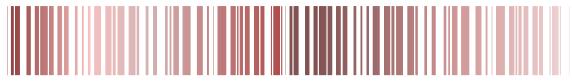


Chapter 8. Fracture of Cracked Members



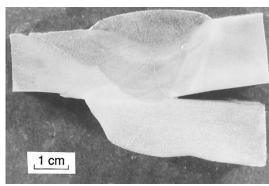
Mechanical Strengths and Behavior of Solids

Contents

- 1 Introduction
- 2 Preliminary Discussion
- **3** Relationship between G and K
- 4 K for various cases
- 5 Safety Factors
- 6 Additional topics on K
- 7 Trends of Fracture Toughness K_{I_c}
- 8 Fracture mechanics under Plasticity

8.1 Introduction

Unexpected failures below the material's yield strength



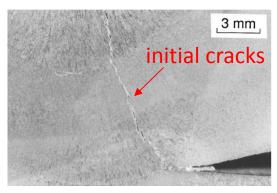
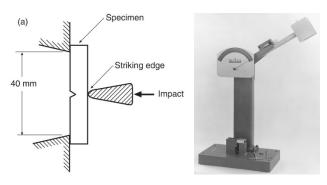


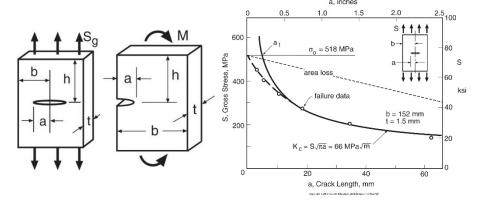
Figure 8.1 A propane tank truck explosion due to fracture from initial cracks in welds

Fracture mechanics

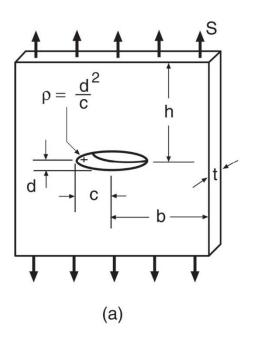
<Notch-impact test>
Rough guide for choosing materials

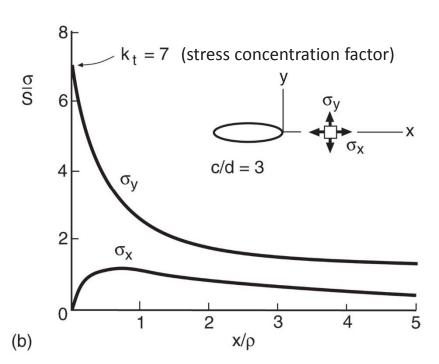


<Fracture mechanics> Specific analysis of strength and life for various cracks



Cracks as Stress Raisers



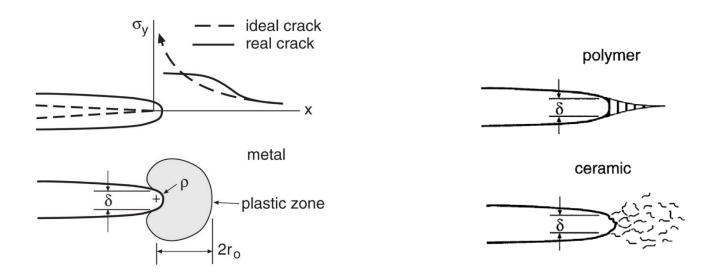


$$\sigma_y = S\left(1 + 2\frac{c}{d}\right) = S\left(1 + 2\sqrt{\frac{c}{\rho}}\right)$$

Behavior at Crack Tips in Real Materials

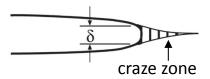
 δ (crack-tip opening displacement, CTOD).

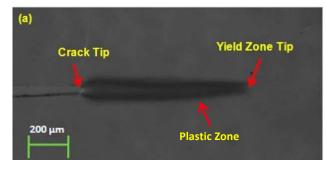
- Infinite stress cannot, of course, exist in a real material. If the applied load is not too high, the material can accommodate the presence of an initially sharp crack in such a way that the theoretically infinite stress is reduced to a finite value.
- In ductile materials, large plastic deformations near the crack tip (plastic zone)
- In some polymers, craze zone (fibrous structure bridging the crack faces)
- In brittle materials, a high density of tiny cracks
- High stress is spread over a region (stress redistribution)

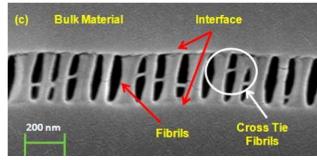


Behavior at Crack Tips in Real Materials

<Polymer>

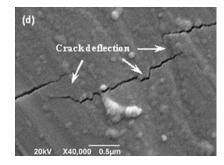


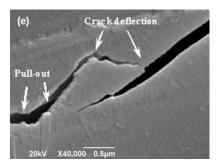




<Ceramic>







*Measurement of Cohesive Parameters of Crazes in Polystyrene Films (Experimental and Applied Mechanics) http://what-when-how.com/
**Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance
http://www.nature.com/srep/2014/140416/srep04712/full/srep04712.html

Effects of Cracks on Strength

Stress intensity factor K

- a measure of crack severity
- affected by size, stress, and geom.
- linear-elastic assumption (LEFM)

$$K = S\sqrt{\pi a} \ (a \ll b)$$

Fracture toughness K_c

- criteria for brittle fracture
- affected by material, temperature, loading rate, thickness

 $K < K_c$: elastic deformation

 $K > K_c$: brittle fracure

Plane strain fracture toughness K_{lc}

- thicker plate: a lower value of K_c
- a worst-case value of K_c
- material-dependent property

Material	Steel	Polymer	Ceramic
iviateriai	AISI 4130	ABS	Concrete
Toughness K_{ic} [MPa $\sqrt{\mathrm{m}}$]	110	3.0	1.19

Effects of Cracks on Strength

- Note that the failure data all far below the material's yield strength, σ_0 .
- The solid curve agrees well with most of the data, a degree of success for LEFM.
- But, as the stress S approaches σ_0 , the deviation occurs because of the assumption of LEFM.

