
Consensus revisited

from A Comlexity –based Hierarchy
for MP Synchronization

by Faith Ellen, PODC 2016

Art of Multiprocessor
Programming

2

Consensus: Each Thread has a
Private Input

32 19

21

Art of Multiprocessor
Programming

3

They Communicate

Art of Multiprocessor
Programming

4

They Agree on One Thread’s
Input

19 19

19

Art of Multiprocessor
Programming

5

Formally: Consensus

Consistent: all threads decide the same
value

Valid: the common decision value is
some thread's input

Art of Multiprocessor
Programming

6

No Wait-Free Implementation
of Consensus using Registers
??? ???

Art of Multiprocessor
Programming

7

Consensus Numbers

• An object X has consensus number n
– If it can be used to solve n-thread

consensus
• Take any number of instances of X

• together with atomic read/write registers

• and implement n-thread consensus

– But not (n+1)-thread consensus

Art of Multiprocessor
Programming

8

Consensus Numbers

• Theorem
– Atomic read/write registers have

consensus number 1

• Theorem
– Multi-dequeuer FIFO queues have

consensus number at least 2

Art of Multiprocessor
Programming

9

Consensus Numbers Measure
Synchronization Power

• Theorem
– If you can implement X from Y

– And X has consensus number c

– Then Y has consensus number at least c

Art of Multiprocessor
Programming

10

Synchronization Speed Limit

• Conversely
– If X has consensus number c

– And Y has consensus number d < c

– Then there is no way to construct a
wait-free implementation of X by Y

• This theorem will be very useful
– Unforeseen practical implications!

Art of Multiprocessor
Programming

11

Examples

• “test-and-set” getAndSet(1) f(v)=1

• “swap” getAndSet(x) f(v,x)=x

• “fetch-and-inc” getAndIncrement() f(v)=v+1

Overwrite fi(fj(v))=fi(v)

Overwrite fi(fj(v))=fi(v)

Commute fi(fj(v))= fj(fi(v))

Art of Multiprocessor
Programming

12

Impact

• Many early machines provided these
“weak” RMW instructions
– Test-and-set (IBM 360)

– Fetch-and-add (NYU Ultracomputer)

– Swap (Original SPARCs)

• We now understand their limitations
– But why do we want consensus anyway?

Art of Multiprocessor
Programming

13

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

Art of Multiprocessor
Programming

14

The Consensus Hierarchy

1 Read/Write Registers, Snapshots…

2 getAndSet, getAndIncrement, …

∞ compareAndSet,…

.

.

.

15

Uninterruptible Instructions
to Fetch and Update Memory

• Atomic exchange: interchange value in
register with one in memory
– 0  Synchronization variable is free

– 1  Synchronization variable is locked and
unavailable

– Set register to 1 & swap

– New value in register determines success in
getting lock

• 0 if you succeeded in setting lock (you were first)

• 1 if another processor claimed access first

– Key: exchange operation is indivisible

16

Uninterruptible Instruction to
Fetch and Update Memory

• Hard to read & write in 1 instruction,
so use 2

• Load linked (or load locked) + store
conditional
– Load linked returns initial value

– Store conditional returns 1 if succeeds
(no other store to same memory location
since preceding load) and 0 otherwise

Example of atomic swap with LL & SC

 try: mov R3,R4 ; mov exchange value->R3

 ll R2,0(R1) ; get old value
 sc R3,0(R1) ; store new value
 beqz R3,try ; loop if store fails
 mov R4,R2 ; put old value in R4

Example of fetch & inc with LL & SC

 try: ll R2,0(R1) ; get old value

 addi R2,R2,#1 ; increment it

 sc R2,0(R1) ; store new value
 beqz R2,try ; loop if store fails

18

User-Level Synchronization
Using LL/SC

• Spin locks: processor continuously
tries to acquire lock, spinning around
loop trying to get it

 li R2,#1

lockit: exch R2,0(R1) ; atomic exchange
 bnez R2,lockit ; loop while locked

19

User-Level Synchronization
Using LL/SC

• What about MP with cache
coherency?
– Want to spin on cached copy to avoid full

memory latency

– Likely to get cache hits for such
variables

• Problem: exchange includes write
– Invalidates all other copies

– Generates considerable bus traffic

20

User-Level Synchronization
Using LL/SC (cont’d)

• Solution to bus traffic: don’t try
exchange when you know it will fail
– Keep reading cached copy

– Lock release will invalidate

 try: li R2,#1

lockit: lw R3,0(R1) ;load old
 bnez R3,lockit ;≠ 0  spin
 exch R2,0(R1) ;atomic exchange
 bnez R2,try ;spin on failure

