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Consensus: Each Thread has a 
Private Input 
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They Communicate 
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They Agree on One Thread’s 
Input 
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Formally: Consensus  

Consistent: all threads decide the same 
value 

Valid: the common decision value is 
some thread's input 
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No Wait-Free Implementation 
of Consensus using Registers 
??? ??? 
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Consensus Numbers 

• An object X has consensus number n 
– If it can be used to solve n-thread 

consensus 
• Take any number of instances of X  

• together with atomic read/write registers 

• and implement n-thread consensus 

– But not (n+1)-thread consensus 
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Consensus Numbers 

• Theorem 
– Atomic read/write registers have 

consensus number 1 

• Theorem 
– Multi-dequeuer FIFO queues have 

consensus number at least 2 
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Consensus Numbers Measure 
Synchronization Power 

• Theorem 
– If  you can implement X from Y 

– And X has consensus number c 

– Then Y has consensus number at least c 



Art of Multiprocessor 
Programming 

10 

Synchronization Speed Limit 

• Conversely 
– If X has consensus number c 

– And Y has consensus number d < c 

– Then there is no way to construct a 
wait-free implementation of X by Y 

• This theorem will be very useful 
– Unforeseen practical implications! 
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Examples 

• “test-and-set” getAndSet(1) f(v)=1 

 

• “swap” getAndSet(x)  f(v,x)=x 

 

• “fetch-and-inc” getAndIncrement() f(v)=v+1 

Overwrite fi(fj(v))=fi(v) 

Overwrite fi(fj(v))=fi(v) 

Commute fi(fj(v))= fj(fi(v)) 
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Impact 

• Many early machines provided these 
“weak” RMW instructions 
– Test-and-set (IBM 360) 

– Fetch-and-add (NYU Ultracomputer) 

– Swap (Original SPARCs) 

• We now understand their limitations 
– But why do we want consensus anyway? 
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public abstract class RMWRegister { 
 private int value; 
 public boolean synchronized 
   compareAndSet(int expected,  
                 int update) { 
  int prior = this.value; 
  if (this.value==expected) { 
   this.value = update; return true; 
  } 
  return false; 
  } … } 

compareAndSet 

(1) 
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The Consensus Hierarchy 

1 Read/Write Registers, Snapshots… 

2 getAndSet, getAndIncrement, … 

∞ compareAndSet,… 

. 

. 

. 
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Uninterruptible Instructions 
to Fetch and Update Memory 

• Atomic exchange: interchange value in 
register with one in memory 
– 0  Synchronization variable is free  

– 1  Synchronization variable is locked and 
unavailable 

– Set register to 1 & swap 

– New value in register determines success in 
getting lock 

• 0 if you succeeded in setting lock (you were first) 

• 1 if another processor claimed access first 

– Key: exchange operation is indivisible 
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Uninterruptible Instruction to 
Fetch and Update Memory 

• Hard to read & write in 1 instruction, 
so use 2 

• Load linked (or load locked) + store 
conditional 
– Load linked returns initial value 

– Store conditional returns 1 if succeeds 
(no other store to same memory location 
since preceding load) and 0 otherwise 



Example of atomic swap with LL & SC 

 try: mov R3,R4    ; mov exchange value->R3  

  ll R2,0(R1)  ; get old value 
 sc R3,0(R1)  ; store new value 
 beqz R3,try      ; loop if store fails 
 mov R4,R2      ; put old value in R4 

 

Example of fetch & inc with LL & SC 

 try: ll R2,0(R1)     ; get old value 

 addi R2,R2,#1    ; increment it  

  sc R2,0(R1)     ; store new value  
 beqz R2,try       ; loop if store fails 
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User-Level Synchronization 
Using LL/SC 

• Spin locks: processor continuously 
tries to acquire lock, spinning around 
loop trying to get it 

 

   li R2,#1   

lockit: exch R2,0(R1)  ; atomic exchange 
  bnez R2,lockit  ; loop while locked 
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User-Level Synchronization 
Using LL/SC 

• What about MP with cache 
coherency? 
– Want to spin on cached copy to avoid full 

memory latency 

– Likely to get cache hits for such 
variables 

• Problem: exchange includes write 
– Invalidates all other copies 

– Generates considerable bus traffic 
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User-Level Synchronization 
Using LL/SC (cont’d) 

• Solution to bus traffic: don’t try 
exchange when you know it will fail 
– Keep reading cached copy 

