2|22 YALAISHA (Monte Carlo Radiation Analysis)

Transport Simulation in Media

Notice: This document is prepared and distributed for educational purposes only.
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[nteraction/Survival Probability in medium

v' A particle starts at position X, in an arbitrary infinite scattering
medium and the particle is directed along an axis with unit direction
vector [l .

v' The probability that a particle exists at position X relative to X,
without having collided is p(ji-(X=X,)), the survival probability.

v' The change in survival probability due to interaction is characterized
by an interaxtion coefficient w(i-(X—x,)) (in unit L™'). This interaction
coefficient can change along the particle flight path.

v' The change in survival probability is expressed by the following
equation -

dps(fi - (£ — %o)) = —ps(fi - (T — Zo))p(fi - (& — Zo))d(fi - (T — o))
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[nteraction Probability in an infinite medium (cont)

v' To simplify, let X, = (0,0,0) and X = (0,0, /) .

Then, dps(2)

ps(2)

= —pu(z)dz

v' We can integrate this for z = 0 where we assume that p(0) = | to z
and obtain the survival probability at z

ps(2) = exp (— /W dz’p(z’))
0

v’ The probability that a particle has interacted within a distance z is
simply | — p(z), the cumulative probability ¢(z):

c(z) =1—ps(2) =1—exp (— /UW (l:'p(:'))

v’ Since the medium is infinite, c(°°) = /| and p(°), = 0.
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[nteraction Probability in an infinite medium (cont)

v' The differential (per unit length) probability, p(z), for interaction at z
can be obtained by p(z) = dc(z)/dz

(l ? !/ / § / !
p(z) = P [1 — exp (_/() dz'p(z ))] = u(z) exp (—A dz' (2 )) = u(z)ps(z)

v' With constant u(homogeneous medium),
ps(z) = e and c(z)=1—ps(z)=1—e"

B d
- dz

v’ Thus, p(2) [1—e™] = pe™ = ppy(2)
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[nteraction Probability in a finite medium

v' When the medium is finite with a boundary at z = z,,

c(o0) =1—ps(o0) =1—exp (— /x (l:’,u(.:’)) <1
Jo

that is, the cumulative probability at infinity is less than one because

either the particle escapes a finite geometry or (z) = 0 beyond some
limit.

v' Rewrite the cumulative probability as
z Zb
c(z)=1—ps(z) =1—exp (— / (l:'/l(:')) + exp (— / d.:',u(.:'))é)(: — )
Jo Jo

by drawing a boundary at z = z, , and assuming that ({z) = 0 for z = z,
where Qx) = 1 if x =0 and = 0 if x < 0.

— The probability distribution becomes
%C(Z) = p(z) = pu(z) exp (—/0 dzf,[.(gf)) +ps()8(z —2)  (Eq. 1)

SNU/NUKE/EHK



|.2 i LB S S S SN S e S S e S Sy S e e ae e ]2 DR
1.0f Cdf ¢ Lor Pdf N E
L |
08 | - 08 — -
I i ]
0.6 I - 0.6 —
i . i i i
- 1 R -
04 I — 04 N -
| i i
0.2 I B 0.2} —
: i i
| - L
0.0 O ] 0.0 i O
0.2 1 1 | 020 e e
-1 0 2 2 1 0 1 2
X X

SNU/NUKE/EHK



[nteraction Probability in a finite medium

c(z)=1—ps(z) =1—exp (— /z (l:’/l(:’)) + exp (— /:b (l:’/f(:’))l‘)(: — )
Jo Jo

p(2) = u(z)exp (= ["aZu()) +pu(a)s(z =) (Eq. 1)

v' Once the particle reaches the boundary, it reaches it overcoming a
cumulative probability equal to one minus its survival probability.
Probability is conserved.

v' If a particle reaches the boundary, it is absorbed and transport
discontinues. (This is exactly what is done in a MC simulation)

v’ If this were not the case, an attempt at particle transport simulation
would put the logic into an infinite loop. (This is exactly what happens
in naturel!)

c(z)=1—ps(2) =1—exp (— [ (l.t’/t(.i’)) and p(z) = pu(z)exp (— /0 (l:’/l(:’))
, for z < z,

c(z,) = I and p(z,) = p(z,)-0(0) = ©, c(z) = [ and p(z) =0, for z > z,
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Crossing boundary of different media

v' The s in their own domains are

w(z) = pui(2)8(2)0(by — 2)
+  p2(2)0(z — b1)B(by — 2)
+  p3(2)8(z — by)B(bs — 2)

where O(x) = | if x =0, and = 0 if x < 0.

