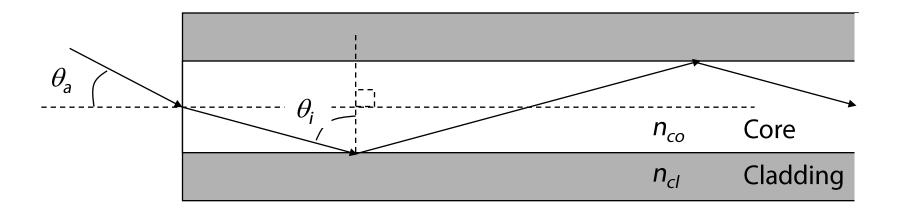
Nonlinear Optical Engineering

Introduction (NFO 5th ed: 1.1 ~ 1.4)


Yoonchan Jeong

School of Electrical Engineering, Seoul National University

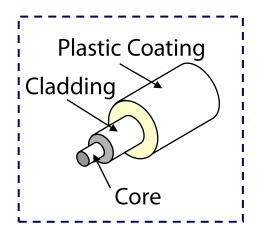
Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

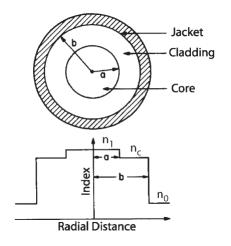
Email: yoonchan@snu.ac.kr

Total Internal Reflection

Total internal reflection:

$$\theta_i > \theta_c = \sin^{-1}(\frac{n_{cl}}{n_{co}})$$


Numerical aperture:


$$NA = n_o \sin \theta_a \approx \theta_a = \sqrt{n_{co}^2 - n_{cl}^2}$$

Optical Fibers

A flexible optically transparent fiber, as of glass or plastic, through which light can be transmitted by successive total internal reflection

Geometry of an Optical Fiber:

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed.

Fabrication of Optical Fibers

Double crucible:

Rod in tube:

→ Direct drawing

 \rightarrow Preform and drawing

Fabrication of Fiber Preforms

Deposition techniques:

Modified chemical vapor deposition (MCVD)

Plasma-enhanced modified chemical vapor deposition (PMCVD)

Outside vapor deposition (OVD)

Axial vapor deposition (AVD)

Preform Fabrication by MCVD

MCVD: Modified chemical vapor deposition

Dopants: GeO₂, P₂O₅, ErCl₃, Nd₂O₃

Fiber Drawing and Spooling

Procedure: Drawing from preform

Quality checking

Coating for protection

Spooling

Single-Mode Fiber

Cladding
Core

_____ : Core mode

---- : Cladding mode

Core Mode

Mode expansion:

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding $(r \ge r_{co})$ $E_z = a_{cl} K_v (h_{cl} r)$ $H_z = b_{cl} K_v (h_{cl} r)$ $\rightarrow E_r, E_\phi, H_r, H_\phi$ where $h_{cl} = \sqrt{\beta^2 - k_o^2 n_{cl}^2}$

note: $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

Continuity condition of tangential fields at $r = r_{co}$

→ Core-bounded mode

Exact Core Mode

Mode expansion:

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding
$$(r_{co} < r \le r_{cl})$$

$$E_z = a_{cl}K_v(h_{cl}r) + c_{cl}I_v(h_{cl}r)$$

$$H_z = b_{cl}K_v(h_{cl}r) + d_{cl}I_v(h_{cl}r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$Where h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$$

$$Air (r > r_{cl})$$

$$E_z = a_{ai}K_v(h_{ai}r)$$

$$H_z = b_{ai}K_v(h_{ar}r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$where h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$$

$$where h_{ai} = \sqrt{\beta^2}$$

$$Air (r > r_{cl})$$

$$E_z = a_{ai} K_v (h_{ai} r)$$

$$H_z = b_{ai} K_v (h_{ar} r)$$

$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$

$$where h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$$

note: $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

Continuity condition of tangential fields at $r = r_{co}$, $r = r_{cl}$

→ Core-bounded mode

Cladding Mode

Mode expansion:

Core
$$(r \le r_{co})$$

$$E_z = a_{co}J_v(h_{co}r)$$

$$H_z = b_{co}J_v(h_{co}r)$$

$$\to E_r, E_\phi, H_r, H_\phi$$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$

Cladding
$$(r_{co} < r \le r_{cl})$$

$$E_z = a_{cl}J_v(h_{cl}r) + c_{cl}Y_v(h_{cl}r)$$

$$H_z = b_{cl}J_v(h_{cl}r) + d_{cl}Y_v(h_{cl}r)$$

$$\to E_r, E_{\phi}, H_r, H_{\phi}$$

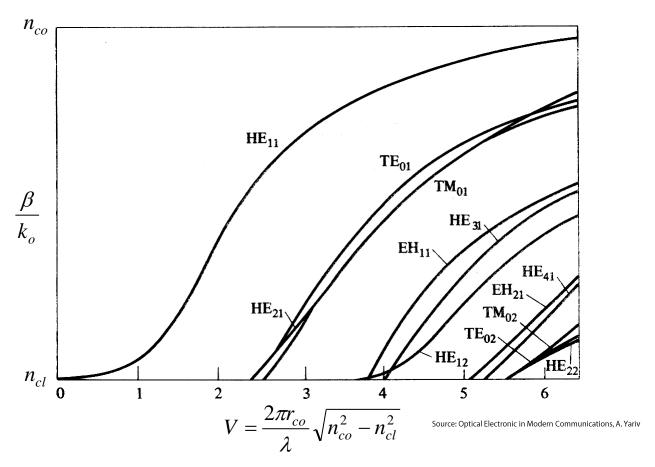
where $h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$

