

Chapter 4. Mechanical Testing

Mechanical Strengths and Behavior of Solids

1

2

4

6

Contents

- Introduction
- Introduction to Tension Test
- **3** Engineering Stress-Strain Properties
 - Trends in Tensile Behavior
- **5** Compression Tests
 - Bending Tests
- 7 Tors
 - **Torsion Test**
 - Hardness Tests
- 9

8

Notch-Impact Tests

4.1 Introduction

• Geometry and Loading Commonly Employed in Mechanical Testing

4.2 Introduction to Tension Test (1)

• Schematics of Simple Testing Machines

Modern Closed-loop Servohydraulic Testing System

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Tension Test (1)

• Setup for Tension Test

Time	Load	Crosshead
Time	Load	Crosshead
1421.520	1.202	-0.0001
s	N	mm
Extensometer	Stress	Strain
Extensometer	Stress	Strain
0.0001	****	★★★★
mm	MPa	%

• Fracture in Tension Test

Necking

Failure of a ductile material

Tension failure of a brittle material

• Stress-strain curve

- Resilience
 - The ability of a material to absorb energy when deformed elastically and to return it when unloaded.

$$u_r = \frac{1}{2}\sigma_{pl}\varepsilon_{pl} = \frac{1}{2}\frac{\sigma_{pl}^2}{E}$$

4.3 Engineering Stress-Strain Properties (3)

- Toughness
 - The ability of a material to absorb energy without fracture.

• Extent of Uniform Strain

 It is desirable to maximize the extent of uniform elongation prior to the onset of localized necking.

• Extent of Uniform Strain

 The amount of uniform strain is related to the magnitude of the strainhardening exponent.

 $P = \sigma A$

 $dP = \sigma dA + Ad\sigma$

dP = 0 -> Necking point

$$\sigma dA + Ad\sigma = 0 \quad \Rightarrow \quad \frac{d\sigma}{\sigma} = -\frac{dA}{A}$$

$$Al = constant \quad \Rightarrow \quad Adl + ldA = 0 \quad \Rightarrow \quad \frac{dl}{l} = -\frac{dA}{A}$$

$$\frac{dl}{l} = d\epsilon = -\frac{dA}{A} = \frac{d\sigma}{\sigma} \quad \Rightarrow \quad \sigma = \frac{d\sigma}{d\epsilon}$$

- Extent of Uniform Strain
 - The true plastic strain at necking instability is numerically equal to the strainhardening coefficient.

$$\sigma = K\epsilon^n$$

$$\sigma = \frac{d\sigma}{d\epsilon} \quad -> \quad K\epsilon^n = Kn\epsilon^{n-1}$$

 $n = \epsilon$

• Triaxial Tension Stress Distribution

- A triaxial stress state exists in the vicinity of the neck.
- Triaxial stress -> hard to yield -> more stress is needed to yield -> more strength -> more brittle - > fracture

• Effect of Strain Rate at Various Temperatures

- At a given temperature, increasing the strain rate increases the strength.
- For a given strain rate, decreasing the temperature increases the strength.

• Effect of Strain Rate at Various Temperatures

- At a given temperature, increasing the strain rate increases the strength.
- For a given strain rate, decreasing the temperature increases the strength.

Material Selection in Design (1)

Material Selection in Design (2)

Material Selection in Design (3)

4.5 Compression Test (1)

• Compressive Behavior

 There is no maximum force in compression prior to fracture, and the engineering ultimate strength is the same as the engineering fracture strength.

4.5 Compression Test (2)

- Barreling Effect
 - Considering both the desirability of small L/d to avoid buckling and large L/d to avoid barrel shape, a reasonable compromise is L/d = 3 for ductile and 2 for brittle materials

4.5 Compression Test (3)

• Fracture on the Inclined Surface due to Shear Stress (Ductile)

4.5 Compression Test (4)

• Fracture on the Inclined Surface due to Shear Stress (Brittle)

Copyright ©2013 Pearson Education, publishing as Prentice Hall

4.5 Compression Test (5)

4.5 Compression Test (5)

• Hydraulic Pressure for Multiaxial Compression Test

4.6 Bending Test (1)

• Loading Configuration

4.6 Bending Test (2)

- Basic Theory
 - Bending tests are especially needed to evaluate tensile strengths of brittle materials.
 - Brittle materials are usually stronger in compression than in tension, so the maximum tension stress (modulus of rupture) cause the failure in the beam.
 - For materials that exhibit linear behavior, the fracture stress may be estimated by simple linear elastic beam analysis.

4.6 Bending Test (3)

- Possible Causes of Discrepancy between Tension and Bending Test
 - Local elastic or plastic deformations at the supports and/or points of load application may not be small compared with the beam deflection.
 - In relatively short beams, significant deformations due to shear stress may occur that are not considered by the ideal beam theory used
 - The material may have different elastic moduli in tension and compression, so that an intermediate value is obtained from the bending test.
 - Modulus of rupture referred to as flexural strength or bending strength.