Art of Multiprocessor
Programming

21

• fetch-and-add(2),
– returns the number stored in a memory

location and increases its value by 2,

• test-and-set(),
– returns the number stored in a memory

location and sets it to 1 if it contained 0

• Objects supporting these instructions
have consensus number 2

Strange example

Art of Multiprocessor
Programming

22

Wait-free binary consensus
for 3 or more processes

• Use a single memory location
initialized with 0

• Processes with input 0 perform
fetch-and-add(2)

• Processes with input 1 perform test-
and-set()

Art of Multiprocessor
Programming

23

Wait-free binary consensus
for 3 or more processes

• If the value returned is odd, decide 1

• If the value 0 is returned from test-
and-set(), decide 1

• Otherwise, decide 0

Art of Multiprocessor
Programming

24

Another example
• read()

– returns the number stored in a memory
location

• decrement()
– decrements the number stored in a

memory location and returns nothing

• multiply(x)
– multiplies the number stored in a

memory location by x and returns
nothing.

Art of Multiprocessor
Programming

25

Read(), decrement(),
multiply(x)

• All these have consensus number 1

• It is possible to use these
instructions to achieve wait-free
binary consensus for any number of
processes

Art of Multiprocessor
Programming

26

Read(), decrement(),
multiply(x)

• All these have consensus number 1

• It is possible to use these
instructions to achieve wait-free
binary consensus for any number of
processes

Art of Multiprocessor
Programming

27

Consensus protocol
• Use a single memory location

initialized with 1

• Processes with input 0 perform
decrement() and read()

• Processes with input 1 perform
multiply(n) and read()

• If the value returned is positive,
decide 1

• If the value returned is negative,
decide 0

Art of Multiprocessor
Programming

28

Theorem

• We can solve n-thread consensus
using only
– A single memory location

– read() and

– either add(x), multiply(x) or set-bit(x)

–

Art of Multiprocessor
Programming

29

Theorem

• It is possible to solve obstruction-free
m-valued consensus among n processes
using an m-component unbounded
counter

• m-component unbounded counter has m
components, each with an integer value
supporting increment() and scan()

Art of Multiprocessor
Programming

30

Proof (1/4)

• For each possible input value v,
there’s a separate component cv
initialized to be 0.

• Each process alternates between
promoting(cv++) a value and
performing a scan of all m
components.

• A process first promotes its input
value.

Art of Multiprocessor
Programming

31

Proof (2/4)

• After performing a scan, if it
observes that cv is at least n larger
than other counters, it returns v.

• Otherwise, it promotes the value with
largest count(breaking ties
arbitrarily).

Art of Multiprocessor
Programming

32

Proof (3/4)

• If some process returns the value v,
then each other process will
increment some component at most
once before next performing a scan.

• In each of those scans, the count
stored in cv will still be larger than
the counts stored in all other
components.

Art of Multiprocessor
Programming

33

Proof (4/4)

• From then on, these processes will
promote value v and keep
incrementing cv.

• Eventually, the count in component cv
will be at least n larger than the
counts in all other components, and
these processes will return v,
ensuring agreement.

Art of Multiprocessor
Programming

34

Lemma (bounded counter)

• If each component also supports a
decrement(), we can bound the counter
by 3n.

• When promoting u, Among the other
components (i.e. excluding cu), let cv be
one that stores the largest count. If cv
< n, it increments cu, as before. If cv ≥
n, then, instead of incrementing cu, it
decrements cv.

Art of Multiprocessor
Programming

35

Lemma

• A component with value 0 is never
decremented. This is because, after
the last time some process observed
that it stored a count greater than or
equal to n, each process will decrement
the component at most once before
performing a scan().

Art of Multiprocessor
Programming

36

Lemma

• Similarly, a component cv never
becomes larger than 3n − 1:

• After the last time some process
observed it to have count less than 2n,
each process can increment cv at most
once before performing a scan().

Art of Multiprocessor
Programming

37

Lemma

• If cv ≥ 2n, then either the other
components are less than n, in which
case the process returns without
incrementing cv, or the process
decrements some other component,
instead of incrementing cv

Art of Multiprocessor
Programming

38

n-consensus with 2 max-registers

• Initially, both m1 and m2 have value
(0, 0).

• Each process alternately performs
write-max on one component and
takes a scan of both components.

• It begins by performing write-max (0,
x′) to m1, where x ′ ∈ {0, . . . , n−1} is
its input value.

Art of Multiprocessor
Programming

39

• If m1 has value (r+1, x) and m2 has
value (r, x) in the scan, then it
decides x and terminates.

• If both m1 and m2 have value (r, x) in
the scan, then it performs write-max
(r+1, x) to m1.

• Otherwise, it performs write-max to
m2 with the value of m1 in the scan.

n-consensus with 2 max-registers

