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4.1 Introduction
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• Geometry and Loading Commonly Employed in Mechanical Testing
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4.2 Introduction to Tension Test (1)
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• Schematics of Simple Testing Machines
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4.2 Introduction to Tension Test (2)
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• Modern Closed-loop Servohydraulic Testing System
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Tension Test (1)
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• Setup for Tension Test
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Tension Test (2)
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• Fracture in Tension Test
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4.3 Engineering Stress-Strain Properties (1)
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• Stress-strain curve
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4.3 Engineering Stress-Strain Properties (2)
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• Resilience
– The ability of a material to absorb energy when deformed elastically and to 

return it when unloaded.
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4.3 Engineering Stress-Strain Properties (3)
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• Toughness
– The ability of a material to absorb energy without fracture.

( )1
2t y u fu σ σ ε= +Ductile:
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Necking (1)
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• Extent of Uniform Strain
– It is desirable to maximize the extent of uniform elongation prior to the 

onset of localized necking.
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Necking (2)
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• Extent of Uniform Strain
– The amount of uniform strain is related to the magnitude of the strain-

hardening exponent.

𝑃𝑃 = 𝜎𝜎𝐴𝐴

𝑑𝑑𝑃𝑃 = 𝜎𝜎𝑑𝑑𝐴𝐴 + 𝐴𝐴𝑑𝑑𝜎𝜎

𝑑𝑑𝑃𝑃 = 0 -> Necking point

𝜎𝜎𝑑𝑑𝐴𝐴 + 𝐴𝐴𝑑𝑑𝜎𝜎 = 0
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= −
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𝐴𝐴𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝑑𝑑𝐴𝐴 + 𝐴𝐴𝑑𝑑𝐴𝐴 = 0->
𝑑𝑑𝐴𝐴
𝐴𝐴
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𝑑𝑑𝐴𝐴
𝐴𝐴

= 𝑑𝑑𝜖𝜖 = −
𝑑𝑑𝐴𝐴
𝐴𝐴

=
𝑑𝑑𝜎𝜎
𝜎𝜎

-> 𝜎𝜎 =
𝑑𝑑𝜎𝜎
𝑑𝑑𝜖𝜖
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Necking (3)
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• Extent of Uniform Strain
– The true plastic strain at necking instability is numerically equal to the strain-

hardening coefficient.

𝜎𝜎 = 𝐾𝐾𝜖𝜖𝑛𝑛

𝜎𝜎 =
𝑑𝑑𝜎𝜎
𝑑𝑑𝜖𝜖 𝐾𝐾𝜖𝜖𝑛𝑛 = 𝐾𝐾𝑐𝑐𝜖𝜖𝑛𝑛−1->

𝑐𝑐 = 𝜖𝜖
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Necking (4)
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• Triaxial Tension Stress Distribution
– A triaxial stress state exists in the vicinity of the neck.
– Triaxial stress -> hard to yield -> more stress is needed to yield -> more 

strength -> more brittle - > fracture 

-> Compression

-> Tension
-> Tension
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4.4 Trends in Tensile Behavior (1)
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• Effect of Strain Rate at Various Temperatures
– At a given temperature, increasing the strain rate increases the strength.
– For a given strain rate, decreasing the temperature increases the strength.
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4.4 Trends in Tensile Behavior (2)
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• Effect of Strain Rate at Various Temperatures
– At a given temperature, increasing the strain rate increases the strength.
– For a given strain rate, decreasing the temperature increases the strength.
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Material Selection in Design (1)
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Material Selection in Design (2)
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Material Selection in Design (3)
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4.5 Compression Test (1)
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• Compressive Behavior
– There is no maximum force in compression prior to fracture, and the 

engineering ultimate strength is the same as the engineering fracture 
strength.



Seoul National University

4.5 Compression Test (2)
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• Barreling Effect
– Considering both the desirability of small L/d to avoid buckling and 

large L/d to avoid barrel shape, a reasonable compromise is L/d = 3 
for ductile and 2 for brittle materials
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4.5 Compression Test (3)
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• Fracture on the Inclined Surface due to Shear Stress (Ductile)
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4.5 Compression Test (4)
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• Fracture on the Inclined Surface due to Shear Stress (Brittle)
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4.5 Compression Test (5)
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4.5 Compression Test (5)
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• Hydraulic Pressure for Multiaxial Compression Test
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4.6 Bending Test (1)
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• Loading Configuration
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4.6 Bending Test (2)
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• Basic Theory
– Bending tests are especially needed to evaluate tensile strengths of brittle 

materials.
– Brittle materials are usually stronger in compression than in tension, so the 

maximum tension stress (modulus of rupture) cause the failure in the beam.
– For materials that exhibit linear behavior, the fracture stress may be 

estimated by simple linear elastic beam analysis.

