problem”

* In next lectures - understand what
these operations are...
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SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sugﬁests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁ]hing in this license impairs or restricts the author's moral
rights.
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Initial State
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Green reads Red
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Red looks...

~ S0 168
Programming



Red moves...

0

Red=
(1,0)
== 4
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Blue looks

. = / C
Programming



Blue moves

O

a4
!‘Ill;!'!
)y

B o0

Red=
(1,0)
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Green reads Blue
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Green decides

173
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Green moves
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Oh Oh,  No precedence !




Initial State




Green reads Red
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Green reads Red,Blue
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Green decides to move to (2,1)

: g 179
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Red looks...

~ S0 180
Programming



Green moves...

G
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Blue looks




Red moves...
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Blue moves...
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No Precedence
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Filter

class Filter implements Lock {

volatile int[] level; // level[i] for thread i
volatile int[] victim; // victim[L] for Tlevel L

public Filter(int n) { 0 |.

n-1

level = new intlnl; |ovel [oJo|4]o]o]o]o]|o]

victim = new int[n];
for (int i = 1, 1< n; i++) {
level[1] =

1 \

Thread 2 at level 4
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Filter

class Filter implements Lock {

public void lock(){
for (int L=1; L <n; L++) {
level[1] L;
victim[L] = 1;
while ((dk != 1 Tevel[k] >= L) &&
victim[L] == 1 );

3}
public void unlock() {

level[1] = 0;
1}
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Filter Lock (n=3)

level[1l]=level[2]=1level[3]=0; victim[1l]=victim[2]=0;

public void lock(){

j = (1 mod 3)+1; k=(J mod 3)+1;

level[i] = 1;

victim[1l] = 1;

while (level[jl>= 1| |level[k]>=1)&&victim[1l]==1 );
level[i] = 2;

victim[2] = 1;

while (level[jl>= 2| |level [k]>=2)&&victim[2]==1 );
}

public void unlock() {
level[i] = O;
}

AT O waniprocessor 100
Programming



level[1]
level[2]

level[3]

victim[1]

victim[2]

p1
p2
p3

pl

p2

blocked

Filter Lock

p3 p2 p2 p2
1 1 1 1
1 2 0 1
1 1 1 1
3 3 3 2
0 2 2 2
Sleeps...
CS unlock blocked
blocked

Art of Multiprocessor
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p3

CS

p3 p3
1 1
1 1
0 1
2 3
3 3

unlock blocked

p2

(&

p2

unlock
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