where $h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$

where $h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$

Air
$$(r > r_{cl})$$

$$E_z = a_{ai} K_{\nu} (h_{ai} r)$$


$$H_z = b_{ai} K_{\nu} (h_{ai} r)$$

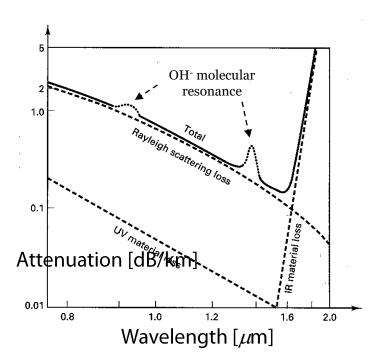
$$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$$
where $h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$

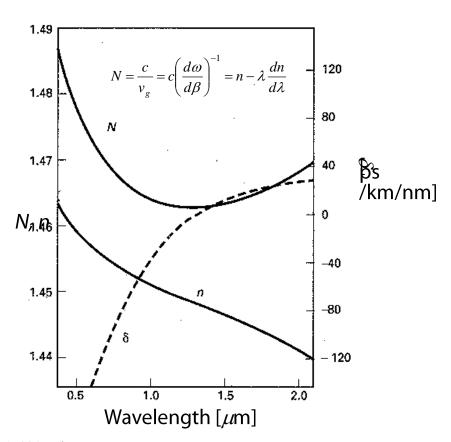
note: $\exp[i(\omega t - \beta z + \nu \phi)]$: omitted

Continuity condition of tangential fields at $r = r_{co}$, $r = r_{cl}$ → Cladding-bounded mode

Effective Index of Core Mode

Single-mode operation:


→
$$V$$
 < 2.405


Attenuation and Dispersion in SMF

Attenuation and dispersion vs wavelength:

 \rightarrow 1.3 μ m: Zero dispersion

 \rightarrow 1.5 μ m: Minimum loss

Source: Nonlinear Fiber Optics, G. P. Agrawal

Attenuation in SMF

Causes of attenuation:

- Absorption:

Intrinsic absorption: ultraviolet and infrared Absorption by impurities: OH⁻ and transition metal Absorption by atomic defects

- Scattering:

Rayleigh scattering: In particular for below 0.8 μ m

- Geometrical effects:

Bending loss

Typical attenuation in SMF: 0.2 dB/km

Dispersion in SMF

Types of dispersion:

- Intermodal dispersion:

Pulse spreading in multimode fiber

- Intramodal dispersion (Chromatic dispersion):

Material dispersion

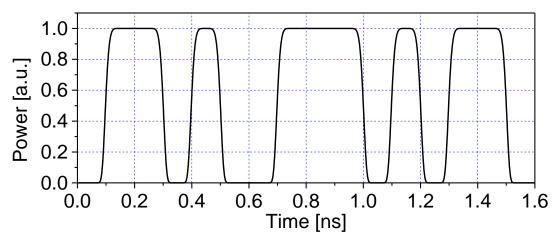
Waveguide dispersion: usually *smaller* than material dispersion

Short wavelength: Effective index is close to n_{core} .

Long wavelength: Effective index is close to $n_{cladding}$.

 \rightarrow Recall V parameter!

Dispersion is a problem in fiber communications: It eventually limits the bandwidth of a fiber optic line.

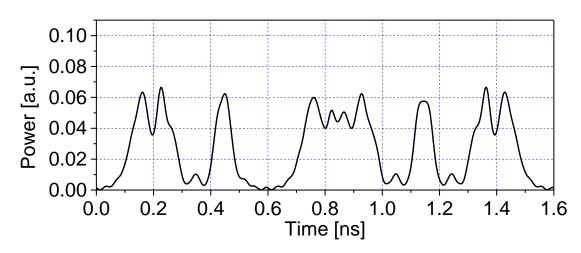

Polarization-mode dispersion:

Modal birefringence:

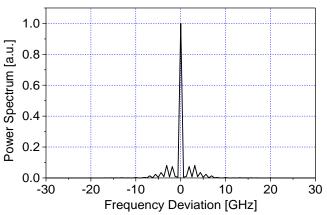
Beat length:

Data Transmission in SMF

Initial optical pulses (10 Gbps, 0 dBm):


Group velocity dispersion:

→ Frequency chirp


Nonlinear effect:

→ SPM/XPM/FWM/SRS/SBS

After 50-km Transmission:

Power spectrum:

Nonlinearities in Fibers

Nonlinear response of optical media:

$$\mathbf{P} = \varepsilon_o \chi \mathbf{E} = \varepsilon_o \left(\chi^{(1)} \cdot \mathbf{E} + \chi^{(2)} : \mathbf{E} \mathbf{E} + \chi^{(3)} : \mathbf{E} \mathbf{E} \mathbf{E} + \cdots \right)$$

← Anharmonic motion of bound electrons

Stimulated Raman scattering (SRS):

A stimulated effect in which the energy from a photon incident on a molecule delivers parts of its energy to *mechanical vibration* of the molecule and parts into reradiated light (*Stokes light*) of longer wavelength than the incident light

Stimulated Brillouin scattering (SBS):

A stimulated effect (highly directional) due to interaction between the traveling light wave, composed of photons, and *a traveling sound wave* that it induces, which can be considered as composed of quantum sound particles, *phonons*

Parametric process:

Third-order product of electric fields

Four-wave mixing (FWM) or harmonic generation