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Mutual Exclusion 

• Today we will try to formalize our 
understanding of mutual exclusion 

• We will also use the opportunity to 
show you how to argue about and 
prove various properties in an 
asynchronous concurrent setting 
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Mutual Exclusion 

• Formal problem definitions 
• Solutions for 2 threads 
• Solutions for n threads 
• Fair solutions 
• Inherent costs 
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Warning 

• You will never use these protocols 
– Get over it 

• You are advised to understand them 
– The same issues show up everywhere 

– Except hidden and more complex 



Art of Multiprocessor 
Programming 

5 

Why is Concurrent 
Programming so Hard? 

• Try preparing a seven-course banquet 
– By yourself 

– With one friend 

– With twenty-seven friends … 

• Before we can talk about programs 
– Need a language 

– Describing time and concurrency 
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• “Absolute, true and mathematical 
time, of itself and from its own 
nature, flows equably without relation 
to anything external.” (I. Newton, 
1689) 

 
• “Time is, like, Nature’s way of making 

sure that everything doesn’t happen 
all at once.” (Anonymous, circa 1968) 

Time 

time 
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time 

• An event  a0 of thread A is 
– Instantaneous 

– No simultaneous events (break ties) 

a0 

Events 
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time 

• A thread A is (formally) a sequence 
a0, a1, ... of events  
– “Trace” model 

– Notation: a0  a1 indicates order 

a0 

Threads 

a1 a2 … 
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• Assign to shared variable 

• Assign to local variable 

• Invoke method 

• Return from method 

• Lots of other things … 

 

Example Thread Events 
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Threads are State Machines 

Events are 
transitions 

a0 

a1 a2 

a3 
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States 

• Thread State 
– Program counter 

– Local variables 

• System state 
– Object fields (shared variables) 

– Union of thread states 
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time 

• Thread A 
 

 

Concurrency 
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time 

time 

• Thread A 
 

 

• Thread B 

Concurrency 
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time 

Interleavings 

 

• Events of two or more threads 
– Interleaved 

– Not necessarily independent (why?) 
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time 

• An interval  A0 =(a0,a1) is 
– Time between events a0 and a1  

a0 a1 

Intervals 

A0 
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time 

Intervals may Overlap 

a0 a1 A0 

b0 b1 B0 
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time 

Intervals may be Disjoint 

a0 a1 A0 

b0 b1 B0 
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time 

Precedence 

a0 a1 A0 

b0 b1 B0 

Interval A0 precedes interval B0 
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Precedence 

• Notation: A0  B0 

• Formally, 
– End event of A0 before start event of B0 

– Also called “happens before” or 
“precedes”  
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Precedence Ordering 

• Remark: A0  B0 is just like saying  
– 1066 AD  1492 AD,  

– Middle Ages  Renaissance, 

• Oh wait,  
– what about this week vs this month? 
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Precedence Ordering 

• Never true that A  A  

• If A B then not true that B A 

• If A B & B C then A C 

• Funny thing: A B & B A might both 
be false!  
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Partial Orders 
(you may know this already) 

• Irreflexive: 
– Never true that A  A  

• Antisymmetric: 
– If A  B then not true that B  A  

• Transitive: 
– If A  B & B  C then A  C 
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Total Orders 
(you may know this already) 

• Also 
– Irreflexive 

– Antisymmetric 

– Transitive 

• Except that for every distinct A, B, 
– Either A  B or B  A  
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Repeated Events 

while (mumble) { 

  a0; a1; 

}   

a0
k 

k-th occurrence 
of event a0 

A0
k 

k-th occurrence of 
interval A0 =(a0,a1) 
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Implementing a Counter 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps 
indivisible using 

locks 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 

 public void lock(); 
 
 public void unlock(); 
} 

acquire lock 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 

release lock 

acquire lock 
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Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 
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Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

acquire Lock 
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Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Release lock 
(no matter what) 
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Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Critical 
section 
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Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 
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Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be thread j’s m-th critical 

section execution 
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Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 
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Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 

CSi
k  CSj

m 

   



Art of Multiprocessor 
Programming 

37 

Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 

CSi
k  CSj

m 

   

