
Mutual Exclusion

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

Mutual Exclusion

• Today we will try to formalize our
understanding of mutual exclusion

• We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting

Art of Multiprocessor
Programming

3

Mutual Exclusion

• Formal problem definitions
• Solutions for 2 threads
• Solutions for n threads
• Fair solutions
• Inherent costs

Art of Multiprocessor
Programming

4

Warning

• You will never use these protocols
– Get over it

• You are advised to understand them
– The same issues show up everywhere

– Except hidden and more complex

Art of Multiprocessor
Programming

5

Why is Concurrent
Programming so Hard?

• Try preparing a seven-course banquet
– By yourself

– With one friend

– With twenty-seven friends …

• Before we can talk about programs
– Need a language

– Describing time and concurrency

Art of Multiprocessor
Programming

6

• “Absolute, true and mathematical
time, of itself and from its own
nature, flows equably without relation
to anything external.” (I. Newton,
1689)

• “Time is, like, Nature’s way of making

sure that everything doesn’t happen
all at once.” (Anonymous, circa 1968)

Time

time

Art of Multiprocessor
Programming

7

time

• An event a0 of thread A is
– Instantaneous

– No simultaneous events (break ties)

a0

Events

Art of Multiprocessor
Programming

8

time

• A thread A is (formally) a sequence
a0, a1, ... of events
– “Trace” model

– Notation: a0  a1 indicates order

a0

Threads

a1 a2 …

Art of Multiprocessor
Programming

9

• Assign to shared variable

• Assign to local variable

• Invoke method

• Return from method

• Lots of other things …

Example Thread Events

Art of Multiprocessor
Programming

10

Threads are State Machines

Events are
transitions

a0

a1 a2

a3

Art of Multiprocessor
Programming

11

States

• Thread State
– Program counter

– Local variables

• System state
– Object fields (shared variables)

– Union of thread states

Art of Multiprocessor
Programming

12

time

• Thread A

Concurrency

Art of Multiprocessor
Programming

13

time

time

• Thread A

• Thread B

Concurrency

Art of Multiprocessor
Programming

14

time

Interleavings

• Events of two or more threads
– Interleaved

– Not necessarily independent (why?)

Art of Multiprocessor
Programming

15

time

• An interval A0 =(a0,a1) is
– Time between events a0 and a1

a0 a1

Intervals

A0

Art of Multiprocessor
Programming

16

time

Intervals may Overlap

a0 a1 A0

b0 b1 B0

Art of Multiprocessor
Programming

17

time

Intervals may be Disjoint

a0 a1 A0

b0 b1 B0

Art of Multiprocessor
Programming

18

time

Precedence

a0 a1 A0

b0 b1 B0

Interval A0 precedes interval B0

Art of Multiprocessor
Programming

19

Precedence

• Notation: A0  B0

• Formally,
– End event of A0 before start event of B0

– Also called “happens before” or
“precedes”

Art of Multiprocessor
Programming

20

Precedence Ordering

• Remark: A0  B0 is just like saying
– 1066 AD  1492 AD,

– Middle Ages  Renaissance,

• Oh wait,
– what about this week vs this month?

Art of Multiprocessor
Programming

21

Precedence Ordering

• Never true that A  A

• If A B then not true that B A

• If A B & B C then A C

• Funny thing: A B & B A might both
be false!

Art of Multiprocessor
Programming

22

Partial Orders
(you may know this already)

• Irreflexive:
– Never true that A  A

• Antisymmetric:
– If A  B then not true that B  A

• Transitive:
– If A  B & B  C then A  C

Art of Multiprocessor
Programming

23

Total Orders
(you may know this already)

• Also
– Irreflexive

– Antisymmetric

– Transitive

• Except that for every distinct A, B,
– Either A  B or B  A

Art of Multiprocessor
Programming

24

Repeated Events

while (mumble) {

 a0; a1;

}

a0
k

k-th occurrence
of event a0

A0
k

k-th occurrence of
interval A0 =(a0,a1)

