Mutual Exclusion

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Mutual Exclusion

» Today we will try o formalize our
understanding of mutual exclusion

+ We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting

Art of Multiprocessor 2
Programming

Mutual Exclusion

* Formal problem definitions
+ Solutions for 2 threads

» Solutions for n threads

* Fair solutions

* Inherent costs

Art of Multiprocessor 3
Programming

Warning

* You will never use these protocols
- Get over it

* You are advised to understand them
- The same issues show up everywhere
- Except hidden and more complex

Art of Multiprocessor
Programming

Why is Concurrent
Programming so Hard?

- Try preparing a seven-course banquet
- By yourself

- With one friend

- With twenty-seven friends ...

+ Before we can talk about programs

- Need a language

- Describing time and concurrency

Art of Multiprocessor
Programming

Time

- "Absolute, true and mathematical
time, of itself and from its own
nature, flows equably without relation

to anything external." (I. Newton,
1689

+ "Time is, like, Nature's way of making
sure that everything doesn't happen
all at once.”" (Anonymous, circa 1968)

R

Art of Multiprocessor 6
Programming

Events

*+ An event a, of thread A is
- Instantaneous
- No simultaneous events (break ties)

|

R e——

Art of Multiprocessor 7
Programming

Threads

* A thread A is (formally) a sequence
ao, G, ... of events

- "Trace"” model
- Notation: ay & q, indicates order

Ao a, .

1---u*

Art of Multiprocessor
Programming

Example Thread Events

+ Assign to shared variable
» Assign to local variable

* Invoke method

* Return from method

* Lots of other things ...

Art of Multiprocessor
Programming

Threads are State Machines

Events are
transitions

Art of Multiprocessor 10
Programming

States

- Thread State

- Program counter
- Local variables

- System state
- Object fields (shared variables)
- Union of thread states

Art of Multiprocessor
Programming

11

Concurrency

* Thread A
sz o

Art of Multiprocessor
Programming

12

Concurrency

* Thread A
sz o
* Thread B

_

Art of Multiprocessor 13
Programming

Interleavings

- Events of two or more threads
- Interleaved
- Not necessarily independent (why?)

e]]

Art of Multiprocessor 14
Programming

Tntervals

* An interval Ay,=(ay,a;) is
- Time between events a;and q,

| |

M -

Art of Multiprocessor
Programming

15

Intervals may Overlap

Art of Multiprocessor 16
Programming

Intervals may be Disjoint

Art of Multiprocessor 17
Programming

Precedence

Interval Ay precedes interval B,

bo

H:m
e i

Art of Multiprocessor 18
Programming

by

Precedence

=N
SR S
* Notation: Ay B

* Formally,
- End event of A, before start event of B

- Also called “happens before” or
"precedes”

Art of Multiprocessor 19
Programming

Precedence Ordering

=N
+ Remark: Ay, B,is just like saying
- 1066 AD > 1492 AD,
- Middle Ages > Renaissance,

» Oh wait,
- what about this week vs this month?

Art of Multiprocessor 20
Programming

Precedence Ordering

o

i

- Never true that A> A
- If A>B then not true that B> A
- If ASB& B>Cthen A>C

* Funny thing: A B & B A might both
be falsel

Art of Multiprocessor 21
Programming

Partial Orders

(you may know this already)

* Irreflexive:

- Never true that A> A

- Antisymmetric:

- If A> Bthen not true that B> A

- Transitive:

-IfA>B&B>CthenASC

Art of Multiprocessor
Programming

22

Total Orders

(you may know this already)

+ Also

- Irreflexive

- Antisymmetric
- Transitive

+ Except that for every distinct A, B,
- Either A>3 Bor B> A

Art of Multiprocessor
Programming

23

Repeated Events

while (mumble) {

dgy, dj;
}
k-th occurrence
of event q,
[aok k-th occurrence of

[Aok]%n’rerval Ay =(ay.a1)

Art of Multiprocessor 24
Programming

Implementing a Counter

temp
value

value;
teTE\iigil\
Make these steps

indivisible using
Art of Multiprocessor IOC kS 25

Programming

Locks (Mutual Exclusion)

public interface Lock {
public void lock();

public void unlock();
}

Art of Multiprocessor
Programming

26

Locks (Mutual Exclusion)