CSj
m  CSi

k 
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Deadlock-Free 

• If some thread calls lock() 
– And never returns 

– Then other threads must complete lock() 
and unlock() calls infinitely often 

• System as a whole makes progress 
– Even if individuals starve 



Art of Multiprocessor 
Programming 

39 

Starvation-Free 

• If some thread calls lock() 
– It will eventually return 

• Individual threads make progress 
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Two-Thread vs n -Thread 
Solutions 

• Two-thread solutions first 
– Illustrate most basic ideas 

– Fits on one slide 

• Then n-Thread solutions  
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  } 
} 

Two-Thread Conventions 
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  }   
} 

Two-Thread Conventions 

Henceforth: i is current 
thread, j is other thread 
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LockOne 

class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2]; 
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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LockOne 

class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

Set my flag 
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class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

LockOne 

Wait for other 
flag to go false 

Set my flag 
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• Assume CSA
j overlaps CSB

k 

• Consider each thread's last (j-th 
and k-th) read and write in the 
lock() method before entering  

• Derive a contradiction 

 

LockOne Satisfies Mutual 
Exclusion 
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• writeA(flag[A]=true)  
readA(flag[B]==false) CSA 

 

• writeB(flag[B]=true)  
readB(flag[A]==false)  CSB 

From the Code 

class LockOne implements Lock { 
…  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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• readA(flag[B]==false)  
writeB(flag[B]=true) 

 

• readB(flag[A]==false)  
writeA(flag[B]=true) 

From the Assumption 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 
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Cycle! 
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Deadlock Freedom 

• LockOne Fails deadlock-freedom 
– Concurrent execution can deadlock 

 

 

– Sequential executions OK 

  flag[i] = true;    flag[j] = true; 
  while (flag[j]){}  while (flag[i]){} 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Let other go 
first 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
 victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Wait for 
permission 
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LockTwo 
public class Lock2 implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Nothing to do 
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public void LockTwo() { 
  victim = i; 
  while (victim == i) {};  
 } 

LockTwo Claims 

• Satisfies mutual exclusion 
– If thread i in CS 

– Then victim == j 

– Cannot be both 0 and 1 

• Not deadlock free 
– Sequential execution deadlocks 

– Concurrent execution does not 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
 } 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim 
No longer 
interested 
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public void lock() { 
  flag[i] = true;  
  victim  = i; 
  while (flag[j] && victim == i) {}; 

Mutual Exclusion 

• If thread 1 in 
critical section, 
– flag[1]=true,  

– victim = 0 

• If thread 0 in 
critical section, 
– flag[0]=true,  

– victim = 1 

Cannot both be true 
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Deadlock Free 

• Thread blocked  
– only at while loop 

– only if it is the victim 

• One or the other must not be the victim 

public void lock() { 
  … 
  while (flag[j] && victim == i) {}; 
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Starvation Free 

 

• Thread i blocked 
only if j repeatedly 
re-enters so that 

  flag[j] == true and 
victim == i 

• When j re-enters 
– it sets victim to j. 
– So i gets in 

public void lock() { 
  flag[i] = true;  
  victim    = i; 
  while (flag[j] && victim == i) {}; 
} 
 
public void unlock() { 
  flag[i] = false;   
} 
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The Filter Algorithm for n 
Threads 

There are n-1 “waiting rooms” called 
levels 

• At each level  
– At least one enters level 

– At least one blocked if  

   many try 

• Only one thread makes it through 

ncs 

cs 
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Filter 

class Filter implements Lock { 
  volatile int[] level;  // level[i] for thread i 
  volatile int[] victim; // victim[L] for level L 
 

  public Filter(int n) { 

  level  = new int[n]; 

  victim = new int[n];  

  for (int i = 1; i < n; i++) { 

      level[i] = 0; 

  }} 

… 

} 
   

n-1 

n-1 

0 

1 

0 0 0 0 0 0 4 

2 

2 

Thread 2 at level 4 

0 

4 

level 

victim 
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Filter 
class Filter implements Lock { 
  … 
 
  public void lock(){ 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i level[k] >= L) && 
             victim[L] == i );  
    }}  
  public void unlock() { 
    level[i] = 0; 
  }} 
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class Filter implements Lock { 
  … 
  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

