Consensus revisited

from A Comlexity -based Hierarchy
for MP Synchronization

Consensus: Each Thread has a

Private Input
@ rivate Inpu 19
»

ars

&2
BROWN Art of Multiprocessor
S Programming

They Communicate

BROWN Art of Multiprocessor
S Programming

They Agree on One Thread's
Input 15

Formally: Consensus

Consistent: all threads decide the same
value

Valid: the common decision value is
some thread's input

ofa BROWN Art of Multiprocessor
S Programming

No Wait-Free Implementation

sensus using Regis*ors

»

5J3 BROWN Art of Multiprocessor 6
S Programming

Consensus Numbers

*+ An object X has consensus number n

- If it can be used to solve n-thread
consensus
* Take any number of instances of X
* Yogether with atomic read/write registers
- and implement n-thread consensus

- But not (n+1)-thread consensus

ofa BROWN Art of Multiprocessor

&P Programming

Consensus Numbers

- Theorem

- Atomic read/write registers have
consensus humber 1

- Theorem

- Multi-dequeuer FIFO queues have
consensus humber at least 2

ofa BROWN Art of Multiprocessor

& Programming

Consensus Numbers Measure
Synchronization Power

* Theorem
- If you can implement X from Y
- And X has consensus humber ¢
- Then Y has consensus number at least ¢

ofa BROWN Art of Multiprocessor
S Programming

Synchronization Speed Limit

» Conversely
- If X has consensus nuy

wait-free implementation of X by

* This theorem will be very useful
- Unforeseen practical implications!

o2l BROWN Art of Multiprocessor 10
@ Programming

Examples

* "test-and-set” getAndSet(1) f(v)-=1
Overwrite fi(f;(v))=fi(v)

+ "swap” getAndSet(x) f(v,x)=x

Overwrite fi(f;(v))=fi(v)

+ "fetch-and-inc" getAndIncrement() f(v)=v+1
Commute fi(f;(v))= f;(fi(v))

ofa BROWN Art of Multiprocessor 1
S Programming

Impact

* Many early machines provided these
"weak” RMW instructions

- Test-and-set (IBM 360)
- Fetch-and-add (NYU Ultracomputer)
- Swap (Original SPARCs)

* We now understand their limitations
- But why do we want consensus anyway?

ofa BROWN Art of Multiprocessor 12

&P Programming

compareAndSet

public abstract class RMWRegister {

private int value;
public boolean synchronized
compareAndSet(int expected,

int update) {
int prior = this.value;
if (this.value==expected) {
this.value = update; return true;

}
return false;
} ..}

BROWN (1) Art of Multiprocessor

Programming

13

The Consensus Hierarchy

1 Read/Write Registers, Snapshots...

2 getAndSet, getAndIncrement, ..

oo compareAndSet, ...

oo BROWN

Art of Multiprocessor
Programming

14

Uninterruptible Instructions
to Fetch and Update Memory

* Atomic exchange: interchange value in
register with one in memory
- 0 = Synchronization variable is free

- 1 = Synchronization variable is locked and
unavailable

- Set register to 1 & swap
- New value in register determines success in
getting lock
* O if you succeeded in setting lock (you were first)
* 1if another processor claimed access first

- Key: exchange operation is indivisible

oo BROWN

15

Uninterruptible Instruction to
Fetch and Update Memory

* Hard to read & write in 1 instruction,
so use 2

» Load linked (or load locked) + store
conditional
- Load linked returns initial value

- Store conditional returns 1 if succeeds
(no other store to same memory location
since preceding load) and O otherwise

oo BROWN
@ 16

Example of atomic swap with LL & SC

try: mov

11

SC
beqz
mov

R3,R4 ; mov exchange value->R3

R2,0(R1) ; get old value
R3,0(R1) ; store new value
R3,try ;loop if store fails
R4,R2 ; put old value in R4

Example of fetch & inc with LL & SC

try: |l
addi

SC
beqz

BROWN

R2,0(R1) ; getold value
R2,R2,#1 ;increment it

R2,0(R1) ;store new value
R2,try ; loop if store fails

User-Level Synchronization
Using LL/SC

» Spin locks: processor continuously
tries to acquire lock, spinning around
loop trying to get it

li R2,#1
lockit: exch R2,0(R1) ; atomic exchange
bnez R2,lockit ; loop while locked

@fo] BROWN
@ 18

User-Level Synchronization
Using LL/SC

+ What about MP with cache
coherency?