[public void Tock(); [~ acquire lock

Art of Multiprocessor
Programming

27

Locks (Mutual Exclusion)

[pub'h'c void Tock(Q);]; acquire lock
[pub'h'c void un'Iock();]> release lock

Art of Multiprocessor
Programming

28

Using Locks

public class Counter {
private long value;
private Lock Tlock;
public long getAndIncrement() {
lock.lock();
try {
int temp = value;
value = value + 1;
} finally {
Tock.unlock();
}

return temp;

}}

Art of Multiprocessor
Programming

29

Using Locks

[Tock.TockQ;

~——=— acquire Lock

Art of Multiprocessor
Programming

30

Using Locks

[

} finally {
1ock_un1ock()}; Release lock
} (no matter what)

Art of Multiprocessor
Programming

31

Using Locks

|

int temp = value;
value = value + 1;

Art of Multiprocessor
Programming

Critical
section

32

Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

Art of Multiprocessor
Programming

33

Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;™ @ be thread j's m-th critical
section execution

Art of Multiprocessor 34
Programming

Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

P @ or e

Art of Multiprocessor
Programming

35

Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

@ or e

[%_) csm |

Art of Multiprocessor
Programming

36

Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

" & or ¢

[%-) csm |

Art of Multiprocessor 37
Programming

csm > Csk |

Deadlock-Free

®

+ ITf some thread calls lock()
- And never returns

- Then other threads must complete lock()
and unlock() calls infinitely often

+ System as a whole makes progress
- Even if individuals starve

Art of Multiprocessor 38
Programming

Starvation-Free

®

- If some thread calls lock()
- It will eventually return

» Individual threads make progress

Art of Multiprocessor 39
Programming

Two-Thread vs n -Thread
Solutions

- Two-thread solutions first
- Tllustrate most basic ideas
- Fits on one slide

- Then n-Thread solutions

Art of Multiprocessor
Programming

40

Two-Thread Conventions

class .. implements Lock {

// thread-local index, 0 or 1
public void lock() {

int 1 = ThreadID.get();

int j 1 - 1;

Art of Multiprocessor
Programming

41

Two-Thread Conventions

[int i

ThreadID.get();
int j 1 1]

— 'I y

Henceforth: i is current
thread, j is other thread

Art of Multiprocessor
Programming

42

LockOne

class LockOne implements Lock {
private volatile boolean[] flag =
hew boolean[2];
public void lock() {
flag[i] = true;
while (flag[jl) {}
}

Art of Multiprocessor
Programming

43

LockOne

|flag[i]

Art of Multiprocessor
Programming

Set my flag

44

LockOne

while (flag[j]) {}

Set my flag

Wait for other
flag to go false

Art of Multiprocessor
Programming

45

LockOne Satisfies Mutual
Exclusion

+ Assume €S, overlaps CSgk

» Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

- Derive a contradiction

Art of Multiprocessor 46
Programming

From the Code

» write,(flag[A]=true) >
read,(flag[B]==false) >CS,

+ writeg(flag[B]=true) >
ready(flag[A]==false) > CSg

class Lockone implements Lock {

public void Tock() {
flag[i] = true;
while (flag[jl) {}
}

Art of Multiprocessor
Programming

47

From the Assumption

» read,(flag[B]==false) >
writeg(flag[B]=true)

- ready(flag[A]==false) >
write,(flag[B]=true)

Art of Multiprocessor
Programming

48

Combining

* Assumptions:
- read,(flag[B]==false) 2> writey(flag[B]=true)
- readp(flag[A]==false) > write,(flag[A]=1rue)

* From the code
- write,(flag[A]=true) 2> read,(flag[B]==false)
- writeg(flag[B]=true) 2> ready(flag[A]==false)

Art of Multiprocessor 49
Programming

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor
Programming

50

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
readg(flag[A]==false) > write,(flag[A]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor 51
Programming

u
u
L
L
.

