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Continuous Energy Loss

 One method to account for the energy loss to sub-

threshold (soft bremsstrahlung and soft collisions) is to 

assume that the energy is lost continuously along its path.

 The formalism that may be used is the Bethe-Bloch theory

of charged particle energy loss as expressed by Berger 

and Seltzer and in ICRU 37.

[1]  M. J. Berger, S. M. Seltzer, Stopping powers and ranges of electrons and positrons, (National

Bureau of Standarts Report, NBSIR 82-2550 A, 1982).

[2]  ICRU, Report No. 37, 1984, Stopping powers for electrons and positrons. (International Com-

mission on Radiation Units and Measurements, Bethesda, MD, 1984).

 This continuous energy loss scales with the Z of the 

medium for the collision contribution and Z
2
for the 

radiative part.
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Energy loss of heavy charged particles

, but is still small fraction of its energy)



SNU/NUKE/EHK

Bethe-Bloch formula for the average energy loss of heavy (M>>m
e
) 

charged particle: (interaction dominated by collision with electrons)

• BB formula is valid only if v
incident CP

>> v
orbital electron

(~ 0.01c).
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(Inokuti and Turner, Report to DOE )

Review
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Kamakura et al., J Appl Phys 100, 064905 (2006)

: oscillation strength vs. photon absorption cross section

: mean excitation energy I for atoms and molecules

Review
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energy loss of heavy charged particles:

dependence on mass A and charge Z of target nucleus

Radiative effects 

become important

source: Particle Data Group, Review of Particle Physics, Physics Letters B 592 (2004)
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Note: different energy loss formula for electrons and positrons 

at low energy as positrons are not identical with electrons.

Bethe-Bloch formula for energy loss of electron

in collision with undistinguishable particle, electron:

T = kinetic energy of incoming electron (T
max

= T/2)
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 The energy loss is a statistical process. Number of collisions and 

energy loss varies from particle to particle.

 The distribution is usually asymmetric. Collisions with a small 

energy transfer are more probable than those with a large 

energy transfer.

 The tail at very high energy loss values are caused by rare 

collisions with small impact parameters. In these collisions e–
with high energies (keV), are produced, so-called δ-electrons.

 A result of the asymmetric is that the mean energy loss is 

larger than the most probable energy loss.

 For thin absorber, the energy loss can be described by the 

Landau distribution.

 For thick absorbers, the Landau distributions goes slowly into a 

Gaussian distribution.

Statistics of energy loss
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energy loss “ straggling”

: mean energy loss from Bethe-Bloch formula
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Landau distribution for thin absorber

Limitation of Landau’s theory
(can not exceed its own energy)

 The fluctuations of energy loss by ionization of a charged particle in 

a thin layer of matter was theoretically described by Landau in 1944

• broader with a thinner absorber

due to a greater statistical uncertainty
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Continuous Energy Loss (cont.)

 Charged particles can also polarize the medium in which 

they travel. This “ density effect” is important at high 

energies and for dense media.

 Default density effect parameters are available from a 

1982 compilation by Sternheimer, Seltzer and Berger and 

state-of-the-art compilations (as defined by the 

stopping-power guru Berger who distributes a PC-based 

stopping power program)

Density effect

- In condensed media, the dipole distortion of the atom near 

the track of the passing charged particle weakens the 

Coulomb force field experienced by the more distant atoms, 

thus decreasing the energy loss to them.
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Continuous Energy Loss (cont.)

 Again, atomic binding effects are treated rather crudely 

by the Bethe-Bloch formalism. It assumes that each 

electron can be treated as if it were bound by an average 

binding potential.

 The use of more refined theories does not seem 

advantageous unless one wants to study electron 

transport below the K-shell binding energy of the highest 

atomic number element in the problem.
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stopping power versus electron energy
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Continuous Energy Loss (cont.)

 From the stopping power versus energy for different 

materials, the difference in the collision part is due 

mostly to the difference in ionisation potentials of the 

various atoms and partly to a Z/A difference, because 

the vertical scale is plotted in MeV/(g/cm
2
), a 

normalisation by atomic weight rather than electron 

density.

 Note that at high energy the argon line rises above the 

carbon line. Argon, being a gas, is reduced less by the 

density effect at this energy.

 The radiative contribution reflects mostly the relative Z
2

dependence of bremsstrahlung production.
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positron/electron collisional stopping power ratio

The collisional energy loss by electrons and 

positrons is different for the same reasons 

described in the “ catastrophic” interaction 

section. (underestimation for electrons)

more electrons 

in a lead atom

energy loss by 

positrons via 

annihilation
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Continuous Energy Loss (cont.)

