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Chapter 1.  Properties of Gases

Equation of State

Extensive Properties: properties proportional to the amount of material.

e.g., mass, volume, number of moles, heat capacity.

Intensive Properties: the nature of material not depending upon the amount.

e.g., temperature, pressure, diffusivity, viscosity,

thermal conductivity, dielectric constant,

electrical conductivity, electronic conductivity, ionic conductivity,

heat capacity / mole, heat capacity / atom, etc.

The physical state of a pure substance is defined by its physical properties. The 

state of a pure gas, for example, is specified by giving its value, V, n, p, and T.  

Equation of state is an equation which interrelate these four variables:

1

),,( nVTfp  ),,( npTfV  (1A.3)
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For a homogeneous material, only two intensive variables can be 

independent; the remaining variables must then be a function of 

these two. 

Equation of state        Functional dependence of 

any other properties 

on these two variables.

1A.2 The Ideal Gas Law (Perfect Gas)

Ideal Gas:  1. The size of molecule is negligibly small.

2. The interactions between molecules do not exist.

2

p V = n R T       p V = N kB T

Intensive Property:  f (P,T)  or f (s,T)
1 Component IQ 200

_ _ _ _ _ _ _ _ _ _ _ _ _
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Figure 1A.2 

The pressure-volume dependence of 

a fixed amount of perfect gas at 

different temperatures. Each curve 

is a hyperbola (pV = constant) and is 

called an isotherm. 
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Figure 1A.3

Straight lines are obtained when the 

pressure is plotted against 1/V. 
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Figure 1A.4

The variation of volume of a fixed 

amount of gas with the temperature at 

constant pressure (isobar). 
Note that in each case they extrapolate to 

zero volume at -273.15°C.

by Experimentalists
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Figure 1A.5 

The pressure also varies linearly with the 

temperature at constant volume, and 

extrapolates to zero at T = 0 K (= -273.15°C).

by Theoreticians
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Figure 1A.6

A region of the p, V, T surface of 

a fixed amount of perfect gas. 

The points forming the surface 

represent the only states of the 

gas that can exist. 
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Figure 1A.7

Sections through the surface 

shown at a constant variable.
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1B  The Kinetic Model of Gases
Three Assumptions:

1. The gas consists of molecules of mass m in ceaseless (elastic) 

random motion.

2. The size of molecules is negligible, in the sense that their diameters 

are much smaller than the average distance traveled between 

collisions.

3. The molecules do not interact, except that they make perfectly 

elastic collisions when they are in contact.

An elastic collision means that the 

total translational kinetic energy of a colliding pair is 

the same before and after the collision: 

no energy is left in one of the colliding particles 

as rotational energy or vibrational energy, etc.

9
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1B.1(a)  The Pressure Exerted by a Gas

When a molecule of mass m collides with the wall perpendicular 

to the x-axis, its component of momentum along the x-axis 

changes from mvx to –mvx. The total change of momentum on 

each collision is of magnitude 

The collision frequency, z: the number of collisions made by a single 

particle per time

z-1 = τ : Collision Time

The mean free path, : the average distance each particle travels 

between collisions

10

.2 xmv

Sec. 1B.2(a)

σ = ne2t / m*

free electron model
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Figure 1B.1

The pressure of a gas arises from the impact of its molecules on the walls.  

In an elastic collision of a molecule with a wall perpendicular to the x-axis, 

the x-component of velocity is reversed, but the y- and z-components are 

unchanged.

11
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Figure 1B.2

A molecule will reach the wall on the right within an interval t

if it is within a distance vxt of the wall and traveling to the right. 

The number of collisions in a time interval t


The number  of molecules able to reach in that time

12

(IQ 1,000)
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The distance a molecule of velocity vx can travel in a time

so all molecules lying within a distance            of the wall will strike it if 

they are traveling towards it.  

: the cross-section of the container

: the number of molecules per unit volume

All the molecules lying in a volume               will reach the wall. 

: the number of molecules in the volume of interest

On the average, half of these are moving to the right, and half to the left, 

and so the average number of collisions in the interval t is

 the total momentum change

where M=mNA

The rate of change of momentum = force = 

The pressure = 
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Not all the molecules travel with the same velocity, and so the 

detected pressure is the average quantity just calculated.

Since the motion of the molecules is random,

:  mean square speed of the molecules     mean energy

root mean square (rms) speed
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1B.1(b)  Maxwell-Boltzmann Distribution of Molecular Speeds

In an actual gas, the speeds of individual molecules span a wide 

range, and the collisions in the gas continually redistribute the 

speeds among the molecules.

The probability that a molecule has a velocity with components in 

the range 

root mean square speed of molecules
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Figure 1B.6

To calculate the probability that 

a molecule will have a speed 

in the range v1 to v2, 

we integrate the distribution 

between those two limits. 