One level at a time 
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class Filter implements Lock { 
  … 
  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i) level[k] >= L) && 
             victim[L] == i); // busy wait 
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Announce 
intention to 
enter level L 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Give priority to 
anyone but me 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 
Wait as long as someone else is at same or 

higher level, and I’m designated victim 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Thread enters level L when it completes 
the loop 
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Claim 
• Start at level L=0 

• At most n-L threads enter level L 

• Mutual exclusion at level L=n-1 

ncs 

cs L=n-1 

L=1 

L=n-2 

L=0 
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Induction Hypothesis 

• Assume all at level 
L-1 enter level L 

• A last to write 
victim[L]  

• B is any other 
thread at level L 

•  No more than n-L+1 at level L-1  

•  Induction step: by contradiction  

ncs 

cs 

L-1 has n-L+1 
L has n-L 

assume 

prove 
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Proof Structure 
ncs 

cs 

Assumed to enter L-1 

By way of contradiction 
all enter L 

n-L+1 = 4 

n-L+1 = 4 

A B 

Last to  
write 
victim[L] 

Show that A must have seen  
B at level L and since victim[L] == A 
could not have entered  
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From the Code 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while (($ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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From the Code 

(2) writeA(victim[L]=A)readA(level[B]) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while (($ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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By Assumption 

By assumption, A is the last 
thread to write victim[L] 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 
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Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 

(2) writeA(victim[L]=A)readA(level[B]) 
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public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i]  = L; 
   victim[L] = i; 

   while (($ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     

Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 

(2) writeA(victim[L]=A)readA(level[B]) 
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Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 

(2) writeA(victim[L]=A)readA(level[B]) 

Thus, A read level[B] ≥ L,  
A was last to write victim[L], 
so it could not have entered level L! 
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No Starvation 

• Filter Lock satisfies properties: 
– Just like Peterson Alg at any level 

– So no one starves  

• But what about fairness? 
– Threads can be overtaken by others  
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Bounded Waiting 

• Want stronger fairness guarantees 

• Thread not “overtaken” too much 

• Need to adjust definitions …. 
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Bounded Waiting 

• Divide lock() method into 2 parts: 
– Doorway interval: 

• Written DA 

• always finishes in finite steps 

– Waiting interval: 
• Written WA 

• may take unbounded steps 
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• For threads A and B: 
– If DA

k 
 DB 

j 
• A’s k-th doorway precedes B’s j-th doorway 

– Then CSA
k 
 CSB

j+r 
• A’s k-th critical section precedes B’s (j+r)-th 

critical section 

• B cannot overtake A by more than r times 

• First-come-first-served means r = 0. 

r-Bounded Waiting 
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Fairness Again 

• Filter Lock satisfies properties: 
– No one starves 

– But very weak fairness 

• Not r-bounded for any r! 

– That’s pretty lame… 
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Bakery Algorithm 

• Provides First-Come-First-Served 
• How? 

– Take a “number” 
– Wait until lower numbers have been 

served 

• Lexicographic order 
– (a,i) > (b,j) 

• If a > b, or a = b and i > j 
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Bakery Algorithm 

class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 
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Bakery Algorithm 

class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 

n-1 0 

f f f f t f t 

2 

f 

0 0 0 0 5 0 4 0 

6 

CS 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Doorway 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

I’m interested 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Take increasing 
label (read labels 
in some arbitrary 

order) 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is 
interested 



Art of Multiprocessor 
Programming 

100 

Bakery Algorithm 
class Bakery implements Lock { 
  boolean flag[n]; 
  int label[n]; 
 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is 
interested 

With lower (label,i) 
in lexicographic order 
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Bakery Algorithm 

class Bakery implements Lock { 
   
    … 
 
 public void unlock() {   
   flag[i] = false; 
 } 
} 
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Bakery Algorithm 

class Bakery implements Lock { 
   
    … 
 
 public void unlock() {   
   flag[i] = false; 
 } 
} 
 

No longer 
interested 

labels are always increasing  
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No Deadlock 

• There is always one thread with 
earliest label 

• Ties are impossible (why?) 
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First-Come-First-Served 

• If DA  DBthen A’s 
label is earlier 
– writeA(label[A])  

readB(label[A])  
writeB(label[B])  
readB(flag[A]) 