 The collisional energy loss by electrons and positrons is 

different for the same reasons described in the 

“ catastrophic” interaction section.

 Annihilation is generally not treated as part of the 

positron slowing down process and is treated discretely 

as a “ catastrophic” event. 

 The positron radiative stopping power is reduced with 

respect to the electron radiative stopping power. At 1 

MeV, this difference is a few percent in carbon and 60% 

in lead.
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positron/electron bremsstrahlung cross section ratio

carbon 

(Z=6)

lead 

(Z=82)

E = 1 MeV
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bremsstrahlung energy loss

i.e. proportional to 1/m
2
→ main relevance for electrons

(α ∼1/137, fine structure constant)

bremsstrahlung energy loss of electron (by Rossi): for E >~10 

MeV, below which energy loss by ionization is dominant.

vs. (collisional) mean free path 

ρ Rossi
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critical energy:

approximately,

positron/electron total (collisional+radiative) stopping power
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Ec: based on Rossi vs. Berger
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total energy loss of electrons/positrons

fractional energy loss per radiation length in lead as a 

function of electron or positron energy

radiative 

energy 

loss

(
ρX

o
)
-
1

X
0
= 0.56 cm; ρ = 11.4 g/cm

3
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Multiple Scattering

 Elastic scattering of electrons and positrons from nuclei 

is predominantly small angle with the occasional large-

angle scattering event.

 If it were not for screening by the atomic electrons, the 

cross section would be infinite. The cross sections are, 

nonetheless, very large.

 It is impractical to model all individual interactions 

discretely. There are several statistical theories that deal 

with multiple scattering. Some of these theories describe 

these "weak" interactions by accounting for them in a 

cumulative sense. These are the so-called "statistically  

grouped" interactions.
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Multiple Scattering (cont.)

 The most popular such theory is the Fermi-Eyges theory, 

a small angle theory. This theory neglects large angle 

scattering and is unsuitable for accurate electron 

transport unless large angle scattering is somehow 

included.

 The most accurate theory is that of Goudsmit and 

Saunderson.

 A fixed step-size scheme permits an efficient 

implementation of Goudsmit-Saunderson theory and this 

has been done in ETRAN, ITS (E&P) and MCNP.
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Multiple Scattering (cont.)

 The Moli`ere theory, although originally designed as a small 

angle theory, has been shown with small modifications to 

predict large angle scattering quite successfully.

 Owing to analytic approximations made by Molie`re theory, 

this theory requires a minimum step-size. as 

 The Moli`ere theory ignores differences in the scattering of 

electrons and positrons, and uses the screened Rutherford 

cross sections instead of the more accurate Mott cross 

sections. However, the differences are known to be small.

 EGS4 uses the Moliere theory which produces results as 

good as Goudsmit-Saunderson for many applications and is 

much easier to implement in EGS4’s transport scheme
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Rutherford elastic scattering cross section

 Rutherford cross section describe the interaction 

probability in the Coulombic collisions b/w the ion and 

the point-like target nucleus.

 Rutherford cross section in LAB system is

where Z
1
and Z

2
are atomic numbers and m

1
and m

2
are 

the masses of ion and target, respectively. E is the 

incident laboratory energy of the ion and θ is the 

laboratory scattering angle.

Review
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 Step 1. head-on collision of a charged particle (+ze) with the nucleus (+Ze),

 The closest approach D is obtained by equating the initial kinetic energy T

to the Coulomb energy: 

(Eq. 1);               (Eq. 2)  (m << M).

at which point the incident-particle (z << Z) would reverse direction, i.e. the 

scattering angle θ would equal π.

 With an impact parameter b, the scattering angle θ would be smaller.

:     (Eq. 3) 

-θ = π when b = 0.

- As b increases the particle ‘glances’
the nucleus so that the scattering

angle decreases.

Derivation of Rutherford formula
Review
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 Step 2. scattering of an ion (+Z
1
e) by a single nucleus (+Z

2
e) under the 

action of Coulomb force 

(Eq. 4)

The particle will be scattered more 

• if the impact parameter (b) is smaller (this particle is passing the scattering 

center in a smaller distance and thus feeling a stronger Coulomb force), 

• if its velocity v
0
is smaller (the Coulomb force is acting for a longer period), 

• if the mass of the particle is small, 

• if the atomic number z of the particle is larger or if the atomic number Z of 

the scattering center is larger (due to larger Coulomb forces). 