Art of Multiprocessor
Programming

25

Implementing a Counter

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
indivisible using

locks

Art of Multiprocessor
Programming

26

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Art of Multiprocessor
Programming

27

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

Art of Multiprocessor
Programming

28

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release lock

acquire lock

Art of Multiprocessor
Programming

29

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Art of Multiprocessor
Programming

30

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

acquire Lock

Art of Multiprocessor
Programming

31

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Release lock
(no matter what)

Art of Multiprocessor
Programming

32

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Critical
section

Art of Multiprocessor
Programming

33

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

Art of Multiprocessor
Programming

34

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be thread j’s m-th critical

section execution

Art of Multiprocessor
Programming

35

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

Art of Multiprocessor
Programming

36

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k  CSj

m

Art of Multiprocessor
Programming

37

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k  CSj

m

CSj
m  CSi

k

Art of Multiprocessor
Programming

38

Deadlock-Free

• If some thread calls lock()
– And never returns

– Then other threads must complete lock()
and unlock() calls infinitely often

• System as a whole makes progress
– Even if individuals starve

Art of Multiprocessor
Programming

39

Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress

Art of Multiprocessor
Programming

40

Two-Thread vs n -Thread
Solutions

• Two-thread solutions first
– Illustrate most basic ideas

– Fits on one slide

• Then n-Thread solutions

Art of Multiprocessor
Programming

41

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Art of Multiprocessor
Programming

42

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

Art of Multiprocessor
Programming

43

LockOne

class LockOne implements Lock {
private volatile boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Art of Multiprocessor
Programming

44

LockOne

class LockOne implements Lock {
private volatile boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Set my flag

Art of Multiprocessor
Programming

45

class LockOne implements Lock {
private volatile boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

LockOne

Wait for other
flag to go false

Set my flag

Art of Multiprocessor
Programming

46

• Assume CSA
j overlaps CSB

k

• Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

• Derive a contradiction

LockOne Satisfies Mutual
Exclusion

Art of Multiprocessor
Programming

47

• writeA(flag[A]=true) 
readA(flag[B]==false) CSA

• writeB(flag[B]=true) 
readB(flag[A]==false)  CSB

From the Code

class LockOne implements Lock {
…
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Art of Multiprocessor
Programming

48

• readA(flag[B]==false) 
writeB(flag[B]=true)

• readB(flag[A]==false) 
writeA(flag[B]=true)

From the Assumption

Art of Multiprocessor
Programming

49

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

50

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

51

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

52

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

53

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

54

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

55

Cycle!

Art of Multiprocessor
Programming

56

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

 flag[i] = true; flag[j] = true;
 while (flag[j]){} while (flag[i]){}

Art of Multiprocessor
Programming

57

LockTwo
public class LockTwo implements Lock {
 private volatile int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Art of Multiprocessor
Programming

58

LockTwo
public class LockTwo implements Lock {
 private volatile int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Let other go
first

Art of Multiprocessor
Programming

59

LockTwo
public class LockTwo implements Lock {
 private volatile int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Wait for
permission

Art of Multiprocessor
Programming

60

LockTwo
public class Lock2 implements Lock {
 private volatile int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Nothing to do

Art of Multiprocessor
Programming

61

public void LockTwo() {
 victim = i;
 while (victim == i) {};
 }

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS

– Then victim == j

– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks

– Concurrent execution does not

Art of Multiprocessor
Programming

62

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

63

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Art of Multiprocessor
Programming

64

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Art of Multiprocessor
Programming

65

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim

Art of Multiprocessor
Programming

66

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
 }
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim
No longer
interested

Art of Multiprocessor
Programming

67

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in
critical section,
– flag[1]=true,

– victim = 0

• If thread 0 in
critical section,
– flag[0]=true,

– victim = 1

Cannot both be true

Art of Multiprocessor
Programming

68

Deadlock Free

• Thread blocked
– only at while loop

– only if it is the victim

• One or the other must not be the victim

public void lock() {
 …
 while (flag[j] && victim == i) {};