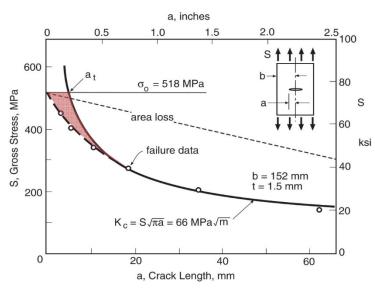


Figure 8.5 Failure data for cracked plates of 2014-T6 Al at −195°C.

Area loss (.....)

: area loss due to crack

$$S = \frac{P}{2t(b-a)} = \sigma_0(1 - a/b)$$

Critical stress (——)

: fracture due to stress intensity

$$S_c = K_c / \sqrt{\pi a}$$

Stress deviation ()

: due to plastic deformation violating LEFM assumption

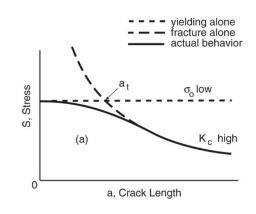
Effects of Cracks on Brittle vs. Ductile behavior

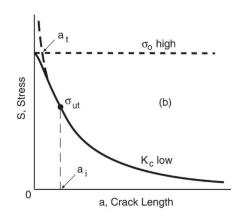
: Consider $S_c = \sigma_0$

Transition crack length a_t

: critical size b/w yielding and brittle fracture

$$a_t = \frac{1}{\pi} \left(\frac{K_c}{\sigma_0} \right)^2$$





<Brittle material>

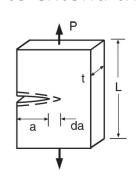
Material	Yield strength σ_0	Fracture toughness K_c	Transition crack length a_t
Ductile	↓	\uparrow	↑
Brittle	↑	\downarrow	\downarrow

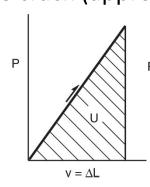
*above a_t is valid for wide and center-cracked plate

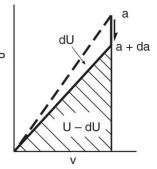
8.3 Relationship between G and K (1)

System Health & Risk Management

- **Strain Energy Release Rate** *G* (proposed by A. A. Griffith in 1920) : Energy per unit crack are to extend the crack (approximately true)
 - $G = -\frac{1}{t} \frac{dU}{da}$





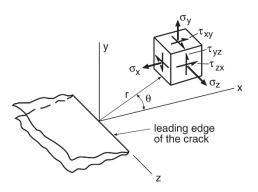


- Stress Intensity Factor K_I
 - : stresses near the ideal sharp crack (linear-elastic & isotropic)

$$\sigma_y \cong \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right] + \dots$$

$$K_I = \lim_{r, \theta o 0} (\sigma_y \sqrt{2\pi r})$$
 Mathematical sense

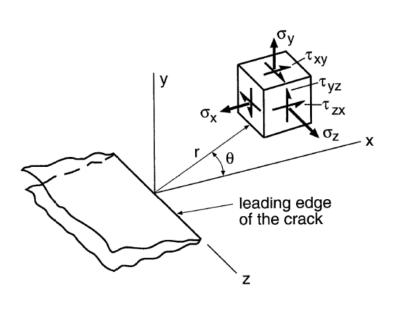
$$K_I = FS\sqrt{\pi a}$$
 Practical sense



F: a dimensionless function that depends on the geometry and loading configuration

8.3 Relationship between G and K (1)

System Health & Risk Management



$$\sigma_x = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right] + \cdots$$
 (a)

$$\sigma_y = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right] + \cdots$$
 (b)

$$\tau_{xy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2} + \cdots$$
 (c)

$$\sigma_z = 0$$
 (plane stress) (d)

$$\sigma_z = \nu \left(\sigma_x + \sigma_y \right)$$
 (plane strain; $\varepsilon_z = 0$) (e)

$$\tau_{yz} = \tau_{zx} = 0 \tag{f}$$

Figure 8.10 Three-dimensional coordinate system for the region of a crack tip. (Adapted from [Tada 85]; used with permission.)

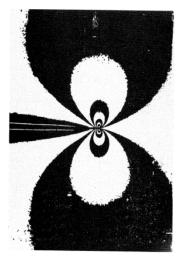


Figure 8.11 Contours of maximum in-plane shear stress around a crack tip. These were formed by the photoelastic effect in a clear plastic material. The two thin white lines entering from the left are the edges of the crack, and its tip is the point of convergence of the contours. (Photo courtesy of C. W. Smith, Virginia Tech, Blacksburg, VA.)