16
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The distribution can depend only on the speed v, where   

The evaluation of K

Maxwell-Boltzmann distribution of 

molecular velocities
(1B.5)

For three-dimensional case, the Maxwell-Boltzmann distribution
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Figure 1B.4

The distribution of molecular speeds with 

temperature or molar mass.

Note that the most probable speed 

(corresponding to the peak of the 

distribution) increases with temperature 

and with decreasing mass, and 

simultaneously, the distribution becomes 

broader.
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The volume of spherical shell

The probability that the speed lies 

in the range v to v+dv irrespective 

of direction of motion:

Figure 1B.3

The probability f(v)dv that the molecule has a 

speed in the range v to v+dv is 

the sum of the probabilities that it lies in any 

way of the volume elements dvxdvydvz in a 

spherical shell of radius v.
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(1) The root mean square speed is the square root of the average 

value of v 2.

(2) The mean speed is the mean of the speeds calculated using 

the Maxwell-Boltzmann distribution.

(3) The most probable speed is the speed at which the Maxwell-

Boltzmann distribution passes through a maximum.

(4) The relative mean speed 

For two dissimilar molecules of masses mA and mB,
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Figure 1B.7
A summary of the conclusions that 
can be deduced from the Maxwell 
distribution for molecules of molar 
mass M at a temperature T:

the most probable speed,

the mean speed, and

the root mean square speed. 
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Figure 1B.8

A simplified version of the argument to show that the mean relative speed of 

molecules in a gas is related to the mean speed.

When the molecules are moving in the same direction, the mean relative speed is zero.

It is 2v when the molecules are approaching each other.

The relative mean speed is __ (as confirmed by more detailed calculation). 

22
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Velocity Selector  =  Time-of-Flight Measurement
The molecules are produced in the source (which may be an oven with a 

small hole in one wall), and travel in a beam towards the rotating disks. 

Only if the speed of a molecule is such as to carry it through each slot 

that rotates into its path will it reach the detector. Thus, the number of 

slow molecules can be counted by rotating the disks slowly, and the 

number of fast molecules counted by rotating the disks rapidly. 
23
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Figure 1B.9

In an interval t, a molecule of diameter d sweeps out a tube of diameter 2d and 

length          . As it does so, it encounters other molecules with centers that lie within 

the tube, and each such encounter counts as one collision.  In practice, the tube is not 

straight, but changes direction at each collision. Nevertheless, the volume swept out is 

the same, and this straightened version of tube can be used as a basis of the calculation. 

24

1B.2(a) NVtv rel /  s

p

kT

z

v

kT

pv

V

N
vNvz

rel

rel
relrel

s


s
ss





 path free Mean

~

tv rel

z-1 = τ : Collision Time

Cross Section

V

N
Nd 
~

 ,2s

(1B.11a)

(1B.11b)

(1B.12)

(1B.13)

_______

1B.2  Collision Time  +  Mean Free Path



http://bp.snu.ac.kr

The mean free path λ,

For a perfect gas, 

The mean free path is inversely proportional to the pressure.

25
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The experience summarized by the Zeroth Law of Thermodynamics: 

If an object A is in thermal equilibrium with B, and if B is in thermal 

equilibrium with C, then C is in thermal equilibrium with A. 

26

Thermal Equilibrium (IQ 50)
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1C Real Gases

1C.1 Intermolecular Forces

Pairwise potential function, U(r), which gives the potential energy 

of the pair as a function of the distance (r) between their centers.

At long range, a weak attractive force between the molecules

 F 

At short range, the force becomes very strongly repulsive.

A number of semi-empirical potentials have been proposed and 

used. The ability of a proposed potential to fit a variety of data 

over a range of temperatures with the set of parameters is an 

indicator of generality.

27
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Figure 1C.1

The variation of the potential energy 

of two molecules on their separation.

High positive potential energy (at 

very small separations) indicates that 

the interactions between them are 

strongly repulsive at these distances.

At intermediate separations, where 

the potential energy is negative, the 

attractive interactions dominate.

At large separations (on the right), 

the potential energy is zero and there 

is negligible interaction between the 

molecules. 

28
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~Figure 1C.1

The intermolecular potential U(r). The potential is a function of the distance 

between the centers of the molecule. This figure illustrates two parameters 

(2r), which is the distance between the centers of the molecules where the 

potential curve crosses zero, and the well-depth parameters (), which is the 

depth of the potential well at its minimum.
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~Fig. 1C.1

Energy vs. separation distance for two atoms (or two oppositely charged ions).