Art of Multiprocessor
Programming

69

Starvation Free

• Thread i blocked
only if j repeatedly
re-enters so that

 flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}

public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

70

The Filter Algorithm for n
Threads

There are n-1 “waiting rooms” called
levels

• At each level
– At least one enters level

– At least one blocked if

 many try

• Only one thread makes it through

ncs

cs

Art of Multiprocessor
Programming

71

Filter

class Filter implements Lock {
 volatile int[] level; // level[i] for thread i
 volatile int[] victim; // victim[L] for level L

 public Filter(int n) {

 level = new int[n];

 victim = new int[n];

 for (int i = 1; i < n; i++) {

 level[i] = 0;

 }}

…

}

n-1

n-1

0

1

0 0 0 0 0 0 4

2

2

Thread 2 at level 4

0

4

level

victim

Art of Multiprocessor
Programming

72

Filter
class Filter implements Lock {
 …

 public void lock(){
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i level[k] >= L) &&
 victim[L] == i);
 }}
 public void unlock() {
 level[i] = 0;
 }}

Art of Multiprocessor
Programming

73

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

One level at a time

Art of Multiprocessor
Programming

74

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L) &&
 victim[L] == i); // busy wait
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Announce
intention to
enter level L

Art of Multiprocessor
Programming

75

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Give priority to
anyone but me

Art of Multiprocessor
Programming

76

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter
Wait as long as someone else is at same or

higher level, and I’m designated victim

Art of Multiprocessor
Programming

77

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Thread enters level L when it completes
the loop

Art of Multiprocessor
Programming

78

Claim
• Start at level L=0

• At most n-L threads enter level L

• Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

Art of Multiprocessor
Programming

79

Induction Hypothesis

• Assume all at level
L-1 enter level L

• A last to write
victim[L]

• B is any other
thread at level L

• No more than n-L+1 at level L-1

• Induction step: by contradiction

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove

Art of Multiprocessor
Programming

80

Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4

n-L+1 = 4

A B

Last to
write
victim[L]

Show that A must have seen
B at level L and since victim[L] == A
could not have entered

Art of Multiprocessor
Programming

81

From the Code

(1) writeB(level[B]=L)writeB(victim[L]=B)

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

82

From the Code

(2) writeA(victim[L]=A)readA(level[B])

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

83

By Assumption

By assumption, A is the last
thread to write victim[L]

(3) writeB(victim[L]=B)writeA(victim[L]=A)

Art of Multiprocessor
Programming

84

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Art of Multiprocessor
Programming

85

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Art of Multiprocessor
Programming

86

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Thus, A read level[B] ≥ L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor
Programming

87

No Starvation

• Filter Lock satisfies properties:
– Just like Peterson Alg at any level

– So no one starves

• But what about fairness?
– Threads can be overtaken by others

Art of Multiprocessor
Programming

88

Bounded Waiting

• Want stronger fairness guarantees

• Thread not “overtaken” too much

• Need to adjust definitions ….

Art of Multiprocessor
Programming

89

Bounded Waiting

• Divide lock() method into 2 parts:
– Doorway interval:

• Written DA

• always finishes in finite steps

– Waiting interval:
• Written WA

• may take unbounded steps

Art of Multiprocessor
Programming

90

• For threads A and B:
– If DA

k
 DB

j
• A’s k-th doorway precedes B’s j-th doorway

– Then CSA
k
 CSB

j+r
• A’s k-th critical section precedes B’s (j+r)-th

critical section

• B cannot overtake A by more than r times

• First-come-first-served means r = 0.

r-Bounded Waiting

Art of Multiprocessor
Programming

91

Fairness Again

• Filter Lock satisfies properties:
– No one starves

– But very weak fairness

• Not r-bounded for any r!

– That’s pretty lame…

Art of Multiprocessor
Programming

92

Bakery Algorithm

• Provides First-Come-First-Served
• How?

