PART 6

Aromatic Compounds

Chapter 18. Bz and subst'd Bz 19. Heterocyclic comp'd

IV

Chapter 18

Reactions of benzene and Substituted Benzenes

Reactions of aromatics

Aromaticity

- aromatic comp'ds = comp'ds having aromaticity
- **2** 2 requirements for aromaticity
 - cyclic π electron clouds above and below the plane
 - p orbital/cyclic and planar
 - $4n + 2\pi$ electrons

benzene's *p* orbitals

See §8.16 – 20 for aromaticity

aromatic [芳香族] vs aliphatic [脂肪族]

u what if $4n \pi$ electrons? anti-aromatic

aromatic < non-aromatic < anti-aromatic</p>

cyclopentadienyl anion cyclopentadiene

Ch 18 #3

□ result of aromaticity ~ resonance stabilization

large resonance stabiliz'n from

- large # of important resonance forms a/o
- forms of equal importance [contribution]

Substituted benzenes

- 2/3 of medicines are aromatic.
 - Some are natural, others synthetic.
 - Some synthesized chemically, others biologically.
 - generic vs biosimilar medicines

> Benzene is a carcinogen. Use toluene as a solvent.

Naming monosubst'd bz

Ch 18 #6

bz as subs ~ phenyl or benzyl

chloromethylbenzene

benzyl chloride

diphenyl ether

dibenzyl ether

a phenyl group

a benzyl group

- alkyl benzene or phenyl alkane
 - alkyl bz if alkyl has own name [no confusion]

□ aryl [Ar] ~ general; <cf> alkyl [R]

How bz reacts

electrophilic aromatic substitution

■ 2-step rxn with C⁺ [arenium ion] interm

See also §8.21

- Ist step ~ forming C⁺ ~ RDS
 - breaking aromaticity
- 2nd step ~ substitution
 - not an addition
 - ← recovering aromaticity
 - H⁺ removed from the original site

Halogenation

iodination

• with Lewis acid? I_2 too stable.

with oxidizing agent like H₂O₂/H₂SO₄ or HNO₃

$$\mathrm{I}_2 \ + \ \mathrm{H}_2\mathrm{O}_2 \ + \ 2\mathrm{H}_2\mathrm{SO}_4 \ \longrightarrow \ 2\ \mathrm{I}^+ \ + \ 2\ \mathrm{H}_2\mathrm{O} \ + \ 2\ \mathrm{HSO}_4^-$$

$$+ I_2 \quad \frac{H_2O_2}{H_2SO_4} \quad + H^+$$

fluorination

- too reactive \rightarrow gives bz-F6
- for fluorobz, thru indirect method (using N₂Cl) sl#46

Nitration

■ B: can be H₂O, HSO₄⁻, or solvent

Sulfoantion

Ch 18 #12

□ mechanism ~ general

$$+ + SO_{3}H \implies SO_{3}H \implies SO_{3}H \longrightarrow SO_{3}H + HB^{+}$$

B: can be H_2O , HSO_4^- , or solvent

Sulfonic acids are very strong acids.

benzenesulfonic acid

benzenesulfonate ion delocalized to 3 O's

Sulfonation is reversible. ~ desulfonation

useful in some synthesis p935

Friedel-Crafts acylation

+ R C C + HCl

acyl group from RCOCl or (RCO)₂O w/ LA

Less reactive carbonyls do not give RC+O with LA.

an acyl chloride

an acylium ion

mechanism ~ general

■ More than 1 equiv of LA should be used.

LA complexes to C=O ~ removed after rxn (by water)

For benzaldehyde, use Gatterman-Koch rxn

Friedel-Crafts alkylation

$$+ \mathbf{R} Cl \xrightarrow{\mathsf{AlCl}_3} \mathbf{R} + HCl$$

with LA following general mechanism

Multiple alkylation occurs.

- Alkyl bz is more reactive than bz. ← ED R
- For monosubstitution, use xs bz.

□ C⁺ rearrangement occurs.

Aklkylation by acylation-reduction

Ch 18 #18

- **D** F-C acylation then reduction
 - to obtain straight-chain alkyl bz
 - Acylium ion [acyl cation] does <u>not</u> rearrange.
 - $\hfill\square$ (EW) acyl bz less reactive than bz \rightarrow only one equiv bz needed
 - C=O reduced to CH₂ with H₂/Pd/C?
 - effective only for aroyl [C=O next to ring]
 - ▹ aliphatic C=O
 - NR with H₂/Pd/C
 - to CH–OH with H₂/Raney Ni or NaBH₄ §16.6

□ F-C acylation then reduction

another method for C=O to CH₂ = Wolff-Kishner reduction

o for all ketones [not only for aroyls]

Alkyl bz using coupling rxn

Suzuki rxn

Gilman reagent

Converting subs

Other oxidizing agent like KMnO₄, K₂Cr₂O₇ can also be used.