– Lock release will invalidate 

 try:  li R2,#1   

lockit: lw R3,0(R1)  ;load old 
  bnez R3,lockit  ;≠ 0  spin 
  exch R2,0(R1)  ;atomic exchange 
  bnez R2,try   ;spin on failure 
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• fetch-and-add(2),  
– returns the number stored in a memory 

location and increases its value by 2, 

• test-and-set(),  
– returns the number stored in a memory 

location and sets it to 1 if it contained 0 

 

• Objects supporting these instructions 
have consensus number 2 

Strange example 
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Wait-free binary consensus 
for 3 or more processes 

• Use a single memory location 
initialized with 0 

• Processes with input 0 perform 
fetch-and-add(2) 

• Processes with input 1 perform test-
and-set() 
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Wait-free binary consensus 
for 3 or more processes 

• If the value returned is odd, decide 1 

• If the value 0 is returned from test-
and-set(), decide 1 

• Otherwise, decide 0 
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Another example 
• read() 

– returns the number stored in a memory 
location 

• decrement() 
– decrements the number stored in a 

memory location and returns nothing 

• multiply(x) 
– multiplies the number stored in a 

memory location by x and returns 
nothing.  
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Read(), decrement(), 
multiply(x) 

• All these have consensus number 1 

• It is possible to use these 
instructions to achieve wait-free 
binary consensus for any number of 
processes 
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Read(), decrement(), 
multiply(x) 

• All these have consensus number 1 

• It is possible to use these 
instructions to achieve wait-free 
binary consensus for any number of 
processes 
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Consensus protocol 
• Use a single memory location 

initialized with 1 

• Processes with input 0 perform 
decrement() and read() 

• Processes with input 1 perform 
multiply(n) and read() 

• If the value returned is positive, 
decide 1 

• If the value returned is negative, 
decide 0 
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Theorem 

• We can solve n-thread consensus 
using only 
– A single memory location 

– read() and  

– either add(x), multiply(x) or set-bit(x) 

–   
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Theorem 

• It is possible to solve obstruction-free 
m-valued consensus among n processes 
using an m-component unbounded 
counter 

 

• m-component unbounded counter has m 
components, each with an integer value 
supporting increment() and scan() 
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Proof (1/4) 

• For each possible input value v, 
there’s a separate component cv 
initialized to be 0. 

• Each process alternates between 
promoting(cv++) a value and 
performing a scan of all m 
components. 

• A process first promotes its input 
value. 
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Proof (2/4) 

• After performing a scan, if it 
observes that cv is at least n larger 
than other counters, it returns v. 

• Otherwise, it promotes the value with 
largest count(breaking ties 
arbitrarily).  
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Proof (3/4) 

• If some process returns the value v, 
then each other process will 
increment some component at most 
once before next performing a scan. 

• In each of those scans, the count 
stored in cv will still be larger than 
the counts stored in all other 
components.  
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Proof (4/4) 

• From then on, these processes will 
promote value v and keep 
incrementing cv.  

• Eventually, the count in component cv 
will be at least n larger than the 
counts in all other components, and 
these processes will return v, 
ensuring agreement. 
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Lemma (bounded counter) 

• If each component also supports a 
decrement(), we can bound the counter 
by 3n. 

• When promoting u, Among the other 
components (i.e. excluding cu), let cv be 
one that stores the largest count. If cv 
< n, it increments cu, as before. If cv ≥ 
n, then, instead of incrementing cu, it 
decrements cv. 



Art of Multiprocessor 
Programming 

35 

Lemma 

• A component with value 0 is never 
decremented. This is because, after 
the last time some process observed 
that it stored a count greater than or 
equal to n, each process will decrement 
the component at most once before 
performing a scan().  
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Lemma 

• Similarly, a component cv never 
becomes larger than 3n − 1:  

• After the last time some process 
observed it to have count less than 2n, 
each process can increment cv at most 
once before performing a scan().  
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Lemma 

• If cv ≥ 2n, then either the other 
components are less than n, in which 
case the process returns without 
incrementing cv, or the process 
decrements some other component, 
instead of incrementing cv 
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n-consensus with 2 max-registers 

• Initially, both m1 and m2 have value 
(0, 0).  

• Each process alternately performs 
write-max on one component and 
takes a scan of both components.  

• It begins by performing write-max (0, 
x′ ) to m1, where x ′ ∈ {0, . . . , n−1} is 
its input value.  
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• If m1 has value (r+1, x) and m2 has 
value (r, x) in the scan, then it 
decides x and terminates.  

• If both m1 and m2 have value (r, x) in 
the scan, then it performs write-max 
(r+1, x) to m1.  

• Otherwise, it performs write-max to 
m2 with the value of m1 in the scan. 

n-consensus with 2 max-registers 