• So B is locked out 
while flag[A] is 
true 

class Bakery implements Lock { 
 
public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > 
(label[k],k)); 

 } 
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Mutual Exclusion 

• Suppose A and B in 
CS together 

• Suppose A has 
earlier label 

• When B entered, it 
must have seen 
– flag[A] is false, or 

– label[A] > label[B] 

class Bakery implements Lock { 
   
public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > 
(label[k],k)); 

 } 
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Mutual Exclusion 

• Labels are strictly increasing so  

• B must have seen flag[A] == false 
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Mutual Exclusion 

• Labels are strictly increasing so  

• B must have seen flag[A] == false 

• LabelingB  readB(flag[A])  
writeA(flag[A])  LabelingA 
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Mutual Exclusion 

• Labels are strictly increasing so  

• B must have seen flag[A] == false 

• LabelingB  readB(flag[A])  
writeA(flag[A])  LabelingA 

• Which contradicts the assumption 
that A has an earlier label 
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Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 
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Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while ($k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Mutex breaks if 
label[i] overflows 
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Does Overflow Actually 
Matter? 

• Yes 
– Y2K 
– 18 January 2038 (Unix time_t rollover) 
– 16-bit counters 

• No 
– 64-bit counters 

• Maybe 
– 32-bit counters 
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Does Overflow Actually 
Matter? 

• 32bit counters 
– Signed integer  : (- 231, 231 – 1)  

• In seconds, (-78 years, 78 years) 

– Unsigned : (0, 232 ) 
• In seconds, 136 years 

• Unix time_t 
– Started at Jan 1, 1970 
– On Jan 19, 2038, overflow 
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Timestamps 

• Label variable is really a timestamp 

• Need ability to 
– Read others’ timestamps 

– Compare them 

– Generate a later timestamp  

• Can we do this without overflow? 
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• One can construct a 
– Wait-free (no mutual exclusion) 

– Concurrent 

– Timestamping system 

– That never overflows 
 

 

The Good News 



Art of Multiprocessor 
Programming 

115 

• One can construct a 
– Wait-free (no mutual exclusion) 

– Concurrent 

– Timestamping system 

– That never overflows 
 

 

The Good News 

This part is hard 
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Instead … 

• We construct a Sequential 
timestamping system 
– Same basic idea 
– But simpler 

• Uses mutex to read & write 
atomically 

• No good for building locks 
– But useful anyway 

 

 



Art of Multiprocessor 
Programming 

117 

Precedence Graphs 

0 1 2 3 

• Timestamps form directed graph 

• Edge x to y 
– Means x is later timestamp 

– We say x dominates y 
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Unbounded Counter Precedence 
Graph 

0 1 2 3 

• Timestamping = move tokens on graph 
• Atomically 

– read others’ tokens  
– move mine 

• Ignore tie-breaking for now 
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Unbounded Counter Precedence 
Graph 

0 1 2 3 
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Unbounded Counter Precedence 
Graph 

0 1 2 3 

takes 0 takes 1 takes 2 
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Two-Thread Bounded 
Precedence Graph 

0 

1 2 
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Two-Thread Bounded 
Precedence Graph 

0 

1 2 
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Two-Thread Bounded 
Precedence Graph 

0 

1 2 
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Two-Thread Bounded 
Precedence Graph 

0 

1 2 
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Two-Thread Bounded 
Precedence Graph T2 

0 

1 2 

and so on … 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 
3<2<1 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 
2<1<0 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 
1<0<3 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 
3<2<1 

I’ll go next 
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Three-Thread Bounded 
Precedence Graph? 

1 2 

0 3 

1<0<3 

Is it O.K. ? 
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How about this ? 

1 2 

0 3 

2<1 
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How about this ? 

1 2 

0 3 

3<2 

 O.K. 
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How about this ? 

1 2 

0 3 

3 ? 1 
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Graph Composition 

0 

1 2 

0 

1 2 

Replace each vertex with a 
copy of the graph 

T3=T2*T2 
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Three-Thread Bounded 
Precedence Graph T3 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 
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Three-Thread Bounded 
Precedence Graph T3 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

and so on… 

10 11 22 < < 
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Three-Thread Bounded 
Precedence Graph T3 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

20 02 < 

02 10 < 

??? 