– Take a “number”
– Wait until lower numbers have been

served

• Lexicographic order
– (a,i) > (b,j)

• If a > b, or a = b and i > j

Art of Multiprocessor
Programming

93

Bakery Algorithm

class Bakery implements Lock {

 volatile boolean[] flag;

 volatile Label[] label;

 public Bakery (int n) {

 flag = new boolean[n];

 label = new Label[n];

 for (int i = 0; i < n; i++) {

 flag[i] = false; label[i] = 0;

 }

 }
 …

Art of Multiprocessor
Programming

94

Bakery Algorithm

class Bakery implements Lock {

 volatile boolean[] flag;

 volatile Label[] label;

 public Bakery (int n) {

 flag = new boolean[n];

 label = new Label[n];

 for (int i = 0; i < n; i++) {

 flag[i] = false; label[i] = 0;

 }

 }
 …

n-1 0

f f f f t f t

2

f

0 0 0 0 5 0 4 0

6

CS

Art of Multiprocessor
Programming

95

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

96

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Doorway

Art of Multiprocessor
Programming

97

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

I’m interested

Art of Multiprocessor
Programming

98

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Take increasing
label (read labels
in some arbitrary

order)

Art of Multiprocessor
Programming

99

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

Art of Multiprocessor
Programming

100

Bakery Algorithm
class Bakery implements Lock {
 boolean flag[n];
 int label[n];

 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

With lower (label,i)
in lexicographic order

Art of Multiprocessor
Programming

101

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

Art of Multiprocessor
Programming

102

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

No longer
interested

labels are always increasing

Art of Multiprocessor
Programming

103

No Deadlock

• There is always one thread with
earliest label

• Ties are impossible (why?)

Art of Multiprocessor
Programming

104

First-Come-First-Served

• If DA  DBthen A’s
label is earlier
– writeA(label[A]) 

readB(label[A]) 
writeB(label[B]) 
readB(flag[A])

• So B is locked out
while flag[A] is
true

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

105

Mutual Exclusion

• Suppose A and B in
CS together

• Suppose A has
earlier label

• When B entered, it
must have seen
– flag[A] is false, or

– label[A] > label[B]

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

106

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

Art of Multiprocessor
Programming

107

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB  readB(flag[A]) 
writeA(flag[A])  LabelingA

Art of Multiprocessor
Programming

108

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB  readB(flag[A]) 
writeA(flag[A])  LabelingA

• Which contradicts the assumption
that A has an earlier label

Art of Multiprocessor
Programming

109

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

110

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while ($k flag[k]
 && (label[i],i) > (label[k],k));
 }

Mutex breaks if
label[i] overflows

Art of Multiprocessor
Programming

111

Does Overflow Actually
Matter?

• Yes
– Y2K
– 18 January 2038 (Unix time_t rollover)
– 16-bit counters

• No
– 64-bit counters

• Maybe
– 32-bit counters

Art of Multiprocessor
Programming

112

Does Overflow Actually
Matter?

• 32bit counters
– Signed integer : (- 231, 231 – 1)

• In seconds, (-78 years, 78 years)

– Unsigned : (0, 232)
• In seconds, 136 years

• Unix time_t
– Started at Jan 1, 1970
– On Jan 19, 2038, overflow

Art of Multiprocessor
Programming

113

Timestamps

• Label variable is really a timestamp

• Need ability to
– Read others’ timestamps

– Compare them

– Generate a later timestamp

• Can we do this without overflow?

Art of Multiprocessor
Programming

114

• One can construct a
– Wait-free (no mutual exclusion)

– Concurrent

– Timestamping system

– That never overflows

The Good News

Art of Multiprocessor
Programming

115

• One can construct a
– Wait-free (no mutual exclusion)

– Concurrent

– Timestamping system

– That never overflows

The Good News

This part is hard

Art of Multiprocessor
Programming

116

Instead …

• We construct a Sequential
timestamping system
– Same basic idea
– But simpler

• Uses mutex to read & write
atomically

• No good for building locks
– But useful anyway

Art of Multiprocessor
Programming

117

Precedence Graphs

0 1 2 3

• Timestamps form directed graph

• Edge x to y
– Means x is later timestamp

– We say x dominates y

Art of Multiprocessor
Programming

118

Unbounded Counter Precedence
Graph

0 1 2 3

• Timestamping = move tokens on graph
• Atomically

– read others’ tokens
– move mine

• Ignore tie-breaking for now

Art of Multiprocessor
Programming

119

Unbounded Counter Precedence
Graph

0 1 2 3

Art of Multiprocessor
Programming

120

Unbounded Counter Precedence
Graph

0 1 2 3

takes 0 takes 1 takes 2

Art of Multiprocessor
Programming

121

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

122

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

123

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

124

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

125

Two-Thread Bounded
Precedence Graph T2

0

1 2

and so on …

Art of Multiprocessor
Programming

126

Three-Thread Bounded
Precedence Graph?