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

,«==pready(flag[A]==false) > write,(flag[A]=true)

4
lllllllllllllllllll ann?®

- wrivxflag[A]ﬂ'rue) - read,(flag[B]==false)
- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor 52
Programming

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

Art of Multiprocessor
Programming

,«==pready(flag[A]==false) > write,(flgg[A]l=true)
: A

= - wruVA(flag[A]ﬂ'rue) - read,(flag[B]==false)
. - writeg(flag[B]=true) > ready(flag[A]==false)

53

Combining

- readds 1g[B]=true)

i1'e(lgg[A]=1rue)

- wrikf€,(flag[A]=true) 2> read,(flag{B]==false)
- wriT ead(flag[A]==false)

Art of Multiprocessor
Programming

54

Cyclel

Art of Multiprocessor
Programming

95

Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[j1){} while (flag[il){}

- Sequential executions OK

Art of Multiprocessor 56
Programming

LockTwo

public class LockTwo implements Lock {
private volatile int victim;

public void lock() {

victim = 1;

while (victim == i) {};

}

public void unlock() {}
}

Art of Multiprocessor
Programming

Y

LockTwo

e ama

Y

[V'ict1'm =15

Art of Multiprocessor
Programming

Let other go
first

58

LockTwo

Wait for

[wh11e (victim

permission
= i) {};

Art of Multiprocessor
Programming

59

LockTwo

Nothing to do

[pub11c void unlock() {}

Art of Multiprocessor
Programming

60

LockTwo Claims

- Satisfies mutual exclusion

- If thread 1in CS public void LockTwo() {
- Thenvictim ==] victim = i;
- Cannot be both O and 1 }

- Not deadlock free

- Sequential execution deadlocks
- Concurrent execution does not

Art of Multiprocessor
Programming

while (victim == i) {};

61

Peterson's Algorithm

public void Tock() {

flag[i] = true;

victim = 1;

while (flag[j] && victim == 1) {};
}

public void unlock() {

flag[i] = false;

}

Art of Multiprocessor
Programming

62

Peterson's Algorithm

Announce I'm

[Flag[i]

Z intferested
true,

Art of Multiprocessor
Programming

63

Peterson's Algorithm

Announce I'm
interested

Lrue; Defer to other

flag[il]
1CtIm

Art of Multiprocessor 64
Programming

Peterson's Algorithm

Announce I'm
interested

Defer to other

& victim = 1) 11;)

Wait while other
iInterested & I'm
the victim

Art of Multiprocessor
Programming

65

Peterson's Algorithm

Announce I'm
interested

Defer to other

& victim = 1) 11;)

Wait while other
}[ﬂ ag[i] = \fﬂSﬁ] interested & I'm
No Tonger the victim
interested

Art of Multiprocessor
Programming

66

Mutual Exclusion

flag[i]
victim = 1i;
while (flag[j] && victim == i) {};

true;

+ If thread O in « If thread 1 in
critical section, critical section,
- flag[0]=true, - flag[1]=true,
—victim =1 —victim =0

Cannot both be true

Art of Multiprocessor 67
Programming

Deadlock Free

while (flag[j] && victim == i) {};

- Thread blocked

- only at while loop
- only if it is the victim

* One or the other must not be the victim

Art of Multiprocessor
Programming

68

Starvation Free

Thread 1 blocked
only if j repeatedly public void TockO {

f1 = .
re-enters so that e e

while (flag[j] && victim == i) {};
flag[j] == true and

victim == i public void unlockO {
When j re-enters , f120fi] = false;

- it sets victim to j.

- S0 1 getsin

Art of Multiprocessor 69
Programming

The Filter Algorithm for n
Threads

There are n-1 "waiting rooms" called
levels

+ At each level
- At least one enters level
- At least one blocked if
many try €S
* Only one thread makes it through

ncs

\ /
\ /
\ /
\ |

Art of Multiprocessor 70
Programming

Filter

class Filter implements Lock {

volatile int[] level; // level[i] for thread i
volatile int[] victim; // victim[L] for Tlevel L

public Filter(int n) { 0 |.