Derivation of Rutherford formula (cont.)

Review
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Rutherford elastic scattering

Review
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Screened Rutherford formula

 Coulomb scattering of a charged particle (+Z
1
e) in a Coulomb potential

;  a (screening factor) → ∞  without screening

given by an atomic nuclei (+Z
2
e) under the screening of atomic electrons.

 The potential energy is then

 The closest approach D
screened

is obtained by equating the initial kinetic 

energy T to the Coulomb potential energy: 

;                   without screening

where µ = mα∙MZ
/(mα+MZ

).

Review
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Mott cross section

 The Mott cross section formula is the mathematical 

description of the elastic scattering of a high energy 

electron beam from an atomic nucleus-sized positively 

charged point in space.

- Assumptions

1. The energy of the electron must be such that β≈1 so 

that β4
can safely be set to unity. (a good approximation 

for E> 10 MeV)

2. The target is light nuclei as defined by                  .

(reasonable up to Calcium)



SNU/NUKE/EHK

Mott cross section (cont.)

 The Mott cross section formula

resembles the Rutherford scattering cross section.

 If an extended charge distribution (vs. a point target) is 

considered, it becomes

where F(q) is the form factor for the electron screening.
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Electron Inelastic scattering and Nucleus Structure 

A plot of electron intensity vs. scattered electron energy of 187 MeV electrons 

scattered off a carbon-12 target. Note the distinct peaks with energy differences 

corresponding to the energies associated with excited states of the target nucleus.
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1. Energy is being lost “ continuously” to sub-threshold

knock-on electrons and bremsstrahlung (i.e., no 

secondaries are created). The rate of energy loss at 

every point along the track is assumed to be equal to 

the same as the total stopping power.

2. Energy-loss fluctuations are neglected (i.e., no energy-

loss straggling).

Electron Transport Mechanics:

CSDA (continuously slowing-down approximation)
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• continuous slowing down approximation (CSDA) range, RCSDA

• Range is inversely proportional to the density of the 
absorbing material.

• Mass ranges in different elements are practically identical.

Charged Particles: range

Review
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source: NIST Physical Measurement Laboratory

ρPb = 11.34 g/ cm 3 ρH2O = 1.0 g/ cm 3
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 In continuous slowing down approximation (CSDA), the 

projectile is assumed to lose energy continuously along 

its path and the slowing-down process is completely 

characterized by the (linear) stopping power S(E), which 

defined as the average energy loss per unit path length,

 CSDA completely neglects energy straggling, i.e., 

fluctuations in the energy loss due to the discreteness 

of the energy transfers in inelastic and radiative 

interactions and to the randomness of the number of 

these interactions.

Electron Transport Mechanics:

stopping power for continuos energy loss
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Electron Transport Mechanics:

stopping power for continuous energy loss (cont.)

 The CSDA range of an electron with kinetic energy E is given by

where E
abs

is the ‘absorption’ energy, i.e., the energy at which the 

electron is assumed to be effectively absorbed in the medium

 If an electron starts its trajectory with kinetic energy E, the 

energy loss W after a path length s (would be randomly chosen)

is determined by

 To calculate the energy loss as a function of the path length, 

W(s), we only need to know the CSDA range as a function of 

energy, R(E). 
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Electron Transport Mechanics:

stopping power for continuous energy loss (cont.)

 Step 1. Set the energy E
1
of an electron from STOCK at start

 Step 2. Select s
1
from s

1
= - [ln ξ/Σ

t
(E

1
)]

 Step 3. Calculate R
2
(E

1
-W

1
) = R

1
(E

1
) – s

1
, read the energy

E
2
= E

1
-W

1 
corresponding to R

2
from Table and determine W

1
.

 Step 4. If W
1 
< ECUT or PCUT, then E

dep
= W

1
and go to Step 6.

Or If W
1 
> AE or AP(=PCUT), then stock the secondary particle at AE or 

AP and go to Step 6. (Otherwise, go to Step 5 with ECUT<W
1
<AE)

 Step 5. Operate the routine of (CSDA and multiple scattering) for subsets 

of t
1,i

(i = 1, 2, . . . , W
1
/ESTEPE)

t
1,1

+ t
1,2

+ . . . + t
1,(W1/ESTEPE)

= s
1
;  t

1,i
= s

1
/(W

1
/ESTEPE)

*
ESTEPE = the max. fractional electron energy loss per electron step
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Electron Transport Mechanics:

stopping power for continuous energy loss (cont.)