Material	Modulus of Rupture* MPa (ksi)	Tensile Strength MPa (ksi)
Al ₂ O ₃ (0-2% porosity)	350-580 (50-80)	200-310 (30-45)
Sintered BeO (3.5% porosity)	172-275 (25-40)	90-133 (13-20)
Sintered stabilized ZrO ₂ (<5% porosity)	138-240 (20-35)	138 (20)
Hot-pressed Si ₃ N ₄ (<1% porosity)	620-965 (90-140)	350-580 (50-80)
Fused SiO ₂	110 (16)	69 (10)
Hot-pressed TiC (<2% porosity)	275-450 (40-65)	240-275 (35-40)

4.6 Bending Test (4)

• Statistical Nature of Fracture

- The failure event depends on the probability that a flaw of a certain size and orientation is present when specific stress is applied.
- The longer the wire, the greater the likelihood that a critical defect is present to cause failure.

4.7 Torsion Test (1)

- Basic Theory
 - The state of tress and strain in a torsion test on a round bar corresponds to pure shear.
 - For brittle behaviors, fracture on planes of maximum tension stress, 45° to the specimen axis.
 - For ductile behaviors, fracture occurs on a plane of maximum shear stress transverse to the bar axis.
 - The shear stress at fracture can be related to the torque.

Cylinder:
$$au_f = rac{T_f r_2}{J}$$
 Hollow bar: $au_f = rac{2T_f r_2}{\pi (r_2^4 - r_1^4)}$

- The shear modulus can be evaluated as below.

Cylinder:
$$G = \frac{L}{J} \left(\frac{dT}{d\theta} \right)$$
 Hollow bar: $G = \frac{2L}{\pi (r_2^4 - r_1^4)} \left(\frac{dT}{d\theta} \right)$
where $\theta = \frac{TL}{GJ}$

• Resulting State of Pure Shear Stress and Strain

4.7 Torsion Test (3)

• Typical Torsion Failures

4.8 Brinell Hardness Test (1)

• Brinell Hardness Tester

Copyright ©2013 Pearson Education, publishing as Prentice Hall

4.8 Brinell Hardness Test (2)

• Test Configuration

- A large **steel ball** (10 mm in diameter) is used with a relatively high force.
- For fairly hard materials (steels and cast irons) -> 3000 kgf
- For soft materials (copper and aluminum alloys) -> 500 kgf
- For very hard materials -> tungsten carbide ball is used.

Brinell Hardness Number

 Brinell hardness number (*HB*) is obtained by dividing the applied force by the curved surface area of the indentation.

$$HB = \frac{2F}{\pi D [D - (D^2 - d^2)^{0.5}]}$$

4.8 Brinell Hardness Test (3)

Brinell hardness numbers

Material	Hardness	
<u>Softwood</u> (e.g., <u>pine</u>)	1.6 HBS 10/100	
Hardwood	2.6–7.0 HBS 1.6 10/100	
<u>Lead</u>	5.0 HB (pure lead; alloyed lead typically can range from 5.0 HB to values in excess of 22.0 HB)	
Pure <u>Aluminium</u>	15 HB	
<u>Copper</u>	35 HB	
Hardened AW-6060 <u>Aluminium</u>	75 HB	
Mild steel	120 HB	
18–8 (304) <u>stainless steel</u> annealed	200 HB ^[4]	
<u>Glass</u>	1550 HB	
Hardened <u>tool steel</u>	600–900 HB (HBW 10/3000)	
Rhenium diboride	4600 HB	
Note: Standard test conditions unless otherwise stated		

4.8 Vickers Hardness Test (1)

• Vickers Hardness Indentation

• Test Configuration

- Vickers hardness test is based on the same general principles as the Brinell test.
- It differs primarily in that the indenter is a diamond point in the shape of a pyramid with a square base.

• Vickers Hardness Number

 Vickers hardness number (*HV*) is obtained by dividing the applied force by the surface area of the pyramidal depression.

$$HV = \frac{2P}{d^2}\sin\frac{\alpha}{2}$$

- A Vickers hardness value is nearly independent of the magnitude of the force used.
- 1-120kgf used for all solid materials

4.8 Rockwell Hardness Test (1)

Rockwell Hardness Indentation

4.8 Rockwell Hardness Test (2)

• Brinell and Rockwell Hardness Indentations

4.9 Notch-Impact Test

- Charpy V-notch Tester (Standardized high strain rate tester)
 - The energy required to break the sample is determined from an indicator that measures how high the pendulum swings after breaking the sample.
 - The energies depend on the details of the specimen size and geometry, including the notch-tip radius.
 - The support and loading configuration are also important, as are the mass and velocity of the pendulum or weight.