n-1

level = new intlnl; |ovel [oJo|4]o]o]o]o]|o]

victim = new int[n];
for (int i = 1, 1< n; i++) {
level[1] =

1 \

Thread 2 at level 4

Art of Multiprocessor

2

1

n-1
71

Programming victim

Filter

class Filter implements Lock {

public void lock(){
for (int L=1; L <n; L++) {
level[1] L;
victim[L] = 1;
while ((dk != 1 Tevel[k] >= L) &&
victim[L] == 1);

3}
public void unlock() {

level[1] = 0;
1}

Art of Multiprocessor
Programming

72

Filter

[for (intL=1; L <n; L++) {

One level at a time

Art of Multiprocessor 73
Programming

Filter

[Tevel[i]

Art of Multiprocessor
Programming

Announce
intention to
enter level L

74

Filter

[victim[L] = i;

Give priority to
anyone but me

Art of Multiprocessor 75
Programming

Filter

Wait as long as someone else is at same or
higher level, and I'm designated victim

while ((d k != 1) level[k] >= L) &&
victim[L] == 1);

Art of Multiprocessor 76
Programming

Filter

while ((d k != 1) level[k] >= L) &&
victim[L] == 1);

N—

Thread enters level L when it completes
the loop

Art of Multiprocessor
Programming

77

Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level L=n-1

ncs L=0
\ [L=1
/
\ /
\ |
L=n-2

Art of Multiprocessor
Programming

78

Induction Hypothesis

* No more than n-L+1 at level L-1
» Induction step: by contradiction

- Assume all at level

L-1 enter level L ncs assume
- A last to write \ / /
victim[L] \ | L-1 has n-L+1
\ [L has n-L

» B is any other \
CS
thread at level L prove

Art of Multiprocessor 79
Programming

Proof Structure

ncs

Assumed to enter L-1

/

dla, n-L+1 = 4
\' " 'Y nle1:-4
Last to \ \
write CS / i
victim[L] By way of contradiction

all enter L

Show that A must have seen
B at level L and since victim[L] ==
could not have entered

Art of Multiprocessor 80
Programming

From the Code

(1) writeg(level[B]=L)=>writey(victim[L]=B)

|

level[i] = L;
victim[L] = 1;

Art of Multiprocessor
Programming

81

From the Code

(2) write,(victim[L]=A)=>read,(level[B])

victim[L] = 1;

[wh'i'le (3@ k = 1) level[k] >= L)]

Art of Multiprocessor
Programming

82

By Assumption

(3) writeg(victim[L]=B)=>write,(victim[L]=A)

By assumption, A is the last
thread to write victim[L]

Art of Multiprocessor 83
Programming

Combining

(1) writeg(level[B]=
(3) writeg(victim[L

Observations

L) writeg(victim[L]=B)

J=B)=>write,(victim[L]=A)

(2) write,(victim[L]=A)=>read,(level[B])

Art of Multiprocessor 84

Pr

ogramming

Combining Observations

(1) writeg(level[B]=L)=>

(3) writeg(victim[L]=B)=>write,(victim[L]=A)
(2) 2 read,(level[B])

public void Tock() {
for (int L =1; L < n; L++) {
level[i] = L;
victim[L] = 1i;
while ((3k != 1) level[k] >= L)
&& victim[L] == i) {};
1} 85

rroyrammry

Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=>write,(victim[L]=A)

(2) %dA(Ievel[B])]
Thus, A read level[B] 2 L,

A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor 86
Programming

No Starvation

* Filter Lock satisfies properties:
- Just like Peterson Alg at any level
- S0 ho one starves

» But what about fairness?
- Threads can be overtaken by others

Art of Multiprocessor 87
Programming

Bounded Waiting

+ Want stronger fairness guarantees
» Thread not "overtaken” too much
* Need to adjust definitions ...

Art of Multiprocessor
Programming

88

Bounded Waiting

» Divide Tock() method into 2 parts:

- Doorway interval:

* Written D,

» always finishes in finite steps
- Waiting interval:

- Written W,

- may take unbounded steps

Art of Multiprocessor
Programming

89

r-Bounded Waiting

* For threads A and B:
- If D,k > Dg
» A's k-th doorway precedes B's j-th doorway
- Then €S,k > CSgi*r

» A's k-th critical section precedes B's (j+r)-th
critical section

» B cannot overtake A by more than r times
- First-come-first-served means r = 0.