 Step 6. If E
2 
< ECUT, then E

dep
= E

2
and go to Step 1.

Or If E
2 
> AE, E

1
= E

2 
and go to Step 2.

Otherwise (ECUT < E
2 
> AE), W

1
= E

2
. (Go to Step 7)

 Step 7. Operate the routine of (CSDA and multiple scattering) for 

subsets of t
1,i

(i = 1, 2, . . . , W
1
/ESTEPE)

t
1,1

+ t
1,2

+ . . . + t
1,(W1/ESTEPE)

= s
1
;  t

1,i
= s

1
/(W

1
/ESTEPE)

*
ESTEPE = the max. fractional electron energy loss per electron step

 Step 9. Go to Step 1.
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source: DWO Rogers and AF Bielajew “Monte Carlo techniques of electron and 

photon transport for radiation dosimetry”(1990)
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source: DWO Rogers and AF Bielajew “Monte Carlo techniques of electron and 

photon transport for radiation dosimetry”(1990)
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source: DWO Rogers and AF Bielajew “Monte Carlo techniques of electron and 

photon transport for radiation dosimetry”(1990)

Review
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Electron Transport Mechanics:

stopping power for continuous energy loss (cont.)

* The number of subsets t
i
(i = 1, 2, …, n) also can be 

determined by selecting the n according to the Poisson 

distribution: t
i
= s/n.

- The probability distribution for a number n (≥ 0) of 

collisions in a path length s is approximated to Poisson 

distribution:

with the mean <n> = s/λ.  

where λ(W) = 1/Nσelas(W) is the mean free path b/w 

elastic collisions and σelas(W) is the elastic scattering 

cross section of the secondary electron of energy W.
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Electron Transport Mechanics:

typical electron tracks

 An electron is being transported through a medium. Along the way 

energy is being lost “ continuously” to sub-threshold knock-on electrons 

and bremsstrahlung.

 The track is broken up into small straight-line segments called 

multiple scattering substeps. In this case the length of these substeps

was chosen so that the electron lost a selected fraction (ex. 

ESTEPE=0.01 in EGS4) of its subthreshold energy loss (W) during each 

substep.

 At the end of each of these substeps the multiple scattering angle is 

selected according to some theoretical distribution.

 Catastrophic events, each producing a single knock-on electron (or a 

hard bremsstrahlung), set other particles in motion. These particles are 

followed separately in the same fashion. The original particle, if it does 

not fall below the transport threshold (AE or AP), is also transported.
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Electron Transport Mechanics:

typical multiple scattering substeps

 A single electron substep is characterized by the length of total

curved path-length to the end point of the substep, t. (This is a

reasonable parameter to use because the number of atoms

encountered along the way should be proportional to t.)

 At the end of all the substeps, the deflection from the initial

direction, Θ, is sampled. Associated with the substeps is the

average projected distance along the original direction of motion, s.

 The lateral deflection, ρ, the distance transported perpendicular to

the original direction of motion, is often ignored by electron Monte

Carlo codes. Such lateral deflections do occur as a result of

multiple scattering.

 It is only the lateral deflection during the course of a subset

which is ignored. One can guess that if the multiple scattering

substeps are small enough, the electron track may be simulated

more exactly.
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typical multiple scattering substeps
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source: DWO Rogers and AF Bielajew “Monte Carlo techniques of electron and 

photon transport for radiation dosimetry”(1990)

In class I algorithm with 20 MeV

electrons passing through a 0.25cm-

thick water slab

Review
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Review

source: DWO Rogers and AF Bielajew “Monte Carlo techniques of electron and 

photon transport for radiation dosimetry”(1990)
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ECUT: electron transport cutoffAE: secondary electron threshold

Examples of Electron Transport: Parameter selection
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 Depth-dose curve for a broad parallel beam (BPB) of 20 MeV electrons incident 

on a water slab. The histogram represents a CSDA calculation in which multiple 

scattering has been turned off, and the stars show a CSDA calculation which 

includes multiple scattering.

Examples of Electron Transport: w/ vs. w/o multiple scatterings
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 For the dashed histogram, no multiple scattering 

is modeled and hence there is a large peak at 

the end of the range of the particles because 

they all reach the same depth before being 

terminating and depositing their residual kinetic 

energy (189 keV in this case).

