Foundations of Shared
Memory

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Last Lecture

» Defined concurrent objects using
linearizability and sequential
consistency

* Fact: implemented linearizable
objects (Two thread FIFO Queue) in
read-write memory without mutual
exclusion

* Fact: hardware does not provide
linearizable read-write memory

Efg BROWN © 2007 Herlihy & Shavit

Fundamentals

- What is the weakest form of
communication that supports mutual
exclusion?

* What is the weakest shared object
that allows shared-memory
computation?

vy,

%“E BROWN © 2007 Herlihy & Shavit

Alan Turing

* Helped us understand what is and is not
computable on a sequential machine.

- Still best model available

BROWN © 2007 Herlihy & Shavit

Turing Machine

o,

g“g BROWN © 2007 Herlihy & Shavit

Turing Computability

LSTIT1I0110

* Mathematical model of computation
* What is (and is not) computable
- Efficiency (mostly) irrelevant

e

%“E BROWN © 2007 Herlihy & Shavit

Shared-Memory
Computability?

Q Shared Memory Q

* Mathematical model of concurrent computation
* What is (and is not) concurrently computable
+ Efficiency (mostly) irrelevant

BROWN © 2007 Herlihy & Shavit 7

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask
some basic questions ...

(L

BROWN © 2007 Herlihy & Shavit 8

Foundations of Shared Memory

T

What i; ;r.he weakest useful form of
shared memory?

(L

&2
%g BROWN © 2007 Herlihy & Shavit 9

Foundations of Shared Memory

T- a A

‘ What can |’r do9

D _am amm oo & e oo

oo BROWN

*&\Q-;Q

© 2007 Herlihy & Shavit

10

Foundations of Shared Memory

T- a A

[Wha’r can T 1T do?

(L

a2
%g BROWN © 2007 Herlihy & Shavit 11

Register ™

Holds a
(binary) value

~\

J
* A memory location: name is historical

BROWN © 2007 Herlihy & Shavit 12

Can be read

s
@] BROWN

Register

© 2007 Herlihy & Shavit

13

s
@] BROWN

Register

© 2007 Herlihy & Shavit

14

Registers

public interface Register<T> {
public T read();
public void write(T v);

}

Sl

%“E BROWN © 2007 Herlihy & Shavit

15

Registers

public interface Registe {
public read();
public vond write(T v

}

Type of register
(usually Boolean or m-bit
Integer)

BROWN © 2007 Herlihy & Shavit

16

Single-Reader/Single-Writer
Register

BROWN © 2007 Herlihy & Shavit

17

Multi-Reader/Single-Writer
Register

BROWN © 2007 Herlihy & Shavit

18

Multi-Reader/Multi-Writer

BROWN © 2007 Herlihy & Shavit 19

Jargon Watch

- SRSW
- Single-reader single-writer
* MRSW

- Multi-reader single-writer

* MRMW

- Multi-reader multi-writer

vy,

%“E BROWN © 2007 Herlihy & Shavit

Safe Register

OK if reads
and writes

don't overlap
write(1001)
<ead(1001>

Ef% BROWN (2) © 2007 Herlihy & Shavit 21

Safe Register

Some valid value if
reads and writes do

<vrl1'e(1001> Overlap
e

ﬁ“@ BROWN © 2007 Herlihy & Shavit

@ |

Regular Register

< write(0) > < write(1) >
< read(1) > < read(0) >

» Single Writer
- Readers return:

- Old value if no overlap (safe)
- Old or one of new values if overlap

vy,

%“E BROWN © 2007 Herlihy & Shavit

23

Regular or Not?

< write(0)

>

< read(1) > < read(0) >

-

s
@] BROWN

© 2007 Herlihy & Shavit

24

Regular or Not?

< wr'mJ(O) > < write(1) >
< read(1) > < reaq(O) >

Over'lap returns new value

g
BROWN © 2007 Herlihy & Shavit 25

Regular or Not?
4)

< write(0) < write(1) >
< > < read(0) >
/

\/

Overlap: returns old value

-

g
BROWN © 2007 Herlihy & Shavit 26

Regular or Not?