1 2

0 3

Art of Multiprocessor
Programming

127

Three-Thread Bounded
Precedence Graph?

1 2

0 3
3<2<1

Art of Multiprocessor
Programming

128

Three-Thread Bounded
Precedence Graph?

1 2

0 3
2<1<0

Art of Multiprocessor
Programming

129

Three-Thread Bounded
Precedence Graph?

1 2

0 3
1<0<3

Art of Multiprocessor
Programming

130

Three-Thread Bounded
Precedence Graph?

1 2

0 3
3<2<1

I’ll go next

Art of Multiprocessor
Programming

131

Three-Thread Bounded
Precedence Graph?

1 2

0 3

1<0<3

Is it O.K. ?

Art of Multiprocessor
Programming

132

How about this ?

1 2

0 3

2<1

Art of Multiprocessor
Programming

133

How about this ?

1 2

0 3

3<2

 O.K.

Art of Multiprocessor
Programming

134

How about this ?

1 2

0 3

3 ? 1

Art of Multiprocessor
Programming

135

Graph Composition

0

1 2

0

1 2

Replace each vertex with a
copy of the graph

T3=T2*T2

Art of Multiprocessor
Programming

136

Three-Thread Bounded
Precedence Graph T3

2

0

1 2
1

0

1 2

0

0

1 2

Art of Multiprocessor
Programming

137

Three-Thread Bounded
Precedence Graph T3

2

0

1 2
1

0

1 2

0

0

1 2

and so on…

10 11 22 < <

Art of Multiprocessor
Programming

138

Three-Thread Bounded
Precedence Graph T3

2

0

1 2
1

0

1 2

0

0

1 2

20 02 <

02 10 <

???

10 20 <

Art of Multiprocessor
Programming

139

In General

Tk = T2 * Tk-1

K threads need 3k

nodes

label size =
Log2(3

k) =
2n

Art of Multiprocessor
Programming

140

Deep Philosophical Question

• The Bakery Algorithm is
– Succinct,

– Elegant, and

– Fair.

• Q: So why isn’t it practical?

• A: Well, you have to read N distinct
variables

Art of Multiprocessor
Programming

141

Shared Memory

• Shared read/write memory locations
called Registers (historical reasons)

• Come in different flavors
– Multi-Reader-Single-Writer (Flag[])

– Multi-Reader-Multi-Writer (Victim[])

– Not interesting: SRMW and SRSW

Art of Multiprocessor
Programming

142

Theorem

At least N MRSW (multi-
reader/single-writer) registers are
needed to solve deadlock-free
mutual exclusion.

N registers like Flag[]…

Art of Multiprocessor
Programming

143

Proving Algorithmic
Impossibility

CS

write

C

•To show no algorithm exists:
• assume by way of contradiction
 one does,
• show a bad execution that
 violates properties:
• in our case assume an alg for deadlock
free mutual exclusion using < N registers

Art of Multiprocessor
Programming

144

Proof: Need N-MRSW Registers

Each thread must write to some register

…can’t tell whether A is in critical
section

write

CS CS CS

write

A B C

Art of Multiprocessor
Programming

145

Upper Bound

• Bakery algorithm
– Uses 2N MRSW registers

• So the bound is (pretty) tight

• But what if we use MRMW registers?
– Like victim[] ?

Art of Multiprocessor
Programming

146

Bad News Theorem

At least N MRMW multi-
reader/multi-writer registers are
needed to solve deadlock-free
mutual exclusion.

