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Perturbation Calculation

• To determine the effect of small changes in the problem 

parameters on the solution to the problem.

• To examine the sensitivity of a solution to uncertainties in such 

factors as cross sections, material composition, geometry, source 

characteristics, etc.

• To identify the portions of a problem that must be specified to 

a high degree of accuracy and the portions that may be 

approximated without detriment to the solution.

• To have any validity, two independent Monte Carlo calculations 

that are used to analyze a perturbation in a system should have 

statistical uncertainties in the individual answers that are 

significantly smaller than the difference between those two 

results.
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Perturbation Calculation (cont.)

• To estimate two quantities I
1
and I

2
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Perturbation Calculation (cont.)

• The variances are
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• Then the variance in difference b/w two estimates is
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Perturbation Calculation (cont.)

• If the estimates θ
1
and θ

2
are statistically independent, 

by estimating I
1
– I

2
using statistically independent Monte 

Carlo calculations for the baseline and perturbed results, 

then cov(θ
1
, θ

2
) = 0 and thus
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- This variance places a stringent limit on the reliability 

(or certainty) to which the change induced by the 

perturbation can be determined.
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Perturbation Calculation (cont.)

• The result in (7) can be improved by using correlated calculations, 

instead of attempting to calculate two highly precise but 

statistically independent results, to reduce the uncertainty in the 

estimated difference.  

• When the estimates θ
1
, θ

2 
are positively correlated, cov(θ

1
, θ

2
) > 0, 

the variance in estimate for ∆θ can be much less than that in (9).
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Correlation Sampling

• Positive correlation b/w the results can be obtained by 

correlated sampling i.e., by ensuring that every particle random 

walk, that does not involve an interaction in the perturbed 

portion of the problem, is the same in both of the calculations. 

• The only difference between those two calculations is the 

changes produced by particle interactions or other events 

involving the perturbed region of the problem. This can be 

achieved by using the same sequence of random numbers for 

sampling both sets of random configurations x
i
and y

i
.

• It is not essential that the individual uncertainties in the two answers 

be small, but only that the uncertainty in the difference between the 

two results be small.
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Correlation Sampling (cont.)
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• As the effect of the perturbation goes to zero, those two 

calculations converge to the same result, independent of the 

statistical uncertainty in the individual answers, provided the 

same number of particles are tracked in both calculations.

• Although the absolute uncertainty in the result remains as 

determined in the individual calculations, the uncertainty in the 

difference between those two calculations goes to zero as the 

calculation becomes identical..

σ2
(θ

1
) = σ2

(θ
2
), and

cov(θ
1
, θ

2
) = E[ �� − �� · �
 − �
 ] = E[ �� − �� 


].

Hence, σ2
(θ

1
-θ

2
) = 2σ2

(θ
1
) – 2σ2

(θ
1
) = 0



SNU/NUKE/EHK

• The key to correlated sampling in MC transport is to make 

sure that corresponding particle tracks in the baseline and 

the perturbed calculations use the same random number 

string.

- Any particle that does not encounter the perturbed region 

of the problem scores the same in both calculations.

- by using a second, separate, and independent random 

number generator.

- There is always a risk that a portion of random number 

used in random walk of a particle be repeated.

Correlation Sampling (cont.)
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Perturbation Calculation: example

• Sensitivity of the number of particles passing through a slab 

to the thickness of the slab?

→ To examine the effect of an uncertainty in the thickness z

[unit in the number of mean-free-path] of the slab on the 

number of particles passing through the slab.

• The probability of a normally incident particle passing 

through the baseline slab is

 ! = "#$,
while the probability of a particle passing through the 

perturbed slab is

 &' = "#$( .
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Perturbation Calculation: example (cont.)

• Assume a start particle weight of one, then the average of 

the weights of particles passing through the slab is

where x
i
= 1 for particles that pass through the slab, and 

zero otherwise.

- Since                        the standard deviation of <x> is

which gives σ (z = 1) and σ’ (z’=1.01).
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Perturbation Calculation: example (cont.)

• For normally incident particles on a purely absorbing material, 

the change in the number of particles passing through the 

slab, with respect to the thickness of the slab, is

where P is the probability in fraction of an incident particle 

passing through the slab.

- A linear approximation calculated analytically with the 

value z = 1 and z’ = 1.01 gives

b
/unit length
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Monte Carlo Estimators
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Next-Event Estimator

• The flux at a point    is the sum of the probabilities of 

source particles and post-collision particles traveling from 

their original location    to the detector point    without 

suffering an intervening collision.