< wr'i're(O) wr'l‘re(l) >
< r‘ead(l) read(O)

-

BROWN © 2007 Herlihy & Shavit 27

Regular # Linearizable

< write(0) > < write(1) >
< read(1) > < read(0) >
[_/;ain this!]

BROWN © 2007 Herlihy & Shavit 28

write(1) already
happened

Atomic Register

<~ri1'e(1001> <vri1‘e(1010> <'ead(1010>
<‘ead(1001> <'ead(1010)

Linearizable to sequential safe
register

vy,

%“E BROWN © 2007 Herlihy & Shavit 29

Atomic Register

2SR

-

BROWN © 2007 Herlihy & Shavit 30

BROWN

Register Space

MRMW 1

MRSW' 1 M-valued

sRsw | Boolean

Safe
Regular
Atomic

© 2007 Herlihy & Shavit

31

Weakest Register

Single writer @ Single reader
Q, Q

o |~

Safe Boolean register

&2
gg BROWN © 2007 Herlihy & Shavit 32

Weakest Register

Single writer Single reader

1L } 1L
O 10 7 010
flipflop

Get correct reading if not during
state transition

%“E BROWN © 2007 Herlihy & Shavit 33

Results
* From SRSW safe Boolean register
"~ All the other re9iSTerSEFounda1‘ions
- Mutual exclusion of the field
» But not everything!
[- Consensus hierarch

The really cool stuff ...

BROWN (2) © 2007 Herlihy & Shavit 34

Locking within Registers

* Not interesting to rely on mutual

exclusion in register constructions

* We want registers to implement

mutual exclusion!

- No fun to use mutual exclusion to

vy,

oy

implement itself!

5J3 BROWN © 2007 Herlihy & Shavit

35

Wait-Free Implementations

Definition: An object implementation is
wait-free if every thread completes
a method in a finite number of steps

No mutual exclusion
- Thread could halt in critical section
- Build mutual exclusion from registers

Sem
gg BROWN © 2007 Herlihy & Shavit 36

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

* MRSW atomic

* MRMW atomic

* Atomic snapshot

vy,

%“E BROWN © 2007 Herlihy & Shavit

37

Road Map

- SRSW safe Boolean =
- MRSW safe Boolean Next

BROWN © 2007 Herlihy & Shavit

Register Names

public class SafeBoolMRSWRegister
implements Register<Boolean> {

public boolean read() { .. }
public void write(boolean x) { .. }

}

e

gﬂg BROWN (3) © 2007 Herlihy & Shavit

39

Register Names

800 IMRSWRegister

property

Sl

gﬂg BROWN (3) © 2007 Herlihy & Shavit

40

Register Names

SafegBoolMRSWRegister

property
Size matters

BROWN (3) © 2007 Herlihy & Shavit

Register Names

SafdBooTMRSWRegister

How many readers

property & writers?
Type

BROWN (3) © 2007 Herlihy & Shavit

Safe Boolean MRSW from
Safe Boolean SRSW

public class SafeBoolMRSWRegister
implements Register<Boolean> {
private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];
public void write(boolean x) {
for (int j = 0; j < N; j++)
rijl.write(x);
}
public boolean read() {
int 1 = ThreadID.get();
return r[i].read();

3}

BROWN (2) © 2007 Herlihy & Shavit 43

Safe Boolean MRSW from
Safe Boolean SRSW

private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];

Each thread has own
safe SRSW register

@ [

BROWN (2) © 2007 Herlihy & Shavit

44

Safe Boolean MRSW from
Safe Boolean SRSW

" pubTic void write(booTean x) {
for (int j = 0; j < N; j++)
rijl.write(x);

write method

G
@ [
@

BROWN (2) © 2007 Herlihy & Shavit

Safe Boolean MRSW from
Safe Boolean SRSW

for (int j = 0; j < N; j++)
rijl.write(x);

Write each
thread's register
ohe at a time

G
@ [
@

BROWN (2) © 2007 Herlihy & Shavit 46

Safe Boolean MRSW from
Safe Boolean SRSW

read method

-
public boolean read() {

int i = Threadib.get(Q);
return r[i].read();

.