Art of Multiprocessor 90
Programming

Fairness Again

* Filter Lock satisfies properties:

- No one starves
- But very weak fairness

* Not r-bounded for any r!
- That's pretty lame...

Art of Multiprocessor
Programming

91

Bakery Algorithm

- Provides First-Come-First-Served
- How?
- Take a "number”

- Wait until lower numbers have been
served

» Lexicographic order

- (a,i) > (b))
*Ifa>b,ora=bandi> |

Art of Multiprocessor
Programming

92

Bakery Algorithm

class Bakery implements Lock {
volatile boolean[] flag;
volatile Label[] Tlabel;
public Bakery (int n) {

}

flag = new boolean[n];

Tabel = new Label[n];

for (int i = 0; i < n; i++) {
flag[i] = false; label[i] = 0;

}

Art of Multiprocessor
Programming

93

Bakery Algorithm

volatile boolean[] flag;

latile Label[] label;
volatile Label[] Tabe 0 '. ‘n-l

LELF e 1f1f [+]f |f]
[ofo]4]o]o[5]0]0]

"

CS

Art of Multiprocessor 94
Programming

Bakery Algorithm

class Bakery implements Lock {

public void lock() {
flag[i] = true;
Tlabel[1] max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]

&& (label[i],i) > (label[k],k));
}

Art of Multiprocessor
Programming

95

Bakery Algorithm

Doorway

i

AN

lag[i] = true;
abel[1] = max(label[0], ..,T1abel[n-1])+1;

Art of Multiprocessor
Programming

96

Bakery Algorithm

I'm interested
[Flagli]l = true{

Art of Multiprocessor 97
Programming

Bakery Algorithm

Take increasing
label (read labels
in some arbitrary

/\ or'der')

[1abe1[i] = max(label[0], ..,1abel[n-11)+1;]

Art of Multiprocessor 98
Programming

Bakery Algorithm

Someone is
interested

|while (3k flag[k]

Art of Multiprocessor 99
Programming

Bakery Algorithm

Someone is
interested

while [(dk flaglk
&& (label[i],1) > (label [k],k));]

V

With lower (label,i)
in lexicographic order

Art of Multiprocessor 100
Programming

Bakery Algorithm

class Bakery implements Lock {

public void unlock() {
flag[i] = false;

}

}

Art of Multiprocessor
Programming

101

Bakery Algorithm

No longer

intferested
| flaglil = false;

labels are always increasing

Art of Multiprocessor 102
Programming

No Deadlock

* There is always one thread with
earliest label

+ Ties are impossible (why?)

Art of Multiprocessor 103
Programming

First-Come-First-Served

° If DA > DB'I'hen A'S class Bakery implements Lock {
label is earlier public void Tock(O {
. flag[i] = true;
- write,(label[A]) > e T = el T -
readp(label[A]) 2 .., Tabe1[n-11)+1;
. while (3k flag[k]
writeg(label[B]) 2 o TS =
readp(flag[A]) }(1abe1 [KI,k));

- So B is locked out
while flag[A] is
true

Art of Multiprocessor 104
Programming

Mutual Exclusion

° SLIppOSZ A Cmd B in class Bakery implements Lock {

CS together public void Tock() {
flag[i]l] = true;
» Suppose A has labe1[i] = max(label[0],
. .., label[n-1])+1;
earlier label e
- && (label[i],

- When B en’rer'ed, 1T (1abel [k],k))(;a ellil,) >

must have seen d

- flag[A] is false, or
- label[A] > label[B]

Art of Multiprocessor 105
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

Art of Multiprocessor 106
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) >
write,(flag[A]) @ Labeling,

Art of Multiprocessor 107
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) >
write,(flag[A]) @ Labeling,

* Which contradicts the assumption
that A has an earlier label

Art of Multiprocessor 108
Programming

Bakery Y232K Bug

class Bakery implements Lock {

public void lockO {
flag[i] = true;
label[i] = max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]

&& (label[i],i) > (label[k],k));
}

Art of Multiprocessor 109
Programming

Bakery Y232K Bug

Mutex breaks if
Tabel[i] overflows

[1abel1[i] = max(Tabel[0], ..,Tabel[n-11)+1; |

Art of Multiprocessor 110
Programming

Does Overflow Actually
Matter?