8.3 Relationship between G and K (2)

System Health & Risk Management

Energy-balance approach

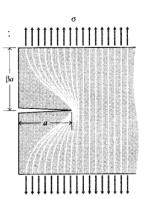
Fracture energy = released strain energy U + bond-breaking energy S

Released strain energy U

$$U^* = \frac{1}{V} \int f \, dx = \frac{E\epsilon^2}{2} = \frac{\sigma^2}{2E}$$

$$U = -2\left(\frac{\beta a * a}{2}\right)U^* = -\frac{\sigma^2}{2E}\pi a^2$$

(for plane stress loading $\beta = \pi$)



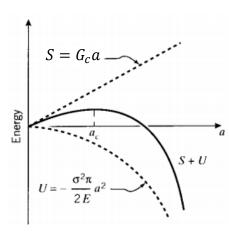
Bond-breaking energy S

$$S = G_c * a$$

Energy-balance

For
$$a = a_c$$
, $\frac{\partial (U+S)}{\partial a} = -\frac{\sigma_f^2}{E} \pi a_c + G_c = 0$

$$\therefore \sigma_f = \sqrt{\frac{EG_c}{\pi a_c}}$$



*Introduction to Fracture Mechanics, David Roylance, 2001

http://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/frac.pdf

8.3 Relationship between G and K(3)

Stress criteria for Rupture

$$K_c = \sigma_f \sqrt{\pi a_c}$$

Relationship b/w G and K

$$K_c = \sqrt{\frac{EG_c}{\pi a_c}} * \sqrt{\pi a_c} = \sqrt{EG_c}$$

$$K_c^2 = G_c E$$
 for plane stress $(\sigma_z = 0)$
 $K_c^2 = G_c E/(1-\nu^2)$ for plane strain $(\epsilon_z = 0)$

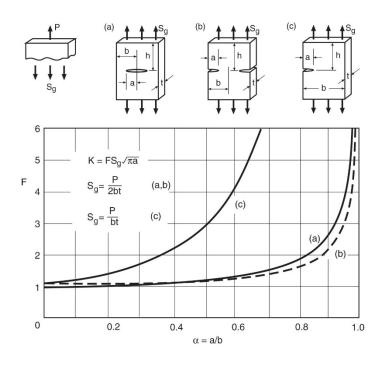
$$K_c^2 = G_c E/(1-v^2)$$
 for plane strain $(\epsilon_z = 0)$

*Introduction to Fracture Mechanics, David Roylance, 2001

http://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/frac.pdf

8.4 K for various cases (1)

Cracked plates under tension



Values for small a/b and limits for 10% accuracy:

(a)
$$K = S_g \sqrt{\pi a}$$

(a)
$$K = S_g \sqrt{\pi a}$$
 (b) $K = 1.12 S_g \sqrt{\pi a}$

(c)
$$K = 1.12 S_g \sqrt{\pi a}$$

$$(a/b \le 0.4) \qquad (a/b \le 0.6)$$

$$(a/b \le 0.6)$$

$$(a/b \le 0.13)$$

Expressions for any $\alpha = a/b$:

(a)
$$F = \frac{1 - 0.5\alpha + 0.326\alpha^2}{\sqrt{1 - \alpha}}$$

$$(h/b \ge 1.5)$$

(b)
$$F = \left(1 + 0.122\cos^4\frac{\pi\alpha}{2}\right)\sqrt{\frac{2}{\pi\alpha}\tan\frac{\pi\alpha}{2}}$$

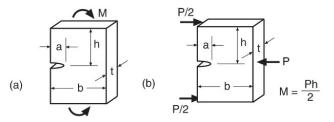
$$(h/b \ge 2)$$

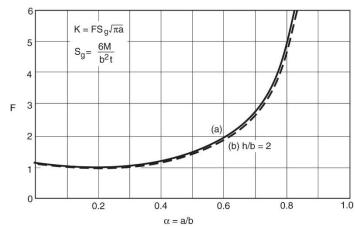
(c)
$$F = 0.265 (1 - \alpha)^4 + \frac{0.857 + 0.265\alpha}{(1 - \alpha)^{3/2}}$$

$$(h/b \geq 1)$$

8.4 K for various cases (2)

Cracked plates under bending





Values for small a/b and limits for 10% accuracy:

(a, b)
$$K = 1.12S_g \sqrt{\pi a}$$
 $(a/b \le 0.4)$

Expressions for any $\alpha = a/b$:

(a)
$$F = \sqrt{\frac{2}{\pi \alpha} \tan \frac{\pi \alpha}{2}} \left[\frac{0.923 + 0.199 \left(1 - \sin \frac{\pi \alpha}{2}\right)^4}{\cos \frac{\pi \alpha}{2}} \right]$$
 (large h/b)

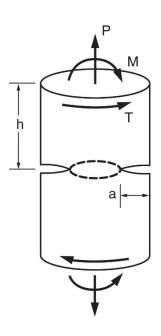
(b) F is within 3% of (a) for h/b = 4, and within 6% for h/b = 2, at any a/b:

$$F = \frac{1.99 - \alpha (1 - \alpha) (2.15 - 3.93\alpha + 2.7\alpha^2)}{\sqrt{\pi} (1 + 2\alpha) (1 - \alpha)^{3/2}} \qquad (h/b = 2)$$

8.4 K for various cases (3)

System Health & Risk Management

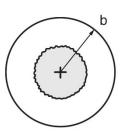
Round shaft with circumferential crack



$$K = FS_g \sqrt{\pi a}$$

$$\alpha = a/b$$

$$\beta = 1 - \alpha$$



(a) Axial load P: $S_g = \frac{P}{\pi b^2}$, F = 1.12 (10%, $a/b \le 0.21$)

$$F = \frac{1}{2\beta^{1.5}} \left[1 + \frac{1}{2}\beta + \frac{3}{8}\beta^2 - 0.363\beta^3 + 0.731\beta^4 \right]$$

(b) Bending moment M: $S_g = \frac{4M}{\pi b^3}$, F = 1.12 $(10\%, a/b \le 0.12)$

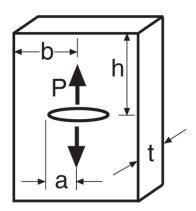
$$F = \frac{3}{8\beta^{2.5}} \left[1 + \frac{1}{2}\beta + \frac{3}{8}\beta^2 + \frac{5}{16}\beta^3 + \frac{35}{128}\beta^4 + 0.537\beta^5 \right]$$