Sl

gﬂg BROWN (2) © 2007 Herlihy & Shavit 47

Safe Boolean MRSW from
Safe Boolean SRSW

int i = ThreadID.get(Q); Read my own
return r[i].read(Q; r'egis‘rer'
éﬁ; BROWN (2) © 2007 Herlihy & Shavit 48

oy

Safe Boolean MRSW from
Safe Boolean SRSW

49

Q: Safe Multi-Valued MRSW
Safe Multi-Valued SRSW?

&,
@ o
il
@ \ Anyflféin@

‘O
BROWN © 2007 Herlihy & Shavit 50

Road Map

- SRSW safe Boolean
- MRSW safe Boolean

Questions?

BROWN © 2007 Herlihy & Shavit

51

Road Map

- SRSW safe Boolean

- MRSW safe Boolean =~ Next

BROWN © 2007 Herlihy & Shavit

52

Regular Boolean MRSW from
Safe Boolean MRSW

(Safe register can
return O or 1
even if the same

\value IS wri’r’r\er\#

Regular:
But only
old value
if
not
changed

&L

o

&
,ﬁ -

%“g BROWN © 2007 Herlihy & Shavit 53

Regular Boolean MRSW from
Safe Boolean MRSW

public class RegBoolMRSWRegister
implements Register<Boolean> {
private boolean old;
private SafeBoolMRSWRegister value;
public void write(boolean x) {
if (old !'= x) {
value.write(x);
old = x;
3}
public boolean read() {
return value.read(Q);

1}

BROWN (2) © 2007 Herlihy & Shavit

54

Regular Boolean MRSW from
Safe Boolean MRSW

| threadLocal boolean old;

Last bit this thread wrote

(OK, we're cheating here on Java syntax)

@ [

BROWN (2) © 2007 Herlihy & Shavit 55

Regular Boolean MRSW from
Safe Boolean MRSW

[private safeBoolMRSWRegister value;|

Actual value

@ [

BROWN (2) © 2007 Herlihy & Shavit 56

Regular Boolean MRSW from
Safe Boolean MRSW

(i (old !ﬂ&
Is new value different

from last value I wrote?

@ [

BROWN (2) © 2007 Herlihy & Shavit 57

Regular Boolean MRSW from
Safe Boolean MRSW

[value.write(x);
old = x;

If so, change it
(otherwise don'tl)

BROWN (2) © 2007 Herlihy & Shavit 58

G
@ [
@

Regular Boolean MRSW from
Safe Boolean MRSW

*Overlap? No Overlap?
‘No problem
-either Boolean value works

public boolean read() {
return value.read();

@ [

BROWN (2) © 2007 Herlihy & Shavit 59

Regular Multi-Valued MRSW to

Safe register can return
value in range other than
old or new when value

changes

_

oy

BROWN © 2007 Herlihy & Shavit

P MVGI% MRSW?

Multi-
valued
Regular
register
can retfurn
only old or
new when
value

Road Map

+ SRSW safe Boolean
» MRSW safe Boolean
* MRSW regular Boolean

Questions?

BROWN © 2007 Herlihy & Shavit

Road Map

- SRSW safe Boolean
- MRSW safe Boolean

* MRSW regular Boolean ~ Next

o,

oy

5J3 BROWN © 2007 Herlihy & Shavit

62

MRSW Regular M-valued from
MRSW Regular Boolean

public class RegMRSWRegister implements Register{
RegBoo1MRSWRegister[M] bit;

public void write(int x) {
this.bit[x].write(true);
for (int i=x-1; i>=0; i--)
this.bit[i].write(false);
}

public int read() {
for (int i=0; 1 < M; i++)
if (this.bit[i1].read())
return 1i;
3}

BROWN © 2007 Herlihy & Shavit

63

MRSW Regular M-valued from
MRSW Regular Boolean

[RegBoo1MRSWRegister[M] bit;

Unary representation:
bit[i] means value i

Sl

%“E BROWN © 2007 Herlihy & Shavit 64

MRSW Regular M-valued from
MRSW Regular Boolean

[this.bit[x].wri&

Set bit x

e

gﬁg BROWN (1) © 2007 Herlihy & Shavit 65

MRSW Regular M-valued from
MRSW Regular Boolean

for (int i=x-1; i>=0; i--)
this.bit[i].write(false);
Clear bits

from higher
to lower

G
@ [
@

BROWN (1) © 2007 Herlihy & Shavit 66

MRSW Regular M-valued from
MRSW Regular Boolean

Scan from lower
to higher & return
first bit set

if (this.bit[i].readQ))

for (int i=0; 1 < M; i++)
return 1i;