- Yes

- Y2K

- 18 January 2038 (Unix time_t rollover)
- 16-bit counters

 No

- 64-bit counters

* Maybe

- 32-bit counters

Art of Multiprocessor 111
Programming

Does Overflow Actually
Matter?

+ 32bit counters

- Signed integer : (- 23!, 231 - 1)
* In seconds, (-78 years, 78 years)
- Unsigned : (0, 232)
* In seconds, 136 years
» Unix time_t
- Started at Jan 1, 1970
- On Jan 19, 2038, overflow

Art of Multiprocessor
Programming

112

Timestamps

* Label variable is really a timestamp

* Need ability to

- Read others’ timestamps

- Compare them

- Generate a later timestamp

- Can we do this without overflow?

Art of Multiprocessor 113
Programming

The Good News

- One can construct a
- Wait-free (no mutual exclusion)
- Concurrent
- Timestamping system
- That never overflows

Art of Multiprocessor 114
Programming

The News

* One can construct a

-'(Wai’r—freelno mutual exclusion)
\. J

- Timestamping system
- That never overflows

Art of Multiprocessor 115
Programming

Instead ...

* We construct a Sequential
Timestamping system

- Same basic idea

- But simpler
+ Uses mutex to read & write
atomically
* No good for building locks

- But useful anyway

Art of Multiprocessor
Programming

116

Precedence Graphs

» Timestamps form directed graph
- Edge x to y

- Means x is later timestamp

- We say x dominates y

Art of Multiprocessor 117
Programming

Unbounded Counter Precedence

Graph
Qf_ 02_ 94_ '94.

- Timestamping = move tokens on graph

* Atomically
- read others' tokens
- move mine

» Ignore tie-breaking for now

Art of Multiprocessor 118
Programming

Unbounded Counter Precedence
Graph

Art of Multiprocessor 119
Programming

Unbounded Counter Precedence
Graph

takes O takes1 takes 2

Art of Multiprocessor 120
Programming

Two-Thread Bounded
Precedence Graph

Art of Multiprocessor 121
Programming

Two-Thread Bounded
Precedence Graph

Art of Multiprocessor 122
Programming

Two-Thread Bounded
Precedence Graph

Art of Multiprocessor 123
Programming

Two-Thread Bounded
Precedence Graph

Art of Multiprocessor 124
Programming

Two-Thread Bounded
Precedence Graph T?

and so on ...

Art of Multiprocessor 125
Programming

Three-Thread Bounded
Precedence Graph?

i

Art of Multiprocessor
Programming

Three-Thread Bounded
Precedence Graph?

Art of Multiprocessor 127
Programming

Three-Thread Bounded
Precedence Graph?

rm‘ 0 2<1<0

Art of Multiprocessor 128

Three-Thread Bounded
Precedence Graph?

1<0<3

0,

129

Three-Thread Bounded
Precedence Graph?

rm‘e

I'll go next

3<2<«1

Art of Multiprocessor 130
Programming

Three-Thread Bounded
Precedence Graph?

rm‘e

1<0<3

Isit OK. ?

Art of Multiprocessor 131
Programming

How about this ?

Art of Multiprocessor 132
Programming

How about this ?

Art of Multiprocessor 133
Programming

How about this ?

Art of Multiprocessor 134
Programming

Graph Composition
e N

T3=T2*T2 \ /

Replace each vertex with a
copy of the graph

Art of Multiprocessor 135
Programming

Three-Thread Bounded
Precedence Graph T3

ol
&

Art of Multiprocessor 136
Programming

o)
" 4

Three-Thread Bounded
Precedence Graph T3

-<11<22

£ 858
Q@q@‘

and so on...