(c) Torsion T, $K = K_{III}$: $S_g = \frac{2T}{\pi b^3}$, F = 1.00 $(10\%, a/b \le 0.09)$

$$F = \frac{3}{8\beta^{2.5}} \left[1 + \frac{1}{2}\beta + \frac{3}{8}\beta^2 + \frac{5}{16}\beta^3 + \frac{35}{128}\beta^4 + 0.208\beta^5 \right]$$

8.4 K for various cases (4)

Plate w/ forces to the crack faces

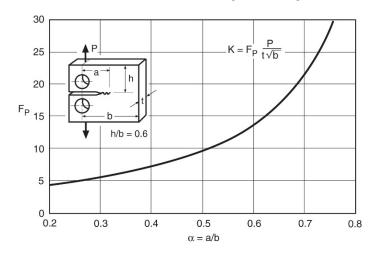


$$K = F_P \frac{P}{t\sqrt{b}}, \qquad \alpha = \frac{a}{b}, \qquad F_P = \frac{1}{\sqrt{\pi\alpha}} \qquad (10\%, \ \frac{a}{b} \le 0.3)$$

$$F_P = \frac{1.297 - 0.297 \cos\frac{\pi\alpha}{2}}{\sqrt{\sin\pi\alpha}} \qquad (0 \le \frac{a}{b} \le 1)$$

$$F_P = \frac{1.297 - 0.297 \cos \frac{\pi \alpha}{2}}{\sqrt{\sin \pi \alpha}} \qquad (0 \le \frac{a}{b} \le 1)$$

ASTM standard compact specimen



$$F_P = \frac{2 + \alpha}{(1 - \alpha)^{3/2}} (0.886 + 4.64\alpha - (a/b \ge 0.2))$$

$$-13.32\alpha^2 + 14.72\alpha^3 - 5.6\alpha^4)$$

8.4 K for various cases (5)

Safety factors against brittle fracture

$$X_K = \frac{K_{Ic}}{K} = \frac{K_{Ic}}{FS_g\sqrt{\pi a}}$$

$$K_{Ic} = F_c S_g \sqrt{\pi a_c}$$

$$X_a = \frac{a_c}{a} = \left(\frac{F}{F_c} X_K\right)^2$$

 X_K : safety factor for fracture toughness

 X_a : safety factor for crack size

 S_q : applied stress

a : crack size

 a_c : critical crack length

K : fracture toughness

 K_{Ic} : plane strain fracture toughness

 F_c : fracture toughness at a_c

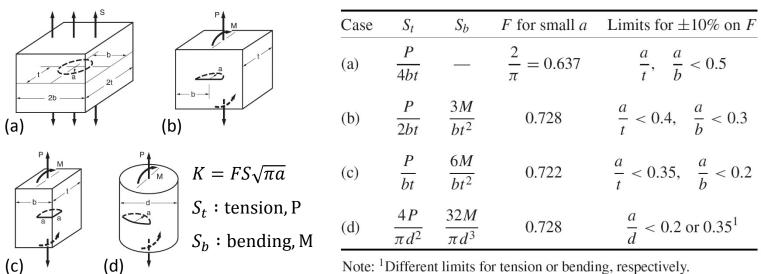
- Elements for assigning safety factors
 - 1) statistical information of crack shape, stress, material prop.
 - 2) safety factor set by design code, company policy, government regulation
- Crack size a should be quite smaller than a_c to satisfy reasonable X_K
- In general, X_K is set to be large due to great variance of K_{IC}
- Safety factors on crack length must be rather large to achieve reasonable safety factors on K and stress

(c)

8.5 Additional topics on K (1)

Practical applications: Complex 3-D crack cases

- Useful cases include cracked plates, shafts, cracked tubes, discs, stiffened panels, etc., including three-dimensional cases
- F values are elevated for points where the crack front intersects the surface and max. K (b)-(d).

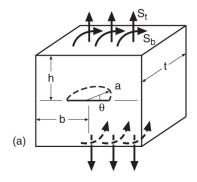


Note: ¹Different limits for tension or bending, respectively.

Figure 8.17 Stress intensity factors for (a) an embedded circular crack, (b) half-circular surface crack, (c) quarter-circular corner crack, and (d) half-circular surface crack in a shaft

8.5 Additional topics on K (2)

Half-circular surface crack



a/t = 0.5 $f_a = 1.08[1 + 0.1875(1 - \sin \theta)^2]$ 1.0 f_a 0.5 (b) 0 $\pi/4$ $\pi/2$ $\theta, radians$

Functional forms for a/b < 0.5, h/b > 1:

$$K = f_a f_w \frac{2}{\pi} (S_t + f_b S_b) \sqrt{\pi a}, \qquad f_w = \sqrt{\sec\left(\frac{\pi a}{2b} \sqrt{\frac{a}{t}}\right)}$$
where $f_a = f_a(a/t, \theta), \qquad f_b = f_b(a/t)$

Expressions for $\theta = 0$ and 180° (surface) for any $\alpha = a/t$:

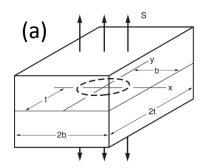
$$f_a = (1.04 + 0.2017\alpha^2 - 0.1061\alpha^4)(1.1 + 0.35\alpha^2), \qquad f_b = 1 - 0.45\alpha$$

Expressions for $\theta = 90^{\circ}$ (deepest point) for any $\alpha = a/t$:

$$f_a = 1.04 + 0.2017\alpha^2 - 0.1061\alpha^4$$
, $f_b = 1 - 1.34\alpha - 0.03\alpha^2$

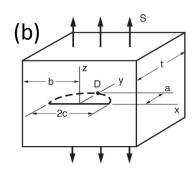
8.5 Additional topics on K (3)