𝜎𝜎 =
𝑀𝑀𝑐𝑐
𝐼𝐼
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4.6 Bending Test (3)
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• Possible Causes of Discrepancy between Tension and Bending Test
– Local elastic or plastic deformations at the supports and/or points of load 

application may not be small compared with the beam deflection.
– In relatively short beams, significant deformations due to shear stress may 

occur that are not considered by the ideal beam theory used
– The material may have different elastic moduli in tension and compression, 

so that an intermediate value is obtained from the bending test.
– Modulus of rupture referred to as flexural strength or bending strength.
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4.6 Bending Test (4)
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• Statistical Nature of Fracture
– The failure event depends on the probability that a flaw of a certain size and 

orientation is present when specific stress is  applied.
– The longer the wire, the greater the likelihood that a critical defect is present 

to cause failure.
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4.7 Torsion Test (1)
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• Basic Theory
– The state of tress and strain in a torsion test on a round bar corresponds to 

pure shear.
– For brittle behaviors, fracture on planes of maximum tension stress, 45o to 

the specimen axis.
– For ductile behaviors, fracture occurs on a plane of maximum shear stress 

transverse to the bar axis .
– The shear stress at fracture can be related to the torque.

– The shear modulus can be evaluated as below.

𝜏𝜏𝑓𝑓 =
𝑇𝑇𝑓𝑓𝑟𝑟2
𝐽𝐽 𝜏𝜏𝑓𝑓 =

2𝑇𝑇𝑓𝑓𝑟𝑟2
𝜋𝜋 𝑟𝑟24 − 𝑟𝑟14

Cylinder: Hollow bar:

𝐺𝐺 =
𝐿𝐿
𝐽𝐽
𝑑𝑑𝑇𝑇
𝑑𝑑𝜃𝜃

𝐺𝐺 =
2𝐿𝐿

𝜋𝜋 𝑟𝑟24 − 𝑟𝑟14
𝑑𝑑𝑇𝑇
𝑑𝑑𝜃𝜃

Cylinder: Hollow bar:

where  𝜃𝜃 = 𝑇𝑇𝐿𝐿
𝐺𝐺𝐺𝐺
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4.7 Torsion Test (2)
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• Resulting State of Pure Shear Stress and Strain
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4.7 Torsion Test (3)
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• Typical Torsion Failures

Brittle

Ductile
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4.8 Brinell Hardness Test (1)
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• Brinell Hardness Tester
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4.8 Brinell Hardness Test (2)
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• Test Configuration
– A large steel ball (10 mm in diameter) is used with a relatively high force.
– For fairly hard materials (steels and cast irons) -> 3000 kgf
– For soft materials (copper and aluminum alloys) -> 500 kgf
– For very hard materials -> tungsten carbide ball is used.

• Brinell Hardness Number
– Brinell hardness number (HB) is obtained by dividing 

the applied force by the curved surface area of the 
indentation.

𝐻𝐻𝐻𝐻 =
2𝐹𝐹

𝜋𝜋𝐷𝐷 𝐷𝐷 − 𝐷𝐷2 − 𝑑𝑑2 0.5
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4.8 Brinell Hardness Test (3)
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Material Hardness

Softwood (e.g., pine) 1.6 HBS 10/100

Hardwood 2.6–7.0 HBS 1.6 10/100

Lead
5.0 HB (pure lead; alloyed lead typically 
can range from 5.0 HB to values in 
excess of 22.0 HB)

Pure Aluminium 15 HB

Copper 35 HB

Hardened AW-6060 Aluminium 75 HB

Mild steel 120 HB

18–8 (304) stainless steel annealed 200 HB[4]

Glass 1550 HB

Hardened tool steel 600–900 HB (HBW 10/3000)

Rhenium diboride 4600 HB

Note: Standard test conditions unless otherwise stated

Brinell hardness numbers

http://en.wikipedia.org/wiki/Softwood
http://en.wikipedia.org/wiki/Pine
http://en.wikipedia.org/wiki/Hardwood
http://en.wikipedia.org/wiki/Lead
http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Mild_steel
http://en.wikipedia.org/wiki/Stainless_steel
http://en.wikipedia.org/wiki/Brinell_scale%23cite_note-4
http://en.wikipedia.org/wiki/Glass
http://en.wikipedia.org/wiki/Tool_steel
http://en.wikipedia.org/wiki/Rhenium_diboride
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4.8 Vickers Hardness Test (1)
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• Vickers Hardness Indentation
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4.8 Vickers Hardness Test (2)
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• Test Configuration
– Vickers hardness test is based on the same general principles as the Brinell

test.
– It differs primarily in that the indenter is a diamond point in the shape of a 

pyramid with a square base.

• Vickers Hardness Number
– Vickers hardness number (HV) is obtained by dividing the applied force by 

the surface area of the pyramidal depression.

– A Vickers hardness value is nearly independent of the magnitude of the 
force used.

– 1-120kgf used for all solid materials

𝐻𝐻𝐻𝐻 =
2𝑃𝑃
𝑑𝑑2

𝑐𝑐𝑠𝑠𝑐𝑐
𝛼𝛼
2
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4.8 Rockwell Hardness Test (1)
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• Rockwell Hardness Indentation
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4.8 Rockwell Hardness Test (2)
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• Brinell and Rockwell Hardness Indentations



Seoul National University

4.9 Notch-Impact Test
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• Charpy V-notch Tester (Standardized high strain rate tester)
– The energy required to break the sample is determined from an indicator 

that measures how high the pendulum swings after breaking the sample.
– The energies depend on the details of the specimen size and geometry, 

including the notch-tip radius.
– The support and loading configuration are also important, as are the mass 

and velocity of the pendulum or weight.

Figure 4.35   (a) Charpy V-notch, and 
(b) Lzod tests.
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