몬테카륵로 방사선해석 (Monte Carlo Radiation Analysis)

Random Number Generator (RNG)

Notice: This document is prepared and distributed for educational purposes only.

$$G = \frac{1}{N} \sum_{n=1}^{N} g(x_n) \qquad (4)$$

$$\overline{G} = E\left[\frac{1}{N}\sum_{n=1}^{N}g(x_n)\right] = \frac{1}{N}\sum_{n=1}^{N}E[g(x_n)] = \frac{1}{N}\sum_{n=1}^{N}\overline{g}(x_n) = \overline{g}(x) \quad (5)$$

$$var[G] = var\left[\frac{1}{N}\sum_{n=1}^{N}g_n(x_n)\right] = \left(\frac{1}{N}\right)^2 \sum_{n=1}^{N}var[g(x_n)]$$
$$= \left(\frac{1}{N}\right)^2 N \cdot var[g(x_n)] = \left(\frac{1}{N}\right) var[g(x_n)] \quad (6)$$

Normal distribution

parametric properties in normal distribution

Review

Transformation of pdf's to cdf's

- Given a <u>pdf</u> f(x), one define a new <u>variable</u> y(x) with the goal of finding the <u>pdf</u> g(y).
 - Restrict the transformation y(x) to be a unique transformation, that is, <u>a given value of x corresponds</u> <u>unambiguously to a value of y</u>.

-f(x)dx = g(y)dy for strictly (monotone) increase: dy/dx > 0where $f(x)dx = prob(x \le x' \le x+dx)$ and $g(y)dy = prob(y \le y' \le y+dy)$

• Given a cdf F(x): $y(x) = F(x) \equiv \int_{-\infty}^{x} f(x') dx'$,

one finds that the pdf g(y): g(y) = 1, for $0 \le y \le 1$

vs. random sampling of a number in $0 \le \xi \le 1$

Random Number Generation

Desirable Attributes:

- Uniformity: RNs distributed uniformly on (0, 1)
- Independence: no correlation b/w RNs
- Efficiency: fast and minimal need for storage
- <u>Replicability</u>*
 - debugging
 - compare various scenarios or different systems
- Long Cycle Length

> Independent and identically distributed (i.i.d.) RV

> Independent and identically distributed (i.i.d.) RV

- Identically Distributed means that there are no overall trends: the distribution doesn't fluctuate and all items in the sample are taken from the same probability distribution.
- Independent means that the sample items are all independent events. In other words, they aren't connected to each other in any way.

Random Number Generation (cont.)

 \blacktriangleright Each random number R_t is an independent sample drawn from a continuous uniform distribution between 0 and 1

$$pdf: \quad f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Random Number Generation (cont.)

Random Number Generation (cont.)

Most random-number generators are of the form:
 1. Start with a seed number X_o.
 2. Generate X_n = f(X_{n-1}) for n = 1, 2, 3, ….
 3. Obtain R_n = g(X_n)
 where f is a pseudo-random generator and g is the output function

Random Number Generation Method #1

Midsquare Method $X_0 = 7/82 \text{ (seed)}, X_0^2 = 5/58/1/24$ $=> R_1 = 0.58/1$

$$X_{/}^{2} = (58//)^{2} = 33\overline{7677}2/$$

 $=> R_2 = 0.7677$

Midsquare Method (cont.)

Note: <u>Cannot</u> choose a seed that guarantees that the sequence will not <u>deg</u>enerate and will have a long period. Also, zeros, once they appear, are carried in subsequent numbers.

$$Ex \ I. \ X_0 = 5/97 \ (seed), \ X_0^2 = 27008809$$

==> $R_1 = 0.0088, \ X_1^2 = 00007744$
==> $R_2 = 0.0077$
$$Ex \ 2. \ X_0 = 4500 \ (seed), \ X_0^2 = 20250000$$

==> $R_1 = 0.2500, \ X_1^2 = 06250000$
==> $R_2 = 0.2500$

Note: Modular Mathematics

✓When we divide a number into two integers, we will have an equation that looks like the following:

A / B = Q with remainder R

A is the dividend; B is the divisor; Q is the quotient; and R is the remainder.

✓Sometimes, we are only interested in what the remainder will be when we divide A by B. For these cases there is an operator called the modulo operator (abbreviated as mod).