Elliptical crack

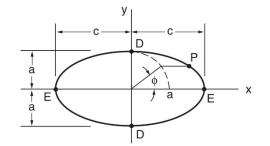


$$K = S \sqrt{\frac{\pi a}{Q}} f_{\phi}, \qquad f_{\phi} = \left[\left(\frac{a}{c} \right)^2 \cos^2 \phi + \sin^2 \phi \right]^{1/4} \quad (a/c \le 1)$$

$$\sqrt{Q} = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \beta} \, d\beta, \qquad k^2 = 1 - \left(\frac{a}{c} \right)^2 \quad (Q: \text{flow shape factor})$$



$$K_D = F_D S \sqrt{\frac{\pi a}{Q}}, \qquad Q \approx 1 + 1.464 \left(\frac{a}{c}\right)^{1.65} \quad (a/c \le 1)$$



Case Values for small
$$a/t$$
, c/b Limits for 10% accuracy

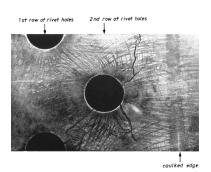
(a) $F_D = 1$ $a/t < 0.4$, $c/b < 0.2$

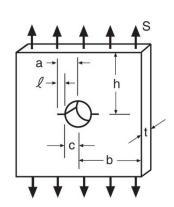
(b) $F_D \approx 1.12$ $a/t < 0.3$, $a/t < 0.3$, $a/t < 0.2$

Note: 1 Except limit to a/t < 0.16 if a/c < 0.25.

8.5 Additional topics on K (4)

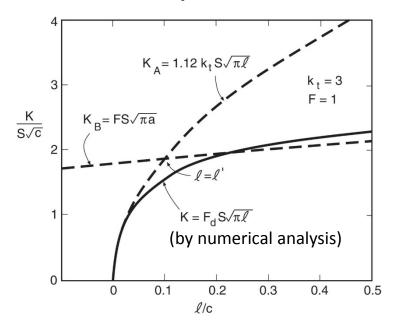
Crack growing from notches (holes, fillets, rivets, etc.)

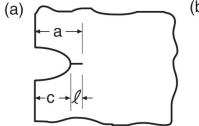


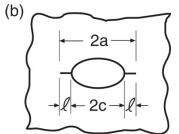


$$K = F_d S \sqrt{\pi \ell}$$
, $d = \frac{\ell}{a} = \frac{\ell}{c + \ell}$

$$F_d = 0.5(3 - d)[1 + 1.243(1 - d)^3]$$







<Short crack>

For small l/c,

$$K_A = 1.12S'\sqrt{\pi l}$$
 $K_B = FS\sqrt{\pi a}$

$$S' = k_t S$$

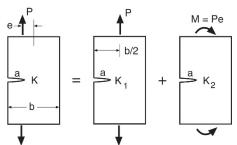
<Long crack>

For large l/c, $w_{\text{hole}} \approx a_{\text{crack}}$.

$$K_B = FS\sqrt{\pi a}$$

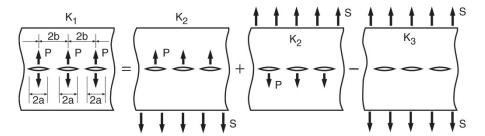
8.5 Additional topics on K (5)

Superposition for combined loading



<Eccentric loading of a plate>

$$\begin{bmatrix} \kappa_1 & \stackrel{P}{\longrightarrow} \\ \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} \\ \longrightarrow & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} \\ \longrightarrow & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} \\ \longrightarrow & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow}$$



<Single/row of a cracks (bolt, rivet)>

$$K_{1} = F_{1}S_{1}\sqrt{\pi a}, \qquad S_{1} = \frac{P}{bt}$$
 $K_{2} = F_{2}S_{2}\sqrt{\pi a}, \qquad S_{2} = \frac{6M}{b^{2}t} = \frac{6Pe}{b^{2}t}$
 $K = K_{1} + K_{2} = \frac{P}{bt}\left(F_{1} + \frac{6F_{2}e}{b}\right)\sqrt{\pi a}$

$$K_1 = F_{P1} \frac{P}{t\sqrt{h}}$$

$$K_3 = F_3 S \sqrt{\pi a}$$

$$K_2 = \frac{1}{2}(K_1 + K_3) = \frac{P}{2t\sqrt{h}}\left(F_{P1} + \frac{F_3\sqrt{\pi a}}{2}\right)$$

$$K_1 = \frac{P}{t\sqrt{b}} \frac{1}{\sqrt{\sin \pi a}}$$

$$K_3 = S\sqrt{2b\tan\frac{\pi a}{2}}$$

$$K_{1} = \frac{P}{t\sqrt{b}} \frac{1}{\sqrt{\sin \pi a}}$$

$$K_{3} = S\sqrt{2b \tan \frac{\pi a}{2}}$$

$$K_{2} = \frac{1}{2}(K_{1} + K_{3}) = \frac{P}{2t\sqrt{b}} \left(\frac{1}{\sqrt{\sin \pi a}} + \sqrt{\frac{1}{2} \tan \frac{\pi a}{2}}\right)$$

$$(et)$$

8.5 Additional topics on K (6)

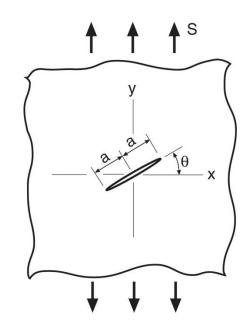
Inclined or parallel cracks to an stress

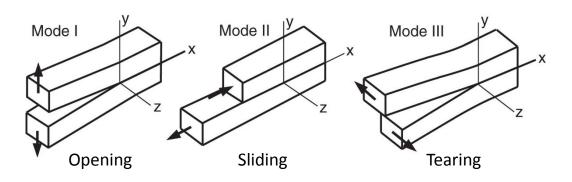
- Alternating crack direction
 - : It does not grow in its original plane.
- Interactive stresses

: Fracture modes are not independent.