v' The interaction probability at z is p(z) = p(z)exp (— /é (1:'/1(:'))
Jo

p(z) = 8(=)8(b — D) (z)e Jo 1)
b / / —_ “ ol o ~l
+ 8(z = b)B(by — 2)po(z)e” [ ICEATRE )e fbl dz'p2(z")
_fbl dz’pq (2') —fbg dz"ps (2") —f: dz"ps(z")
+ O(z —b2)f(bs — z)pus(z)e” Jo FHIE e Jny e Jdnp T
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Crossing boundary of different media (cont)

v' The interaction probability at z is
p(z) = 6(2)8(b1 — 2)pi(z)e = Jo &
+ B(z —b1)0(by — z)pus(z)e” f dzpa (: fbl dz’p2 (')
+ 8(z = ba)8(bs — 2)pa(z)e” S FC ¢~ ot @) = [, s (2)

Or
p(z) = 8(2)6(b — 2)m(2)e o F1E
+ pa(b1)B(z — b)B(by — 2)pa(z)e dn
+ pa(bo)8(z — by)B(by — 2)pug(2)e” dua HE)

where O(x) = [ if x =0 ,and = 0 if x < 0.
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Crossing boundary of different media (cont)

v' Now consider a change of variables b, , = z; = b, and introduce the
conditional survival probability p(blb, ,) which is the probability that a
particle does not interact in the region b, , = z; = b, given that it has
not interacted in a previous region either.

v’ By conservation of probability:
ps(bi) = ps(bi-1)ps(bilbi-1)

then, we can rewrite
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= p(21) + ps(b1)[p(22) + ps(b2|b1)[p(23) + ps(b3|b2)]- - -
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Crossing boundary of different media (cont)

v p(z) =plz1, 20,23 -) = p(z1) + ps(b1)[p(22) + ps(b2b1)[p(23) + ps(bs|ba)]- - -

, which means that the variables z,, z,, z3 -+ * (z; = z — b;_;) can be
treated as independent.

— If we consider the interactions over z, as independent, then from (Eq. /)
we have:

p(z1) = pi(z1) exp (— A (lz'/t.l(::’)) + ps(b1)d(z — by)

— If the particle makes it to z = b,, consider z, as an independent variable
and sample from:

p(z2) = pa(z2) exp (— /D-,_ (:1.:’;_:.2(.:’)) + ps(b2|b1)d(z — bo)

— If the particle makes it to z = b,, consider z3 as an independent variable
and sample from

p(23) = pa(z3) exp (— /0 d.;',_f;;(;')) + pa(ba|by)S(= — b)

and so on.

p(z) = pu(z) exp (— A (‘l:’,u.(.:’)) + ps(2)0(2 — z)| | (Eq. /)
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Crossing boundary of different media (cont)

ExamQ/e ])(3) = /1‘(:) exXp (_ A: d:,ﬂ(:,)> + 1)5(31))(5(3 — :h)é

v’ Consider only two regions of space on either side of z = b with different
interaction coefficients. That is:

p(z) = p0(b — z) + pob(z — b)
v' The interaction probability for this example is:
p(z) = 0(b — 2)p1e ™% + 0(z — b)pge %et2=="  (Eq. 2)
v’ Now, treat z, as independent, that is
p(z1) = pre P14 e M55 (21— b)

v' If the particle makes it to z = b, we consider z, as an independent
variable and sample from:

p(z2) = pae "2

which is the identical probability distribution implied by (Eq. 2)
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Crossing boundary of different media (cont)

Example

v’ The importance of this proof is as follows:

— The interaction of a particle is dependent only on the local
scattering conditions.

— If space is divided up into regions of locally constant interaction
coefficients, then we may sample the distance to an interaction by
considering the space to be uniform in the local interaction
coefficient.

— We sample the distance to an interaction and transport the particle.

— If a boundary demarcating a region of space with different
scattering characteristics interrupts the particle transport, we may
stop at that boundary and

— resample using the new interaction coefficient of the region beyond
the boundary.
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Crossing boundary of different media (cont)

Example
— The alternative approach would be to invert the cumulative probability
distribution implied by
c(z)=1—pz)=1—exp (— / (.l:’,u(:')) N /04 dz'p(?) = —loge(l — 1)

J0O

where r is a uniform random number between 0 and /.

2= XE1(by) * Zggr from X (i - b)) + (Uksr * Ziwr) = ~logl(1-7);

— The interaction distance z would be determined by summing the
interaction coefficient until the equality in the Eq. is satisfied.

= In some applications it may be efficient to do the sampling directly
according to the above. In other applications it may be more efficient to
resample every time the interaction coefficient changes.

= It is simply a trade—off between the time taken to index the look—up
table for W(z) and recalculating the logarithm in a resampling procedure.
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