Using the same A, B, Q, and R as above, we would have:

A mod
$$B = R$$

We would say this as "A modulo B is congruent to R". Where B is referred to as the modulus. (2進法, 10進法, etc.)

e.g. 13/5 = 2 with remainder 3, or 13 mod 5 = 3

Random Number Generation Method #2

> Linear Congruential Generator

• Basic Relationship

 $X_i = (a X_{i-1} + c) \mod m$, where $a \ge 0$ and $m \ge 0$ $R_i = X_i/m$ a = multiplier, c = increment

- Most natural choice for m is one that equals to the capacity of a computer <u>word</u>.
- $m = 2^{b}$ (binary machine), where b is the number of bits in the computer word.
- $m = 10^d$ (decimal machine), where d is the number of digits in the computer word.

Linear Congruential Generator (cont.)

• 16-bit machine

 $a = 1217, c = 0, X_0 = 23, m = 2^{15} - 1 = 32767$ $X_1 = (1217 * 23) \mod 32767 = 27991$ $R_1 = 27991/32767 = 0.85424$ $X_2 = (1217 * 27991) \mod 32767 = 20134$ $R_2 = 20134/32767 = 0.61446$

- Linear Congruential Generator (cont.) $X_{i+i} = (a X_i + c) \mod m$, where m>0, 0<a<m and 0 ≤ c<m.
- The maximum period, P
 - (case /) For $c \neq 0$,

P = m provided that <u>c is prime to m (greatest common</u> <u>divisor of c and m is 1)</u> and the multiplier a-1 = 4k, where k is an integer.

- (case 2) For $m = 2^{b}$, and c = 0, $P = m/4 = 2^{b-2}$ provided that the seed X_{0} is odd and the multiplier a = 3 + 8k or a = 5 + 8k for some k = 0, 1, ...
- (case 3) For m = a prime number and c = 0,

P = m-1 provided that the multiplier, a, has the property that the smallest integer k, such that $a^k - 1$ is divisible by m, is k = m - 1,

- Multiplicative Congruential Generator $X_i = aX_{i-1} \mod m, \text{ where } m>0 \text{ and } a>0$ $R_i = X_i/m$
 - Can not have full period (P=m), but can have $P = m-1 = 2^{b-1}$

Additive Congruential Generator
$$X_i = (X_{i-1} + X_{i-k}) \mod m, \quad i = 1, 2, \ldots$$

$$R_i = X_i / m$$

• With consecutive numbers $(k=2) R_{n-2}, R_{n-1}$, and R_n , it will never happen that $R_{n-2} < R_n < R_{n-1}$ or $R_{n-1} < R_n < R_{n-2}$, which occurs by 1/6 for true uniform variables.

> Choosing the initial seed

• e.g., time (wall-clock and since booting),

Linear Congruential Generator (cont.)
 $X_i = (a X_{i-1} + c) \mod m$, where a≥0 and m≥0
 $R_i = X_i/m$ • (case /) For c≠0,
 $P = m \text{ provided that } c \text{ is prime to } m (greatest common divisor of c and m is /)} and the multiplier a-I = 4k, where k is an integer.$

- Examples

- For (a, c, m) = (1, 5, 13) and z₀ = 1, we get the sequence 1, 6, 11, 3, 8, 0, 5, 10, 2, 7, 12, 4, 9, 1, which has full period of 13. (case 1)
- For (a, c, m) = (2, 5, 13) and $z_0 = 1$, we get the sequence 1, 7, 6, 4, 0, 5, 2, 9, 10, 12, 3, 11, 1, which has a period of 12. With $z_0 = 8$, we get the sequence 8, 8, 8, (period of 1).

- ► Linear Congruential Generator (cont.) $X_i = (a X_{i-i} + c) \mod m$, where $a \ge 0$ and $m \ge 0$ $R_i = X_i/m$
- Examples

Using the multiplicative congruential method, find the period of the generator for a = 13, $m = 2^6$, c=0 (case 2) and $X_0 = 1$, 2, 3, and 4. The solution is given in next slide. When the seed is 1 and 3, the sequence has period 16. However, a period of length eight is achieved when the seed is 2; and a period of length four occurs when the seed is 4.

• (case 2) For $m = 2^{b}$, and c = 0, $P = m/4 = 2^{b-2}$ provided that the seed X_0 is odd and the multiplier a = 3 + 8k or a = 5 + 8k for some k = 0, I_{m}

• Example results.

i	Xi	Xi	Xi	X_i
0	/	2	3	4
2	13 41	26 18	39 59	52 36
3	2/	42	63	20
4 5	/7	34	51	4
5	29	58	23	
6	57	50	43	
7	37 22	10	47 25	
8 9	33 1/5	2	35 7	
10	45 9		27	
11	53 49		31	
 2 3	49		19	
13	61 25		55	
14 15	25 5		//	
16	> /		15 3	
	,			