Art of Multiprocessor 137
Programming

Three-Thread Bounded
Precedence Graph T3

2?7?
O 20| < |02

(G \ 02| «<|10

’g‘ @ 10] < |20

== 4

Art of Multiprocessor 138
Programming

ITn General

Tk = T2* Tk-1 Q label size =
¥ % KY =
K threads need 3k Q Q lé:,QZ(B)
nodes (> \

'Q\ VQ\
36 A4

~

Art of Multiprocessor 139
Programming

Deep Philosophical Question

* The Bakery Algorithm is
- Succinct,
- Elegant, and
- Fair.
* Q: So why isn't it practical?
+ A: Well, you have to read N distinct
variables

Art of Multiprocessor 140
Programming

Shared Memory

» Shared read/write memory locations
called Registers (historical reasons)

* Come in different flavors

- Multi-Reader-Single-Writer (Flag[])
- Multi-Reader-Multi-Writer (Victim[])
- Not interesting: SRMW and SRSW

Art of Multiprocessor 141
Programming

Theorem

At least N MRSW (multi-
reader/single-writer) registers are
needed to solve deadlock-free
mutual exclusion.

N registers like Flag[]...

Art of Multiprocessor 142
Programming

Proving Algorithmic

Impossibility ﬂ
!

*To show no algorithm exists: | |

* assume by way of contradiction
onhe does, !

* show a bad execution that cS
violates properties:

* in our case assume an alg for deadlock

free mutual exclusion using < N registers

Art of Multiprocessor 143
Programming

Proof: Need N-MRSW Registers

Each thread must write to some register
} }

write. write.
! ! !

CS CS CS

..can't tell whether A is in critical
section

Art of Multiprocessor 144
Programming

Upper Bound

» Bakery algorithm
- Uses 2N MRSW registers

* So the bound is (pretty) tight

* But what if we use MRMW registers?
- Like victim[] ?

Art of Multiprocessor 145
Programming

Bad News Theorem

At least N MRMW multi-
reader/multi-writer registers are
needed to solve deadlock-free
mutual exclusion.

(So multiple writers don't help)

Art of Multiprocessor
Programming

146

Theorem (First 2-Threads)

Theorem: Deadlock-free mutual
exclusion for 2 threads requires at
least 2 multi-reader multi-writer
registers

Proof: assume one register suffices
and derive a contradiction

Art of Multiprocessor 147
Programming

Two Thread Execution

\ /
\ /
\ /

CS CS

» Threads run, reading and writing R
» Deadlock free so at least one gets in

Art of Multiprocessor 148
Programming

Covering State for One
Register

B has to write to the register
before entering CS, so stop it just
before

Art of Multiprocessor 149
Programming

Proof: Assume Cover of 1

A runs, possibly writes to the
register, enters CS

CS

Art of Multiprocessor 150
Programming

Proof: Assume Cover of 1

8 2
‘/BRuns, first

| | obliterating
any trace of A,
l then also enters
the critical
CS CS section

Art of Multiprocessor 151
Programming

Theorem

Deadlock-free mutual exclusion for 3
threads requires at least 3 multi-
reader multi-writer registers

Art of Multiprocessor 152
Programming

Proof: Assume Cover of 2

a 4 B8

| |
| |
| |
\{ \{

Only 2 registers

Art of Multiprocessor 153
Programming

Run A Solo

a 4 B8

| |
| |
| |
\{ \{

Writes to one or both
cs registers, enters CS

Art of Multiprocessor 154
Programming

Obliterate Traces of A

a a4 A
L

Other threads obliterate
CS evidence that A entered CS

Art of Multiprocessor 155
Programming

Mutual Exclusion Fails

a 4 A
L

CS looks empty, so
CS CS another thread
gets in

Art of Multiprocessor 156
Programming

Proof Strategy

» Proved: a contradiction starting from
a covering state for 2 registers

* Claim: a covering state for 2
registers is reachable from any state
where CS is empty

Art of Multiprocessor 157
Programming

Covering State for Two

* If we run B through CS 3 times, B must
return twice to cover some register, say R;

Art of Multiprocessor 158
Programming

Covering State for Two

a4 a

| |
| |
| |
\{ \{

+ Start with B covering register R, for the 15t fime
* Run A until it is about to write to uncovered R,
+ Are we done?