Toughness for mixed-mode are generally unknown.

- Possible approach
 - : Projection of crack normal to the stress direction





$$K_I = S(\cos^2 \theta) \sqrt{\pi a}$$

 $K_{II} = S(\cos \theta) (\sin \theta) \sqrt{\pi a}$ $\approx K = S\sqrt{\pi a \cos \theta}$

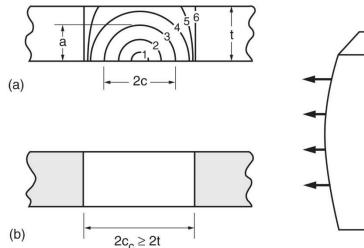
8.5 Additional topics on K (7)

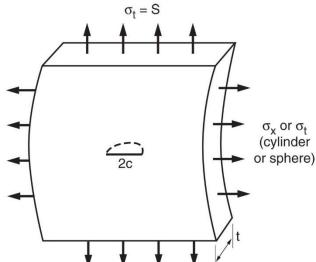
Leak-Before-Break (LBB) design of pressure vessels

- Pressure vessels should be designed to leak before fracture.
- A through-wall crack length $2c \approx 2t$
- Critical crack size c_c

$$K_{I_c} = FS\sqrt{\pi c_c}$$

 $F = 1$ (: wide plate) $c_c = \frac{1}{\pi} \left(\frac{K_{I_c}}{\sigma_t}\right)^2$ $t < c_c$: leak before break $t > c_c$: brittle fracture





8.6 Trends of Fracture Toughness K_{I_c} (1)

System Health & Risk Management

Fixtures for a fracture toughness with crack growth bend specimen

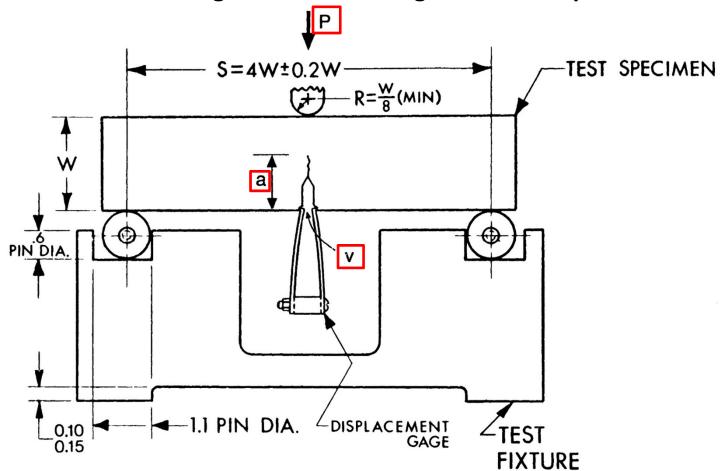


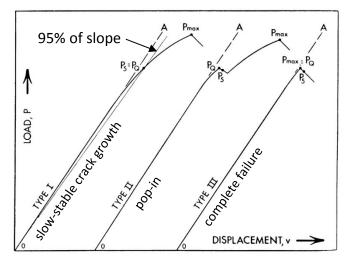
Figure 8.27 Fixtures for a fracture toughness test on a bend specimen. The dimension W corresponds to our b. (Adapted from [ASTM 97] Std. E399; copyright © ASTM; reprinted with permission.)

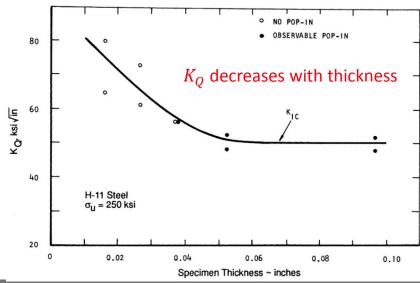
8.6 Trends of Fracture Toughness K_{I_c} (2)

System Health & Risk Management

Fracture Toughness

- A deviation from linearity on the P-v plot, or a sudden drop in force due to rapid cracking, identifies a point P_O corresponding to an early stage of cracking
- The value of K, denoted K_Q , is the stress intensity factor corresponding to P_Q
- K_Q may be somewhat lower than the value K_c corresponding to the final fracture of the specimen.
- Fracture toughness testing of metals based on LEFM principles governed by several ASTM standards, notably Standard Nos. E399 and E1820.
- Standards No. D5045 (polymers) and No. C1421 (ceramics)





8.6 Trends of Fracture Toughness K_{I_c} (3)

ystem Health & Risk Management

Material

Material-dependent K_{I_c}

Material	Metal	Polymer	Ceramic
Toughness [MPa√m]	20~200	1~5	1~5

- Large CoV of K_{I_c} : 10~20%

Microstructural influences

Chemical composition

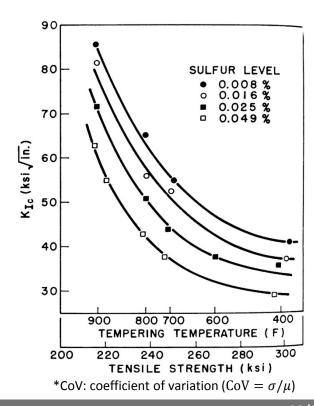
: sulfide inclusions facilitate fracture.