• For the steady-state case,
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Next-Event Estimator (cont.)

• (1) can be written in terms of a transfer kernel.

where ψ is the angular flux and    is a point in a phase 

space.

- The transfer kernel K is equal to the probability that a 

particle suffering a collision at    leaves the collision and 

arrives at    .

- is the uncollided angular flux at    that arrives from 

externally applied sources.



SNU/NUKE/EHK

Next-Event Estimator (cont.)

• = density of particles entering collisions in     , 

where the element of phase space                  .

• The kernel K can be separated into two terms,

where    is a unit vector in the direction from    to    .
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Next-Event Estimator (cont.)

• Define the probability of scattering from                       , 

and E’ to E as                . Then, if the non-absorption 

probability for the collision at    is P
na
, the first term in K 

can be written

- For monoenergetic, isotropic scattering in L system,
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Next-Event Estimator (cont.)

• The second factor in K is the attenuation factor e
-β
, where β

is given in (2).

• Applying (2) and (4) to (3) and omitting the fixed source 

term, one obtains the flux estimate at the point   ,
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Next-Event Estimator (cont.)
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Next-Event Estimator (cont.)

• The monoenergetic, post-collision particle flux with isotropic 

scatter in L system and for a single matter with constant 

cross sections, (6) becomes

where W = the weight of the particle entering the collision 

per unit time;

P
na

= the ratio of the scattering to the total cross section;

r = the distance b/w the collision point and the detector,
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Volumetric Flux Estimator #1

• The scalar flux is related to the reaction rate per unit 

volume, R, by

R = Σφ (13)

where Σ is the reaction cross section.

- MC random walk provides the score of collision events per 

unit time, C, within a defined region of space.

- Knowing Σ within a region of volume V, one can estimate 

the flux by
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Volumetric Flux Estimator #2

- The scalar flux is equal to the sum of the distances

traveled by all neutrons of energy E that pass through a 

unit volume of space per unit time and energy.

--- track length estimator

- A track length estimator scores all particle tracks within 

a specified volume, which requires the particle tracks to 

intersect the detector volume but does not require 

collisions to occur within the detector volume.
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Surface-Crossing Flux Estimator

• The track length L of the particle in the layer is
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Surface-Crossing Flux Estimator (cont.)

• In homogeneous medium, the probability of the particle 

having a collision in the track length L is

• One can estimate the flux on the surface of interest by the 

collision-density flux estimator, where the reaction rate C is

where W = the weight of the particle being scored per unit 

time.
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Surface-Crossing Flux Estimator (cont.)

• Using (14), one finds the flux by

• Applying (16), and taking the limit as t→0 and applying 

L’Hospital’s rule, 
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Expectation Surface-Crossing Flux Estimator

• The standard surface-crossing flux estimator suffers from 

the fact that no score is made unless a particle crosses the 

surface being scored.

• The expectation surface-crossing flux estimator

- improves the frequency of scores in surface crossing.

- uses an imaginary surface that is completely independent 

of the surface used in defining the problem geometry.
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Expectation Surface-Crossing Flux Estimator (cont.)

• The probability of a particle traveling a distance r without 

suffering an intervening collision is

• If a detector is placed at a distance r along the path of 

the particle as it leaves the collision, the flux on the 

detector surface is, from (20) and (21), 
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Expectation Surface-Crossing Flux Estimator (cont.)

- By applying (22) to every source particle and to every post 

collision particle whose track intersects a detector surface, 

one can get an estimate of the flux on the surface without 

requiring the particles to cross the surface.

- With the expectation estimator, one does not score particles

when they actually cross the surface but score only 

trajectories that extrapolate to the surface.
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Time-dependent Detectors

• Assign a start time to a particle track and use the speed of 

the particle to establish a chronology of events.

• The kinetic energy of a particle of rest mass m
0
and speed v is 

E
non-rel

= m
0
v
2
/2  in non-relativistic expression

in relativistic expression.

• One can treat the kinematics of neutron motion non-

relativistically.

- (E-E
r
)/E

r
≒-0.0103 for 14 MeV neutron

- 14.1 MeV (the neutron emission energy in a fusion 

reaction b/w deuteron and tritium) is a reasonable upper 

limit for neutron energy of interest.
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Time-dependent Detectors (cont.)

• The speed of a neutron having kinetic energy E is

• If a neutron undergoes a collision at time t, leaves the 

collision with speed v, and then travels a distance d before 

its next collision, it arrives at the next collision at time t’.

• time kill and Russian roulette to terminate tracking 

particles.