Art of Multiprocessor 159
Programming

Covering State for Two

a4 a

| |
| |
| |
\{ \{
| | |

* NO! A could have written to R,
* S0 CS no longer looks empty

Art of Multiprocessor
Programming

160

Covering State for Two

a4 a

| |
| |
| |
\{ \{
| | |

* Run B obliterating traces of A in R,
* Run B again until it is about to write to R,

- Now we are done

Art of Multiprocessor 161
Programming

Inductively We Can Show

a a B3

I I I
| | |
I I I
\{ \{ \/
| | | |

» There is a covering state

- Where k threads not in CS cover k distinct
registers

- Proof follows when k = N-1

Art of Multiprocessor 162
Programming

Summary of Lecture

* In the 1960's many incorrect
solutions to starvation-free mutual

exclusion using RW-registers were
published...

» Today we know how to solve FIFO N
thread mutual exclusion using 2N
RW-Registers

Art of Multiprocessor 163
Programming

Summary of Lecture

* N RW-Registers inefficient
- Because writes "cover” older writes

Need stronger hardware operations
- do not have the "covering problem”

* In next lectures - understand what
these operations are...

Art of Multiprocessor 164
Programming

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work

- to Remix — to adapt the work
Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that
sugﬁests that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

No'ﬁ]hing in this license impairs or restricts the author's moral
rights.

Art of Multiprocessor 165
Programming

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Initial State

166

Green reads Red

: : 167
Programming

Red looks...

~ S0 168
Programming

Red moves...

0

Red=
(1,0)
== 4
Art of Multiprocessor 169

Programming

Blue looks

. = / C
Programming

Blue moves

O

a4
!‘Ill;!'!
)y

B o0

Red=
(1,0)

Art of Multiprocessor 171
Programming

Green reads Blue

2 : 172
Programming

Green decides

173

Programming

Green moves

Art of Multiprocessor 174

Oh Oh, No precedence !

Initial State

Green reads Red

: : 177
Programming

Green reads Red,Blue

: - 178
Programming

Green decides to move to (2,1)

: g 179
Programming

Red looks...

~ S0 180
Programming

Green moves...

G

Art of Multiprocessor 181
Programming

= 4

Blue looks

Red moves...

Art of Multiprocessor
Programming

Blue moves...

Art of Multiprocessor 184
Programming

No Precedence

Art of Multiprocessor 185
Programming

Filter

class Filter implements Lock {

volatile int[] level; // level[i] for thread i
volatile int[] victim; // victim[L] for Tlevel L

public Filter(int n) { 0 |.

n-1

level = new intlnl; |ovel [oJo|4]o]o]o]o]|o]

victim = new int[n];
for (int i = 1, 1< n; i++) {
level[1] =

1 \

Thread 2 at level 4

Art of Multiprocessor

2

1

n-1
186

Programming victim

Filter

class Filter implements Lock {

public void lock(){
for (int L=1; L <n; L++) {
level[1] L;
victim[L] = 1;
while ((dk != 1 Tevel[k] >= L) &&
victim[L] == 1);

3}
public void unlock() {

level[1] = 0;
1}

Art of Multiprocessor 187
Programming

Filter Lock (n=3)

level[1l]=level[2]=1level[3]=0; victim[1l]=victim[2]=0;

public void lock(){

j = (1 mod 3)+1; k=(J mod 3)+1;

level[i] = 1;

victim[1l] = 1;

while (level[jl>= 1| |level[k]>=1)&&victim[1l]==1);
level[i] = 2;

victim[2] = 1;

while (level[jl>= 2| |level [k]>=2)&&victim[2]==1);
}

public void unlock() {
level[i] = O;
}

AT O waniprocessor 100
Programming

level[1]
level[2]

level[3]

victim[1]

victim[2]

p1
p2
p3

pl

p2

blocked

Filter Lock

p3 p2 p2 p2
1 1 1 1
1 2 0 1
1 1 1 1
3 3 3 2
0 2 2 2
Sleeps...
CS unlock blocked
blocked

Art of Multiprocessor
Programming

p3

CS

p3 p3
1 1
1 1
0 1
2 3
3 3

unlock blocked

p2

(&

p2

unlock

189