10 20 < 
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In General 

Tk = T2 * Tk-1 

K threads need 3k 

nodes  

label size =  
Log2(3

k) = 
2n 
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Deep Philosophical Question 

• The Bakery Algorithm is 
– Succinct, 

– Elegant, and 

– Fair. 

• Q: So why isn’t it practical? 

• A: Well, you have to read N distinct 
variables 
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Shared Memory 

• Shared read/write memory locations  
called Registers (historical reasons)  

• Come in different flavors 
– Multi-Reader-Single-Writer (Flag[]) 

– Multi-Reader-Multi-Writer (Victim[]) 

– Not interesting: SRMW and SRSW 
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Theorem 

At least N MRSW (multi-
reader/single-writer) registers are 
needed to solve deadlock-free 
mutual exclusion.  
 
N registers like Flag[]… 
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Proving Algorithmic 
Impossibility 

CS 

write 

C 

•To show no algorithm exists: 
• assume by way of contradiction  
   one does,  
• show a bad execution that  
   violates properties:  
• in our case assume an alg for deadlock 
free mutual exclusion using < N registers 
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Proof: Need N-MRSW Registers 

Each thread must write to some register  

…can’t tell whether A is in critical 
section  

write 

CS CS CS 

write 

A B C 
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Upper Bound 

• Bakery algorithm 
– Uses 2N MRSW registers 

• So the bound is (pretty) tight 

• But what if we use MRMW registers? 
– Like victim[] ? 
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Bad News Theorem 

At least N MRMW multi-
reader/multi-writer registers are 
needed to solve deadlock-free 
mutual exclusion. 

(So multiple writers don’t help) 
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Theorem (First 2-Threads) 

Theorem: Deadlock-free mutual 
exclusion for 2 threads requires at 
least 2 multi-reader multi-writer 
registers 
 
Proof: assume one register suffices 
and derive a contradiction 
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Two Thread Execution 

• Threads run, reading and writing R 

• Deadlock free so at least one gets in 

B A 

CS 

Write(R) 

CS 

R 
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Covering State for One 
Register 

Write(R) 

B 

B has to write to the register 
before entering CS, so stop it just 

before  
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Proof: Assume Cover of 1 

A B 

Write(R) 

CS 

A runs, possibly writes to the 
register, enters CS 
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Proof: Assume Cover of 1 

A B 

CS 

B Runs, first 
obliterating  
any trace of A,  
then also enters  
the critical  
section 

Write(R) 

CS 
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Theorem 

Deadlock-free mutual exclusion for 3 
threads requires at least 3 multi-
reader multi-writer registers 



Art of Multiprocessor 
Programming 

153 

Proof: Assume Cover of 2 

Write(RB) 

B 

Write(RC) 

C A 

Only 2 registers 
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Run A Solo 

Write(RB) 

B 

Write(RC) 

C A 

Writes to one or both 
registers, enters CS  CS 
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Obliterate Traces of A 

Write(RB) 

B 

Write(RC) 

C A 

Other threads obliterate 
evidence that A entered CS  CS 
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Mutual Exclusion Fails 

Write(RB) 

B 

Write(RC) 

C A 

CS CS 

CS looks empty, so 
another thread 

gets in  
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Proof Strategy 

• Proved: a contradiction starting from 
a covering state for 2 registers 

• Claim: a covering state for 2 
registers is reachable from any state 
where CS is empty 
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•  If we run B through CS 3 times, B must  
   return twice to cover some register, say RB 
 

Covering State for Two 

Write(RB) 

B 

Write(RA) 

A 
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Covering State for Two 

• Start with B covering register RB for the 1st time  
• Run A until it is about to write to uncovered RA 

• Are we done? 