G
@ [
@

BROWN (1) © 2007 Herlihy & Shavit 67

Writing M-Valued

Write B

b

01234567

BROWN © 2007 Herlihy & Shavit

68

Writing M-Valued

Write B

© 2007 Herlihy & Shavit

69

Road Map

+ SRSW safe Boolean
» MRSW safe Boolean
* MRSW regular Boolean

* MRSW regular

Questions?

BROWN © 2007 Herlihy & Shavit

Road Map

+ SRSW safe Boolean
» MRSW safe Boolean
* MRSW regular Boolean

* MRSW requ ar;
* MRSW atomic

vy,

%“E BROWN © 2007 Herlihy & Shavit

71

Road Map (Slight Detour)

+ SRSW safe Boolean
* MRSW safe Boolean
* MRSW regular Boolean
* MRSW regular=»

, SRSW Atomic
- MRSW atomic «

o,

%“E BROWN © 2007 Herlihy & Shavit

SRSW Atomic From SRSW
Regular

Regular writer

2 Regular

- reader

Instead of 5678..

When is this a
problem?

&2
%g BROWN © 2007 Herlihy & Shavit 73

SRSW Atomic From SRSW
Regular

Regular writer

Regular
reader

E';f”y < Reawrite(5678) >

i time
BROWN

© 2007 Herlihy & Shavit 74

SRSW Atomic From SRSW
Regular

Regular writer

Regular
reader

678...

E';f”y < Reawrite(5678) >

BROWN © 2007 Herlihy & Shavit

SRSW Atomic From SRSW
Regular

Regular writer

Regular
W reader

E’;T”Y < Reawrite(5678) >

< Reg read(5678) >

|
|
i © 2007 Herlihy & Shavit - 76

{ 5678...

Write 5678
happened

Timestamped Values

\ Y J Reader saves last

reads (value,stamp)
Writer writes and returns new
value and stamp value only if higher
together stamp

BROWN © 2007 Herlihy & Shavit 77

SRSW Atomic From SRSW
writer Reg LllClr'

reader

1:45
1234

BROWN © 2007 Herlihy & Shavit

s
@] BROWN

Atomic Single Reader to
Atomic Multi-Reader

stamp value

- }One o

© 2007 Herlihy & Shavit

79

s
@] BROWN

Another Scenario

Writer starts
write...

stamp value

© 2007 Herlihy & Shavit

80

zzino’rher Scen%

o

reader

stamp value reads

later
reader

1:45
1234

Yellow was completely after blue but
read earlier value..not linearizable!

81

s
@m] BROWN

Multi-Reader Redux

One per thread
A

@fo] BROWN

1 2 3

© 2007 Herlihy & Shavit

82

\W N =)

Wt e < 2:00, 5678 >
eader Redux -

reader
reads row

2:00 : 5678

2:00 : 5678

BROWN © 2007 Herlihy & Shavit 83

TG

Lﬁ,ﬁg";ﬁqw pader Redux -

1 reader writes column to
notify others of what it
read

m

2:00 | 5678 ;
" 2:00 | 5678 11:45

B

Yellow reader will read new
value in column written by
earlier Blue reader

&2
gg BROWN © 2007 Herlihy & Shavit 84

Can't Yellow Miss Blue's
Update? ... Only if Readers
Overlap...