(So multiple writers don’t help)

Art of Multiprocessor
Programming

147

Theorem (First 2-Threads)

Theorem: Deadlock-free mutual
exclusion for 2 threads requires at
least 2 multi-reader multi-writer
registers

Proof: assume one register suffices
and derive a contradiction

Art of Multiprocessor
Programming

148

Two Thread Execution

• Threads run, reading and writing R

• Deadlock free so at least one gets in

B A

CS

Write(R)

CS

R

Art of Multiprocessor
Programming

149

Covering State for One
Register

Write(R)

B

B has to write to the register
before entering CS, so stop it just

before

Art of Multiprocessor
Programming

150

Proof: Assume Cover of 1

A B

Write(R)

CS

A runs, possibly writes to the
register, enters CS

Art of Multiprocessor
Programming

151

Proof: Assume Cover of 1

A B

CS

B Runs, first
obliterating
any trace of A,
then also enters
the critical
section

Write(R)

CS

Art of Multiprocessor
Programming

152

Theorem

Deadlock-free mutual exclusion for 3
threads requires at least 3 multi-
reader multi-writer registers

Art of Multiprocessor
Programming

153

Proof: Assume Cover of 2

Write(RB)

B

Write(RC)

C A

Only 2 registers

Art of Multiprocessor
Programming

154

Run A Solo

Write(RB)

B

Write(RC)

C A

Writes to one or both
registers, enters CS CS

Art of Multiprocessor
Programming

155

Obliterate Traces of A

Write(RB)

B

Write(RC)

C A

Other threads obliterate
evidence that A entered CS CS

Art of Multiprocessor
Programming

156

Mutual Exclusion Fails

Write(RB)

B

Write(RC)

C A

CS CS

CS looks empty, so
another thread

gets in

Art of Multiprocessor
Programming

157

Proof Strategy

• Proved: a contradiction starting from
a covering state for 2 registers

• Claim: a covering state for 2
registers is reachable from any state
where CS is empty

Art of Multiprocessor
Programming

158

• If we run B through CS 3 times, B must
 return twice to cover some register, say RB

Covering State for Two

Write(RB)

B

Write(RA)

A

Art of Multiprocessor
Programming

159

Covering State for Two

• Start with B covering register RB for the 1st time
• Run A until it is about to write to uncovered RA

• Are we done?

Write(RB)

B

Write(RA)

A

Art of Multiprocessor
Programming

160

Covering State for Two

• NO! A could have written to RB

• So CS no longer looks empty

Write(RB)

B

Write(RA)

A

Art of Multiprocessor
Programming

161

Covering State for Two

• Run B obliterating traces of A in RB

• Run B again until it is about to write to RB

• Now we are done

Write(RB)

B

Write(RA)

A

Art of Multiprocessor
Programming

162

Inductively We Can Show

• There is a covering state
– Where k threads not in CS cover k distinct

registers
– Proof follows when k = N-1

Write(RB)

B

Write(RC)

C

Write(RA)

A

Art of Multiprocessor
Programming

163

Summary of Lecture

• In the 1960’s many incorrect
solutions to starvation-free mutual
exclusion using RW-registers were
published…

• Today we know how to solve FIFO N
thread mutual exclusion using 2N
RW-Registers

Art of Multiprocessor
Programming

164

Summary of Lecture

• N RW-Registers inefficient
– Because writes “cover” older writes

• Need stronger hardware operations
– do not have the “covering problem”

• In next lectures - understand what
these operations are…

Art of Multiprocessor
Programming

165

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that

suggests that the authors endorse you or your use of the

work).

– Share Alike. If you alter, transform, or build upon this work,

you may distribute the resulting work only under the same,

similar or a compatible license.

• For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission

from the copyright holder.

• Nothing in this license impairs or restricts the author's moral

rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Art of Multiprocessor
Programming

166

Initial State

2

0

1 2
1

0

1 2

0

0

1 2

Art of Multiprocessor
Programming

167

Green reads Red

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Art of Multiprocessor
Programming

168

Red looks…

2

0

1 2
1

0

1 2

0

0

1 2

(2,0)
ok!