Processing (forging, rolling, extruding)

: anisotropy and planes of the flattened grains

Neutron radiation (radiation embrittlement)

: large numbers of point defects

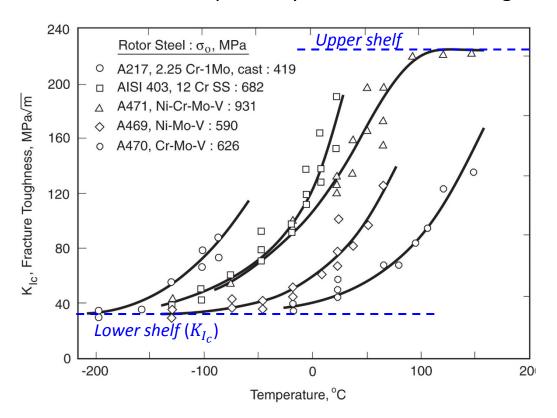


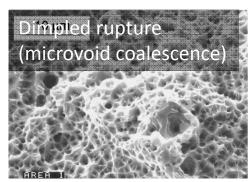
8.6 Trends of Fracture Toughness K_{I_c} (4)

System Health & Risk Management

Temperature

- Cleavage @ low temp.
 - : fracture with little plastic deform. along the crystal planes of low resistance
- Dimples rupture @ high temp.
 - : fracture with plasticity-induced formation, growth, and joining of tiny voids





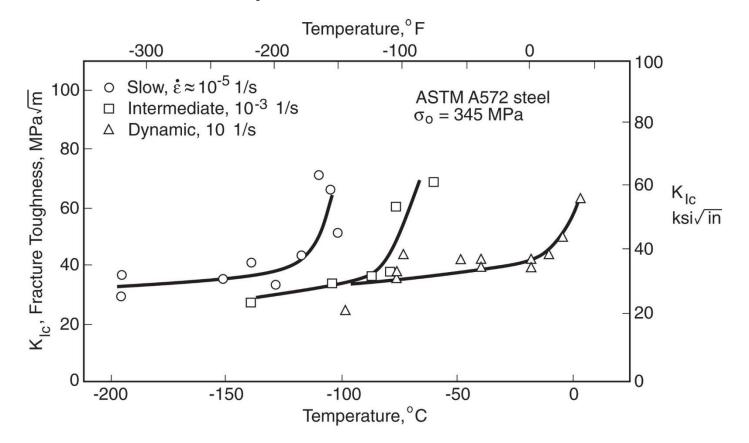
<Fracture mechanics shift>

8.6 Trends of Fracture Toughness K_{I_c} (5)

System Health & Risk Management

Temperature and Loading rate

- A higher rate of lading lowers the fracture toughness K_{I_c} . (temperature shift)
- Statistical variation of K_{I_c} is especially large within the temperature transition.



8.7 Fracture mechanics under Plasticity (1)

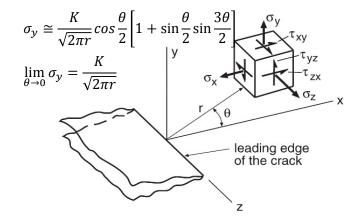
System Health & Risk Management

- The size of plastic zone r_o
 - Yielding at crack tips (*plastic zone* $\sim 2r_{o\sigma}$) will be studied.
 - Plastic zone may not be large if the LEFM theory is to be applied.
 - Plastic zone size increases if K is increased, but smaller for the same K for materials with higher σ_0

For *plane stress* ($\sigma_z = 0$),

$$\sigma_x = \sigma_y = \frac{K}{\sqrt{2\pi r}}$$

$$r_{o\sigma} = \frac{1}{2\pi} \left(\frac{K}{\sigma_o}\right)^2 \rightarrow 2r_{o\sigma} = \frac{1}{\pi} \left(\frac{K}{\sigma_o}\right)^2$$

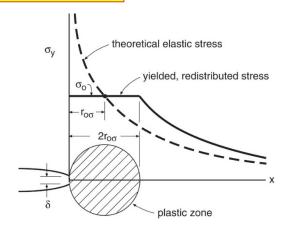


For *plane strain* ($\varepsilon_z = 0$, $\sigma_z = 2\nu\sigma_y$),

For octa. or max. shear stress yield criterion,

$$\sigma_x = \sigma_y = \frac{\sigma_0}{1 - 2\nu} \approx 2.5\sigma_0 \rightarrow \sqrt{3}\sigma_0$$

$$2r_{o\varepsilon} = \frac{1}{3\pi} \left(\frac{K}{\sigma_o}\right)^2$$

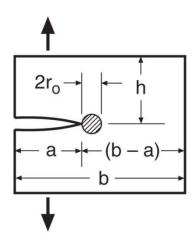


8.7 Fracture mechanics under Plasticity (3)

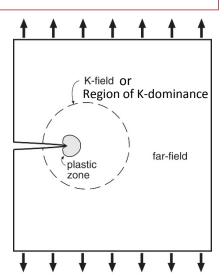
Plasticity limitations on LEFM

- **LEFM** is valid for small plastic zone compared with crack tip-to-boundary dist.
- $-8r_0$ is generally considered to be sufficient \rightarrow 4 times of crack zone size
- Since $r_{o\sigma}$ is larger than $r_{o\varepsilon}$, an overall limit of the use of LEFM is

$$a, (b-a), h \ge 8r_{o\sigma} = \frac{4}{\pi} \left(\frac{K}{\sigma_o}\right)^2$$
 (LEFM applicable)



<Crack specimen geometry>



<LEFM applicable region, K-field>

8.7 Fracture mechanics under Plasticity (3)

System Health & Risk Managemen

Plasticity limitations on LEFM

- LEFM is valid for small plastic zone compared with crack tip-to-boundary dist.
- $8r_0$ is generally considered to be sufficient \rightarrow 4 times of crack zone size
- Since $r_{o\sigma}$ is larger than $r_{o\varepsilon}$, an overall limit of the use of LEFM is

$$a, (b-a), h \ge 8r_{o\sigma} = \frac{4}{\pi} \left(\frac{K}{\sigma_o}\right)^2$$
 (LEFM applicable)