1:45
1234 < wrirelz00 5678) >

< readii :45 1234) >

In which case

its OK to read

1234
g : :
BROWN © 2007 Herlihy & Shavit

85

Bad Case Only When Readers
Don't Overlap

1:45
1234 < rirezio0 5678) >
: £ r'el—:ad(Z:OO 5678)>

(" In which case Blue
will complete writing
2:00 5678 to its

column

g
BROWN © 2007 Herlihy & Shavit 86

Road Map

+ SRSW safe Boolean
* MRSW safe Boolean
* MRSW regular Boolean
* MRSW regula

- MRSW aTom|c
« MRMW atomic) Next

Ef% BROWN © 2007 Herlihy & Shavit

87

Multi-Writer Atomic From

Each writer
reads all
then writes
Max+1

to its register

e
@] BROWN

Multi-

stamp

Reader Atomic

value

Readers read all
and take max
(Lexicographic
like Bakery)

~ 0

@)

© 2007 Herlihy & Shavit ‘ 88

Atomic Execution
Means its Linearizable

o) o)
) ol o)
Szen)

BROWN (4) © 2007 Herlihy & Shavit 89

Linearization Points

o) o)
) ol o)
Y rire(z) R Readmax - 4

BROWN (4) © 2007 Herlihy & Shavit 90

Linearization Points

Look at Writes
First

Y i) o)
) ey
Sz

e a———

BROWN (4) © 2007 Herlihy & Shavit 91

H
N=| G

Linearization Points

Order writes by
TimeStamp

. <=
: m :

BROWN (4) © 2007 Herlihy & Shavit 92

Linearization Points

Order reads by
max stamp read

Sy =) fmmp
<= mmp <——)>

@“: I :

g BROWN (4) © 2007 Herlihy & Shavit 93

(E]E

Linearization Points

Order reads by
max stamp read

> <—> T
< “>4m>'<:;>'

BROWN (4) © 2007 Herlihy & Shavit 94

QEE@
\ElE

Linearization Points

4 h

The linearization point depends on the
execution (not a line in the code)!

Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular
* MRSW atomic
* MRMW atomic

Questions?

vy,

%“E BROWN © 2007 Herlihy & Shavit

96

Road Map

- SRSW safe Boolean

* MRSW safe
* MRSW regu
* MRSW regu

Boolean
ar Boolean
ar

* MRSW atomic
« MRMW atomic D Mot
* Atomic snapshot “

oo BROWN

© 2007 Herlihy & Shavit

97

(E]E

N=| G
w

Atomic Snhapshot

\

updater
> scan

© 2007 Herlihy & Shavit

98

Atomic Snapshot

» Array of SWMR atomic registers
» Take instantaneous snapshot of all
* Generalizes to MRMW registers ...

vy,

oy

5J3 BROWN © 2007 Herlihy & Shavit

99

Snapshot Interface

public interface Snapshot {
public 1nt update(int v);
public 1nt[] scan();

}

Sl

gﬂg BROWN (2) © 2007 Herlihy & Shavit 100

Snapshot Interface

Thread i writes v to its register

A\

lpublic int update(int v);|

BROWN (2) © 2007 Herlihy & Shavit 101

Snapshot Interface

Instantaneous snapshot of all theads'
registers

public int[] scanQ);

&2
gg BROWN (2) © 2007 Herlihy & Shavit 102

Atomic Snapshot

- Collect
- Read values one at a time

- Problem
- Incompatible concurrent collects
- Result not linearizable

e

%“E BROWN © 2007 Herlihy & Shavit

103

Clean Collects

* Clean Collect
- Collect during which nothing changed
- Can we make it happen?
- Can we detect it?

Sl

%“E BROWN © 2007 Herlihy & Shavit 104

Simple Snapshot

* Put increasing labels on each entry
+ Collect twice
» If both agree,

, <z >
- We're done

. 1 1

+ Otherwise, o]
. 1 1

- Try again —1 = =
13 13
18 18
12 12

é::é BROWN © 2007 Herlihy & Shavit 105

oy

Simple Snapshot: Update

public class SimpleSnapshot implements Snapshot {
private AtomicMRSWRegister[] register;

public void update(int value) {

int 1 = Thread.myIndex(Q);
Labeledvalue oldvalue = register[i].read();

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1l, value);
register[i].write(newvalue);

}

BROWN (1) © 2007 Herlihy & Shavit 106

Simple Snapshot: Update

[pr"ivate AtomicMRSWRegister[] register;]

One single-writer register per thread

BROWN (1) © 2007 Herlihy & Shavit 107

Simple Snapshot: Update

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1l, value);

)