 The curve with the stars includes the effect of 

multiple scattering. This leads to a lateral 

spreading of the electrons which shortens the 

depth of penetration of most electrons and 

increases the dose at shallower depths because 

the fluence has increased.

 In this case, the depth-straggling is entirely 

caused by the lateral scattering since every 

electron has traveled the same distance.
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 Depth-dose curves for a BPB of 20 MeV electrons incident on a water slab, but with 

multiple scattering turned off. The dashed histogram calculation models no straggling.

 Note the difference caused by the different bin size. The solid histogram includes energy-

loss straggling due to the creation of bremsstrahlung photons with an energy above 10 keV. 

The curve denoted by the stars includes only that energy-loss straggling induced by the 

creation of knock-on electrons with an energy above 10 keV.

with knock - on electrons

Examples of Electron Transport: w/o multiple scatterings
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 Three depth-dose curves calculated with all multiple scattering turned

off - i.e., the electrons travel in straight lines (except for some minor

deflections when secondary electrons are created).

 In the cases including energy-loss straggling, a depth straggling is

introduced because the actual distance traveled by the electrons varies,

depending on how much energy they give up to secondaries. Two features

are worth noting.

1. Firstly, the energy-loss straggling induced by the creation of 

bremsstrahlung photons plays a significant role despite the fact that

far fewer secondary photons are produced than electrons. They do, 

however, have a larger mean energy.

2. Secondly, the inclusion of secondary electron transport in the 

calculation leads to a dose buildup region near the surface.

 The extremes of no energy-loss straggling and the full simulation are

shown to bracket the results in which energy-loss straggling from either

the creation of bremsstrahlung or knock-on electrons is included. The

bremsstrahlung straggling has more of an effect, especially near the peak

of the depth-dose curve.
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 BPB of 20 MeV electrons on water with multiple scattering included in all 

cases and various amounts of energy-loss straggling included by turning on the 

creation of secondary photons and electrons above a 10 keV threshold.

Examples of Electron Transport: w/ multiple scatterings
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Flow Chart

for Electron Transport
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Electron Transport Logic (EGS4)

 EGS4 is a “ class II” algorithm which samples interactions 

discretely and correlates the energy loss to secondary 

particles with an equal loss in the energy of the primary 

electron (or positron).

Class II (CSDA + multiple scattering) 

vs. Class I (all discrete interaction modes) 

 There is a close similarity between this flow chart and the

photon transport flow chart. The essential differences are

the nature of the particle interactions as well as the

additional continuous energy-loss mechanism and multiple

scattering. Positrons are treated by the same subroutine

in EGS4 although it is not shown in the flow chart.
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 distingushed by how the energy (and direction) of primary electron is 

related to the energy lost in individual interactions 
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Energy loss straggling
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Energy loss straggling varying with the thickness of shield
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Electron Transport Logic (cont.)

 Imagine that an electron’s parameters (energy, direction, etc.) are on

top of the particle stack. (STACK is an array containing the phase-

space parameters of particles awaiting transport.)

 The electron transport routine picks up these parameters and first

asks if the energy of this particle is greater than the transport

cutoff energy, called ECUT. If it is not, the electron is discarded.

(“ Discard” means that the scoring routines are informed that an

electron is about to be taken off the transport stack.)

 If there is no electron on the top of the stack, control is given to

the photon transport routine. Otherwise, the next electron in the

stack is picked up and transported.
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Electron Transport Logic (cont.)

 If the original electron’s energy was great enough to be

transported, the distance to the next catastrophic interaction

point is determined, exactly as in the photon case.

 The multiple scattering step-size t is then selected and the

particle transported, taking into account the constraints of the

geometry.

 After the transport, the multiple scattering angle is selected and

the electron’s direction adjusted. The continuous energy loss is

then deducted.

 If the electron, as a result of its transport, has left the

geometry defining the problem, it is discarded. Otherwise, its

energy is tested to see if it has fallen below the cutoff as a

result of its transport.
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Electron Transport Logic (cont.)

 If the electron has not yet reached the point of interaction, a new

multiple scattering step is effected. This innermost loop undergoes

the heaviest use in most calculations because often many multiple

scattering steps occur between points of interaction.

 If the distance to a discrete interaction has been reached, then the

type of interaction is chosen. Secondary particles resulting from the

interaction are placed on the stack as dictated by the differential

cross sections, lower energies on top to prevent stack overflows.

 The energy and direction of the original electron are adjusted and

the process starts all over again.