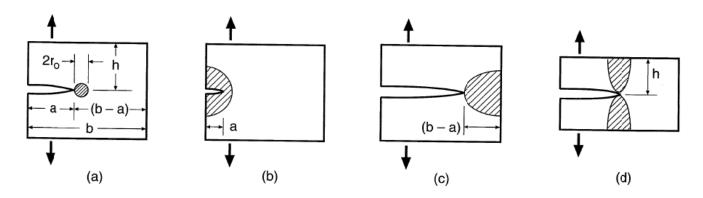
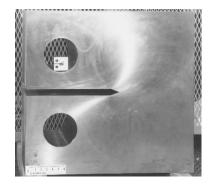


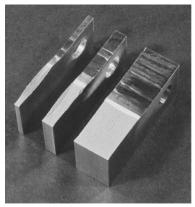
Figure 8.46 Small plastic zone compared with planar dimensions (a), and situations where LEFM is invalid due to the plastic zones being too large compared with (b) crack length, (c) uncracked ligament, and (d) member height.

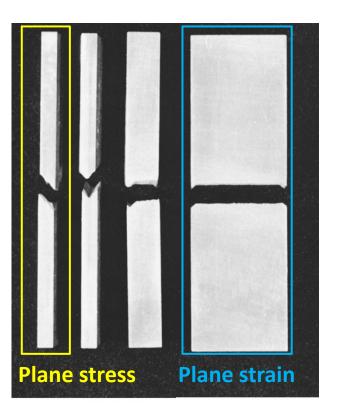
8.7 Fracture mechanics under Plasticity (2)

System Health & Risk Management

- The size of plastic zone r_o
 - For thin specimen, poisson contraction in the thickness occurs freely around the crack tip, resulting in yielding on shear planes inclined through the thickness.
 - Fracture under plane stress also occurs along such inclined planes.







8.7 Fracture mechanics under Plasticity (4)

System Health & Risk Managemen

Fracture mechanics beyond linear elasticity

- Condition of "a, (b-a), $h \ge 8r_{o\sigma}$ " is not satisfied, (under excessive yielding)
- LEFM and K are not applicable due to excessive yielding.
- Following three approaches are available.

(1) Plastic zone adjustment

- The stress outside of the plastic zone is similar to elastic stress for a hypothetical crack ($a_e = a + r_{o\sigma}$) with its tip near the center of the plastic zone.
- Not applicable for large stress to cause yielding on whole section; 80% of the fully plastic force or moment.

$$K = FS\sqrt{\pi a}$$
 where $F_e = F(a_e/b)$ $K_e = F_eS\sqrt{\pi a_e} = F_eS\sqrt{\pi(a + r_{o\sigma})}$ $r_{o\sigma} = \frac{1}{2\pi} \left(\frac{K_e}{\sigma_o}\right)^2$

8.7 Fracture mechanics under Plasticity (5)

(2) J-Integral

- -I is the generalization of the strain energy release rate, G, to nonlinear-elastic.
- It retains significance as a measure of the intensity of the elasto-plastic (nonlinear) stress and strain fields around the crack tip.
- Two different P-v curves (a and a+da) need to be obtained from independent tests on two different members.
- Basis of fracture toughness tests with small specimen, ASTM Standard No. E1820.

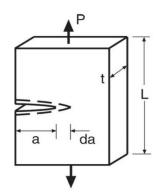
$$K_{I_c}^2 = G_{I_c} E'$$

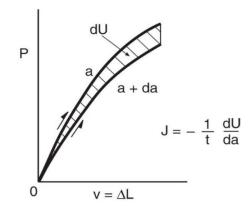
Eq. (8.10)

$$K_{I_cJ} = \sqrt{J_{I_c}E'}$$

$$E'=E$$
 for plane stress $(\sigma_z=0)$
 $E'=E/(1-v^2)$ for plane strain $(\epsilon_z=0)$

$$E' = E/(1-v^2)$$
 for plane strain $(\epsilon_z = 0)$





$$K_J = \sqrt{JE}$$

$$K_J \approx K \sqrt{1 + \frac{\varepsilon_p}{\varepsilon_e \sqrt{n}}}$$

8.7 Fracture mechanics under Plasticity (6)

System Health & Risk Management

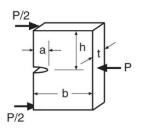
(2) *J*-Integral: Fracture toughness tests for J_{I_c}

- Complexity encountered in J_{I_c} testing is that nonlinearity in P-v behavior is due to a combination of crack growth and plastic deformation
- J calculation for the standard bend and compact specimens

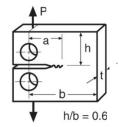
$$J = J_{el} + J_{pl}$$

= $\frac{K^2(1 - v^2)}{E} + \frac{\eta A_{pl}}{t(b - a)}$

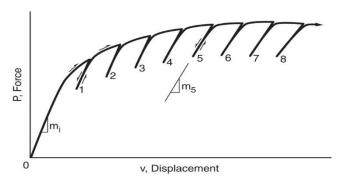
$$\eta = 1.9$$
 for bend specimen $\eta = 2 + 0.522(1 - a/b)$ for compactspecimen



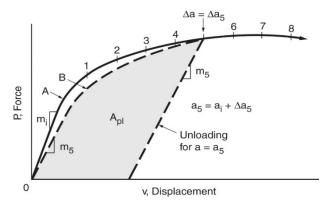
<Bend specimen>



<Compact specimen>



<Unloading compliance method>



<Potential drop test>

8.7 Fracture mechanics under Plasticity (7)

(3) Crack-Tip Opening Displacement (CTOD; δ)

K can be used to estimate the displacement separating the crack faces.

CTOD is also used as the basis of fracture toughness tests; ASTM Standards

E1290 and E1820

Summary