Write each time with higher label

BROWN (1) © 2007 Herlihy & Shavit 108

Simple Snapshot: Collect

private Labeledvalue[] collect() {
Labeledvalue[] copy =
new Labeledvalue[n];

for (int j = 0; j < n; j++)
copy[j] = this.register[j].read(Q;
return copy;

}

@ [

BROWN (1) © 2007 Herlihy & Shavit 109

Simple Snapshot

For (int = 0: j < n: j++)

\

\copy[j] = this.register[j].read();)

N

Just read each register into array

BROWN (1) © 2007 Herlihy & Shavit

110

Simple Snapshot: Scan

public int[] scan() {
Labeledvalue[] oldCopy, newCopy;
oldCopy = collect();
collect: while (true) {
newCopy = collect();
if (lequals(oldCopy, newCopy)) {
oldCopy = newCopy;
continue collect;

1}

return getvalues(newCopy) ;

11}

BROWN (1) © 2007 Herlihy & Shavit 111

Simple Snapshot: Scan

Collect once
[o'ldcopy - co'I'Iect(

BROWN (1) © 2007 Herlihy & Shavit 112

Simple Snapshot: Scan

Collect once

[o'l dCopy = collect() ;/

(newCopy = collectO— Collect twice

BROWN (1) © 2007 Herlihy & Shavit 113

Simple Snapshot: Scan

Collect once

[b1dCopy = co11ect();f======,————
Collect twice
lnewCopy = co11ect();i
1 lequals(oldCopy, newCopy)) 1)

oldCopy = newCopy;

. continue collect;
WJH mismatch,

try again

BROWN (1) © 2007 Herlihy & Shavit 114

Simple Snapshot: Scan

Collect once

[o'l dCopy = collect() ;/

(newCopy = collectO— Collect twice

n match, return
[return getvalues(newCopy); values

BROWN (1) © 2007 Herlihy & Shavit 115

Simple Snapshot

- Linearizable

» Update is wait-free
- No unbounded loops

* But Scan can starve
- If interrupted by concurrent update

o,

%“E BROWN © 2007 Herlihy & Shavit 116

Wait-Free Snapshot

* Add a scan before every update

* Write resulting snapshot together
with update value

» If scan is continuously interrupted by
updates, scan can take the update’s
snapshot

Efg BROWN © 2007 Herlihy & Shavit 117

Wait-free Snapshot

If A's scan observes that B moved
twice, then B completed an update
while A’s scan was in progress

Collect Collect Collect
26 2 2
24 > < Z
12 12 12

Update

g
BROWN © 2007 Herlihy & Shavit

118

Wait-free Snapshot
Coll_ec‘l'
ik

12

BROWN © 2007 Herlihy & Shavit 119

Wait-free Snapshot

g
BROWN © 2007 Herlihy & Shavit 120

Wait-free Snapshot

A can steal result of B's scan

-

BROWN © 2007 Herlihy & Shavit 121

Once is not Enough

Can A steal result of B's scan?

-

BROWN © 2007 Herlihy & Shavit 122

Once is not Enough

B Scan
\

e —

g
%g BROWN © 2007 Herlihy & Shavit 123

Someone Must Move Twice

-— = >
iy

12 12 12

Why are scans wait-free?

BROWN © 2007 Herlihy & Shavit 124

Wait-free

undate

el So some thread must
scan have had clean collect

r

&2
%g BROWN © 2007 Herlihy & Shavit 125

Wait-Free Snapshot Label

public class Snapvalue {
public int Tlabel;
public int value;
public int[] snap;

}

[[

BROWN (2) © 2007 Herlihy & Shavit 126

Wait-Free Snapshot Label

public int Tabel;|

Counter incremented
with each snapshot

a2
%g BROWN (2) © 2007 Herlihy & Shavit 127

Wait-Free Snapshot Label

public int va1ue;]

Actual value

&2
%g BROWN (2) © 2007 Herlihy & Shavit 128

Wait-Free Snapshot Label

public 1nt[] snap;]

most recent snapshot

BROWN (2) © 2007 Herlihy & Shavit 129

Wait-Free Snapshot Label

@1011;}910100010 100..00 |

label Last

value Snapshot

BROWN (3) © 2007 Herlihy & Shavit 130

Sl

oy

Wait-free Update

public void update(int value) {
int 1 = Thread.myIndex();
int[] snap = this.scan();
Snapvalue oldvalue = r[i1].read(Q;
SnapvValue newvalue =
new Snapvalue(oldvalue.label+1,
value, snap);
rii].write(newvalue):

