Aldol addition

□ addition of enolate Nu: to e-philic C of C=O of A&K

between two molecules of the same comp'd

resulting in β -hydroxyketone or β -hydroxyalhehyde [aldol]

- □ possible also in acidic condition (thru enol) Look up the internet.
- □ If in basic, weaker B: like ⁻OH should be used.
 - weaker than enolate → K < 1 → only small part enolated
 → 2nd molecule for rxn present
 - what if strong B: like LDA used?
- Rxn of ketone is slower than aldehyde.
- reversible (and reverse favored) pKa of 17 vs 16
 remove product for good yield
- retro-aldol addition = reverse rxn of aldol addition

Aldol condensation

aldol addition followed by dehydration

- to form α,β-unsat'd A&K [(enal &) enone]
- condensation [縮合] ~ A + B → A-B C (C = small molecule) (C-C bond)

in acidic or basic condition with heat

See Wikipedia 'aldol condensation'.

□ The whole condensation can be in acidic (thru enol) or basic.

- aldol condensation in one step (w/o heat)
 - when the product is much stabilized

Crossed [mixed] aldol rxn

□ from 2 different A or K to 4 products

want 1 product?

Add enolizable slowly to {non-enolizable/-OH} solution

- what if both enolizable?
 - enolate one with LDA, and then add the other slowly

Claisen (ester) condensation

Ch 17 #25

\square two molecules of ester condensed to β -keto ester

Ch 17 #26

□ reversible (and reverse favored) pKa of 25 vs 16

- to push forward, use equivalent amount of base
 - to take H to ester anion (isolated and protonated)
- Claisen condens'n effective only for esters with 2 α -H's

Crossed Claisen condens'n

to obtain 1 product

• when one ester has <u>no</u> α -H [<u>not</u> enolizable]

ester-enolate one and add the other slowly

Ketone-ester crossed condens'n

the same techniques can be used

Ch 17 #28

Intramolecular condensations

intramolecular rxn readily occurs

- when 2 ft'nal groups can react
- to form 5- or 6-membered ring

intramolecular Claisen condens'n = Diekmann condens'n

Ch 17 #29

intramolecular aldol addition

■ 1,4-diketone \rightarrow 5-membered ring hydroxyl ketone

■ 1,6-diketone \rightarrow also 5-membered ring hydroxyl ketone

= 1,5- and 1,7-diketone \rightarrow 6-membered ring hydroxyl ketone

Robinson annulation

Michael and aldol together

- to form α , β -unsat'd cyclic ketone
- Michael addition followed by intramolecular aldol condens'n

- Follow 'problem-solving strategy' on p866.
- Read 'retroynthetic analysis' on p867.

annulation = ring formation

Decarboxylation [-CO₂]

- $\Box -CO_2 \text{ from } -COO(\text{H}) \underline{\text{w/ } 3\text{-}oxo } [\beta\text{-}keto]$
 - when the left is stable
- from carboxylate (in basic condition)

at 50 °C

□ from RCOOH (in acidic condition) ~ easier, faster

□ from dicarboxylic acid (to RCOOH) ~ slower

Malonic ester synthesis

alkylation-hydrolysis-decarboxylation starting from malonic ester to form RCOOH

Acetoacetic ester synthesis

Ch 17 #37

alkylation-hydrolysis-decarboxylation starting from acetoacetic ester to form methyl ketone

□ locate the C's to be linked \rightarrow C⁺ and C⁻ \rightarrow type of rxn

better $\leftarrow \alpha$ -C of ketone, removable OH

Biological rxn's at α -C

gluconeogenesis-glycolysis

\Box cross-linking of collagen [a protein] \rightarrow aging

Summary

 \square α -H is acidic: A&K more acidic.

- \square rxn thru enolate, enamine, or enol $=-O^- > =-NR_2 > =-OH$
- halogenation
- alkylation
- Michael reaction
- Aldol addition/condensation of A&K
- Claisen (ester) condensation
- Crossed additions and condensations
- **miscellaneous**
 - annulation, decarboxylation, malonic and acetoacetic ester synthesis