- Want to spin on cached copy to avoid full
memory latency

- Likely to get cache hits for such
variables

* Problem: exchange includes write
- Invalidates all other copies

BRgW@eneraTes considerable bus traffic
R 19

User-Level Synchronization
Using LL/SC (cont'd)

» Solution to bus traffic: don't try
exchange when you know it will fail

- Keep reading cached copy
- Lock release will invalidate

try: li R2,#1

lockit: lw R3,0(R1)
bnez R3,lockit
exch R2,0(R1)
bnez R2,try

oo BROWN

;load old

;20 = spin
;atomic exchange
;spin on failure

20

Strange example
- fetch-and-add(2),

- returns the number stored in a memory
location and increases its value by 2,

» test-and-set(),

- returns the number stored in a memory
location and sets it to 1 if it contained O

» Objects supporting these instructions
have consensus humber 2

ofa BROWN Art of Multiprocessor 21

& Programming

Wait-free binary consensus
for 3 or more processes

» Use a single memory location
initialized with O

* Processes with input O perform
fetch-and-add(2)

* Processes with input 1 perform test-
and-set()

ofa BROWN Art of Multiprocessor 22
S Programming

Wait-free binary consensus
for 3 or more processes

- If the value returned is odd, decide 1

- If the value O is returned from test-
and-set(), decide 1

+ Otherwise, decide O

o,

5[5 BROWN Art of Multiprocessor 23
S Programming

Another example
* read()

- returns the number stored in a memory
location

» decrement()

- decrements the number stored in a
memory location and returns nothing

+ multiply(x)
- multiplies the number stored in a

memory location by x and returns
_ nothing.

5[5 BROWN Art of Multiprocessor 24
S Programming

Read(), decrement(),
multiply(x)
- All these have consensus number 1

+ It is possible to use these
instructions to achieve wait-free
binary consensus for any number of
processes

ofa BROWN Art of Multiprocessor 25
S Programming

Read(), decrement(),
multiply(x)
- All these have consensus number 1

+ It is possible to use these
instructions to achieve wait-free
binary consensus for any number of
processes

ofa BROWN Art of Multiprocessor 26
S Programming

Consensus protocol

+ Use a single memory location
initialized with 1

* Processes with input O perform
decrement() and read()

* Processes with input 1 perform
multiply(n) and read()

» If the value returned is positive,
decide 1

» If the value returned is negative,
= decide O

ofa BROWN Art of Multiprocessor 27
&> Programming

Theorem

» We can solve n-thread consensus
using only
- A single memory location
- read() and
- either add(x), multiply(x) or set-bit(x)

ofa BROWN Art of Multiprocessor

&> Programming

28

Theorem

+ It is possible o solve obstruction-free
m-valued consensus among h processes
using an m-component unbounded
counter

* m-component unbounded counter has m
components, each with an integer value
supporting increment() and scan()

eyl

5[5 BROWN Art of Multiprocessor 29
@ Programming

Proof (1/4)

* For each possible input value v,
there's a separate component c,
initialized to be O.

» Each process alternates between
promoting(c,++) a value and
performing a scan of all m
components.

+ A process first promotes its input
value.

ofa BROWN Art of Multiprocessor
S Programming

30

Proof (2/4)

+ After performing a scan, if it
observes that ¢, is at least n larger
than other counters, it returns v.

* Otherwise, it promotes the value with
largest count(breaking ties
arbitrarily).

ofa BROWN Art of Multiprocessor 31
@ Programming

Proof (3/4)

» If some process returns the value v,
then each other process will
Increment some component at most
once before next performing a scan.

» In each of those scans, the count
stored in cv will still be larger than
the counts stored in all other
components.

e

5[5 BROWN Art of Multiprocessor
S Programming

» Eventually, the count in component ¢,

e

oy

Proof (4/4)

From then on, these processes will
promote value v and keep
Incrementing c,.

will be at least n larger than the
counts in all other components, and
these processes will return v,
ensuring agreement.

ofa BROWN Art of Multiprocessor

Programming

33

Lemma (bounded counter)

» If each component also supports a

decrement(), we can bound the counter
by 3n.

* When promoting u, Among the other
components (i.e. excluding c¢,), let ¢, be
one that stores the largest count. If c,
<n, it increments c,, as before. If c, >
n, then, instead of incrementing ¢, it
decrements c,.

o,

5[5 BROWN Art of Multiprocessor 34
S Programming

Lemma

» A component with value O is never
decremented. This is because, after
the last time some process observed
that it stored a count greater than or
equal to n, each process will decrement
the component at most once before
performing a scan().

ofa BROWN Art of Multiprocessor 35
@ Programming

Lemma

» Similarly, a component ¢, never
becomes larger than 3n - 1:

+ After the last time some process
observed it to have count less than 2n,
each process can increment ¢, at most
once before performing a scan().

ofa BROWN Art of Multiprocessor 36
@ Programming

Lemma

» If ¢, 2 2n, then either the other
components are less than n, in which
case the process returns without
incrementing c,, or the process
decrements some other component,
instead of incrementing c,

e

5[5 BROWN Art of Multiprocessor 37
@ Programming

n-consensus with 2 max-registers

» Initially, both m1 and m2 have value
(0, 0).

» Each process alternately performs
write-max on one component and
takes a scan of both components.

» Tt begins by performing write-max (O,
x')toml, where x' € {0, ..., n-1} is
iTs input value.

5[5 BROWN Art of Multiprocessor 38
S Programming

n-consensus with 2 max-registers

 If ml has value (r+1, x) and m2 has
value (r, x) in the scan, then it
decides x and terminates.

» If both m1 and m2 have value (r, x) in
the scan, then it performs write-max
(r+1, x) to ml.

* Otherwise, it performs write-max to
m2 with the value of ml in the scan.

5[5 BROWN Art of Multiprocessor 39
S Programming