}

5j5 BROWN (2) © 2007 Herlihy & Shavit

131

Wait-free Scan

Take scan
[1nt[] shap = this.scan(); i

BROWN (2) © 2007 Herlihy & Shavit 132

Wait-free Scan

Take scan
[1nt[] shap = this.scan(); i

~

Snapvalue newvalue =
new Snapvalue(oldvalue.label+1,
N value, snhap);

\l

Label value with scan

BROWN (2) © 2007 Herlihy & Shavit 133

Wait-free Scan

public int[] scan() {

Snapvalue[] oldCopy, newCopy;

boolean[] moved = new boolean[n];

oldCopy = collect();

collect: while (true) {

newCopy = collect();

for (int j =0; j < n; j++) {

if (oldCopy[j].Tlabel != newCopy[j].label) {

3}
return getvalues(newCopy);
313}
== BROWN (2) © 2007 Herlihy & Shavit 134

-

Wait-free Scan

[boo1ean[] moved = new boolean[n];

Keep track of who moved

&2
BROWN (2) © 2007 Herlihy & Shavit 135

Wait-free Scan

(o1dcopy = collect(); h

collect: while (true) {
_newCopy = collectQ);

Repeated double collect

BROWN (2) © 2007 Herlihy & Shavit 136

Wait-free Scan

(if (oldcopy[j1.Tabel != newcopy[jl.label) {

")
\/

If mismatch detected.. lets
BROWN (2) © 2007 @Mpﬂﬂdit her'e... 137

Mismatch Detected

if (oldcopy[j].1abel != newcCopy[j].label) {

if (moved[j]) { // second move
return oldCopy[j].snhap;
} else {

moved[j] = true;
oldCopy = newCopy;
continue collect;

}}}

return getvalues(newCopy) ;

}}}

BROWN (2) © 2007 Herlihy & Shavit 138

Mismatch Detected

if (moved[j]) {
return oldCopy[j].snhap;

If thread moved twice,
just steal its snapshot

BROWN (2) © 2007 Herlihy & Shavit 139

Mismatch Detected

(u
movedly] = true;] Remember that
oldCopy = newCopy;

continue collect: / thread moved

.

BROWN (2) © 2007 Herlihy & Shavit 140

Observations

* Uses unbounded counters
- can be replaced with 2 bits

- Assumes SWMR registers

- for labels
- can be extended to MRMW

vy,

%“E BROWN © 2007 Herlihy & Shavit 141

Summary

* We saw we could implement MRMW
multi valued snapshot objects

* From SRSW binary safe registers
(simple flipflops)

* But what is the next step to attempt
with read-write registers?

o,

%“E BROWN © 2007 Herlihy & Shavit 142

Grand Challenge

* Snapshot means
- Write any one array element
- Read multiple array elements

e

%“E BROWN © 2007 Herlihy & Shavit 143

Grand Challenge

What about
atomic writes to /*
multiple o e s
. —> o rites 170
locations: 0 and 1
"""" Write many and
Writes to SnC‘PShOT
1 and 2
é:; BROWN © 2007 Herlihy & Shavit 144

oy

Registers:Hasse Diagram

m: # of writers
n: # of readers MRMW’MV’A+

k: # of values " w)

MRMW,MV,R MRSW,MV,
A DRSNS o(n)
Mst,Mv,i{) MRSW,MV,R [SRSW,MV,A
T f
L O(K) O(n) (1) |[0o(K)
Mst,Mv,s(MRSW,B,R Mst,Mv,q SRSW,MV,R SRSW,B,A
N
‘W) o(1) Oo(n) ::
MRSW,B,S SRSW,MV,S SRSW,B,R

SRSW,B,S

s
@] BROWN

SOME RIGHTS RESERVED

This work is licensed under a

SR
o

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build qun this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.

ofa BROWN © 2007 Herlihy & Shavit 146

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