Red=
(1,0)

Art of Multiprocessor
Programming

169

Red moves…

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Art of Multiprocessor
Programming

170

Blue looks

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

(0,0)
ok!

Art of Multiprocessor
Programming

171

Blue moves

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Art of Multiprocessor
Programming

172

Green reads Blue

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Blue=
(0,0)

Art of Multiprocessor
Programming

173

Green decides

2

0

1 2
1

0

1 2

0

0

1 2

(1,1)
ok !

Art of Multiprocessor
Programming

174

Green moves

2

0

1 2
1

0

1 2

0

0

1 2

Art of Multiprocessor
Programming

175

Oh Oh, No precedence !

2

0

1 2
1

0

1 2

0

0

1 2

Art of Multiprocessor
Programming

176

Initial State

2

0

1 2
1

0

1 2

0

0

1 2

Art of Multiprocessor
Programming

177

Green reads Red

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Art of Multiprocessor
Programming

178

Green reads Red,Blue

2

0

1 2
1

0

1 2

0

0

1 2

Red=
(1,0)

Blue=
(1,1)

Art of Multiprocessor
Programming

179

Green decides to move to (2,1)

2

0

1 2
1

0

1 2

0

0

1 2

(2,1)
ok !

Art of Multiprocessor
Programming

180

Red looks…

2

0

1 2
1

0

1 2

0

0

1 2

(2,0)
ok!

(2,1)
ok !

Art of Multiprocessor
Programming

181

Green moves…

2

0

1 2
1

0

1 2

0

0

1 2

(2,0)
ok!

Art of Multiprocessor
Programming

182

2

0

1 2
1

0

1 2

0

0

1 2

(2,0)
ok!

(2,2)
ok!

Blue looks

Art of Multiprocessor
Programming

183

2

0

1 2
1

0

1 2

0

0

1 2

(2,2)
ok!

Red moves…

Art of Multiprocessor
Programming

184

2

0

1 2
1

0

1 2

0

0

1 2

Blue moves…

Art of Multiprocessor
Programming

185

2

0

1 2
1

0

1 2

0

0

1 2

No Precedence

Art of Multiprocessor
Programming

186

Filter

class Filter implements Lock {
 volatile int[] level; // level[i] for thread i
 volatile int[] victim; // victim[L] for level L

 public Filter(int n) {

 level = new int[n];

 victim = new int[n];

 for (int i = 1; i < n; i++) {

 level[i] = 0;

 }}

…

}

n-1

n-1

0

1

0 0 0 0 0 0 4

2

2

Thread 2 at level 4

0

4

level

victim

Art of Multiprocessor
Programming

187

Filter
class Filter implements Lock {
 …

 public void lock(){
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while (($ k != i level[k] >= L) &&
 victim[L] == i);
 }}
 public void unlock() {
 level[i] = 0;
 }}

Art of Multiprocessor
Programming

188

Filter Lock (n=3)
level[1]=level[2]=level[3]=0; victim[1]=victim[2]=0;

public void lock(){
 j = (i mod 3)+1; k=(j mod 3)+1;
 level[i] = 1;
 victim[1] = i;
 while (level[j]>= 1||level[k]>=1)&&victim[1]==i);
 level[i] = 2;
 victim[2] = i;
 while (level[j]>= 2||level[k]>=2)&&victim[2]==i);
 }

public void unlock() {
 level[i] = 0;
 }

Art of Multiprocessor
Programming

189

Filter Lock

p1 p2 p3 p2 p2 p2 p3 p3 p3 p2 p2

level[1] 0 1 1 1 1 1 1 1 1 1 1 1

level[2] 0 0 1 1 2 0 1 1 1 1 2 0

level[3] 0 0 0 1 1 1 1 2 0 1 1 1

victim[1] 0 1 2 3 3 3 2 2 2 3 3 3

victim[2] 0 0 0 0 2 2 2 3 3 3 2 2

p1 Sleeps…

p2 blocked CS unlock blocked CS unlock

p3 blocked CS unlock blocked