 

Write(RB) 

B 

Write(RA) 

A 
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Covering State for Two 

• NO! A could have written to RB 

• So CS no longer looks empty 

Write(RB) 

B 

Write(RA) 

A 
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Covering State for Two 

• Run B obliterating traces of A in RB 

• Run B again until it is about to write to RB 

• Now we are done 

 

Write(RB) 

B 

Write(RA) 

A 
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Inductively We Can Show  

• There is a covering state 
– Where k threads not in CS cover k distinct 

registers 
– Proof follows when k = N-1 

Write(RB) 

B 

Write(RC) 

C 

Write(RA) 

A 
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Summary of Lecture 

• In the 1960’s many incorrect 
solutions to starvation-free mutual 
exclusion using RW-registers were 
published… 

• Today we know how to solve FIFO N 
thread mutual exclusion using 2N 
RW-Registers  
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Summary of Lecture 

• N RW-Registers inefficient 
–  Because writes “cover” older writes 

•  Need stronger hardware operations  
– do not have the “covering problem”  

• In next lectures - understand what 
these operations are… 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 

suggests that the authors endorse you or your use of the 

work).  

– Share Alike. If you alter, transform, or build upon this work, 

you may distribute the resulting work only under the same, 

similar or a compatible license.  

• For any reuse or distribution, you must make clear to others the 

license terms of this work. The best way to do this is with a link 

to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission 

from the copyright holder.  

• Nothing in this license impairs or restricts the author's moral 

rights.  

 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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Initial State  

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 



Art of Multiprocessor 
Programming 

167 

Green reads Red 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 
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Red looks…  

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,0) 
ok! 

Red= 
(1,0) 
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Red moves… 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 
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Blue looks 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 

(0,0) 
ok! 
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Blue moves 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 
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Green reads Blue 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 

Blue= 
(0,0) 
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Green decides 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(1,1) 
ok ! 
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Green moves 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 
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Oh Oh,      No precedence ! 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 
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Initial State  

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 
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Green reads Red 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 
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Green reads Red,Blue 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Red= 
(1,0) 

Blue= 
(1,1) 
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Green decides to move to (2,1) 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,1) 
ok ! 
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Red looks…  

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,0) 
ok! 

(2,1) 
ok ! 
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Green moves…  

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,0) 
ok! 
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2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,0) 
ok! 

(2,2) 
ok! 

Blue looks 



Art of Multiprocessor 
Programming 

183 

2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

(2,2) 
ok! 

Red moves… 
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2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

Blue moves… 
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2 

0 

1 2 
1 

0 

1 2 

0 

0 

1 2 

No Precedence 
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Filter 

class Filter implements Lock { 
  volatile int[] level;  // level[i] for thread i 
  volatile int[] victim; // victim[L] for level L 
 

  public Filter(int n) { 

  level  = new int[n]; 

  victim = new int[n];  

  for (int i = 1; i < n; i++) { 

      level[i] = 0; 

  }} 

… 

} 
   

n-1 

n-1 

0 

1 

0 0 0 0 0 0 4 

2 

2 

Thread 2 at level 4 

0 

4 

level 

victim 
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Filter 
class Filter implements Lock { 
  … 
 
  public void lock(){ 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while (($ k != i level[k] >= L) && 
             victim[L] == i );  
    }}  
  public void unlock() { 
    level[i] = 0; 
  }} 
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Filter Lock (n=3) 
level[1]=level[2]=level[3]=0; victim[1]=victim[2]=0; 
 
public void lock(){ 
 j = (i mod 3)+1;  k=(j mod 3)+1; 
 level[i]  = 1; 
 victim[1] = i; 
 while (level[j]>= 1||level[k]>=1)&&victim[1]==i ); 
 level[i]  = 2; 
 victim[2] = i; 
 while (level[j]>= 2||level[k]>=2)&&victim[2]==i ); 
 } 
 
public void unlock() { 
    level[i] = 0; 
  } 
   



Art of Multiprocessor 
Programming 

189 

Filter Lock 

p1 p2 p3 p2 p2 p2 p3 p3 p3 p2 p2 

level[1] 0 1 1 1 1 1 1 1 1 1 1 1 

level[2] 0 0 1 1 2 0 1 1 1 1 2 0 

level[3] 0 0 0 1 1 1 1 2 0 1 1 1 

victim[1] 0 1 2 3 3 3 2 2 2 3 3 3 

victim[2] 0 0 0 0 2 2 2 3 3 3 2 2 

p1 Sleeps… 

p2 blocked CS unlock blocked CS unlock 

p3 blocked CS unlock blocked 