Repulsive energy  (m  12)

Total energy

Ion separation distance (r)

Attractive energy  1/r 6

P
o
te

n
ti
a
l 
e
n
e
rg

y
 (

V
)

V0

r0

30

mr

1

6

6

12

12)(
r

c

r

c
ru 



http://bp.snu.ac.kr

1C.2 The van der Waals Equation   =   Real Gases

a, b : empirical constants that are characteristic of the particular force.

a        At finite concentrations, molecules will have attractive forces

which will reduce the pressure.

b The volume in the ideal gas law should not be the volume of 

the container, but the volume available to a molecule for 

kinetic movement.

The excluded volume per pair of spheres:                

The excluded volume is 

Ideal gas:  1. The size of molecule is negligible.

2. The interactions are negligible.
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Excluded volume. A sphere of diameter 2r creates an excluded volume, 

which is a sphere of radius r, into which the center of another sphere of the 

same size may not penetrate.

32
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P – V Dependence at Different Temperatures

Gas isotherms:

Comparison of the isotherms of an ideal gas to that predicted by the van der Waals 

equation for ammonia.

An ideal gas will not condense at any temperature.

Ammonia (van der Waals)

Ammonia (Dieterici)

Ideal Gas

33
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Figure 1C.2

Experimental isotherms of carbon 

dioxide (CO2) at several temperatures.

The critical isotherm *, the 

isotherm at the critical temperature, is 

at 31.04°C. The critical point is 

marked with a star. 

34
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Figure 1C.7

The surface of possible states 

allowed by the van der Waals 

equation.

35
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For van der Waals equation,     

T > Tc, somewhat realistic

T < Tc, the isotherms show an undulation which is not at all like 

the observed behavior

Reason:

Van der Waals equation  cube in volume

For any choice of T and p, there will be three values of the volume 

which will, mathematically, satisfy the van der Waals equation.

36

2

mm V

a

bV

RT
p 




023 



























p

ab
V

p

a
Vb

p

RT
V mmm



http://bp.snu.ac.kr

A cubic equation  three roots

T > Tc  one real, two complex

T = Tc  all three roots: real and equal

T < Tc  all three roots: real and unequal

Horizontal line is drawn through the undulation with equal areas above & below:

Interpreted as the vapor pressure of the liquid. (Maxwell construction)

Why? (derivation on the white board)
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Figure 1C.7

Van der Waals isotherms at several values of T/Tc.

The van der Waals loops are replaced by horizontal straight lines.

The critical isotherm is the isotherm for T/Tc = 1. 
38
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p vs. V (or  p vs. Vm ) for a gas at constant temperature (isotherms) 

~Fig. 1C.7

At high temperatures, these are similar to the hyperbolae predicted by the ideal gas law.

At the critical temperature, the isotherm has a horizontal inflection at the critical 
point (C). 

Below the critical temperature, the isotherms have a horizontal segment (shown by the 
dotted lines) in the two-phase region, where both liquid and vapor are present.

T

Pressure

Volume

Isotherms for 

various temperature
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Near the critical temperature, the isotherms have a nearly horizontal section.

At the critical temperature, this becomes an inflection point for which the 

slope is zero at some point  namely, the critical point (Pc, Vc, Tc).

The meaning of the horizontal part of the isotherms below Tc:

The value of the pressure at which, for a given temperature,
liquid and vapor phases are in equilibrium (i.e., the horizontal
lines) is called the vapor pressure.

The total volume of the fluid (liquid plus vapor) can be decreased
without a change in pressure.

If there are two phases in the container, compression will cause
more vapor to condense into the higher-density liquid, but at the
same pressure.

40
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Liquefaction of a gas.  The isothermal 

compression of a gas that is below its 

critical temperature will, at the pV point 

(a), cause the condensation of a liquid.

Further reduction of volume will cause 

more liquid to condense, but the 

pressure will not change; this is the 

vapor pressure of liquid at 

this temperature.

At the point (c) on the diagram, all the 

gas will have condensed to a liquid, and 

further reduction of volume requires the 

compression of the liquid.
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1.4(b) Evaluation of Gas Constants from Critical Data

At the critical temperature, the curve has an inflection at which 

the gradient and curvature are zero.

at T = Tc, p = pc, Vm = Vm,c
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1C.2(c) The Principle of Corresponding States

The gases He and CO2 are very different in their behavior at any 

given temperature and pressures.  However, if we compare them, 

each by its critical point, their compression factors are nearly the 

same.

He: Tc=5.3 K, pc=2.26 atm, Vc=57.7 cm3/mol     Zc=0.300

CO2: Tc=304.2 K, pc=73.0 atm, Vc=95.6 cm3/mol  Zc=0.280

The law of corresponding states demonstrates that the compression 

factor (and many other intensive properties) of any gas can be 

written as a universal function of the 

reduced variables:

,

, , m
r r r

c c m c

VT p
T p V

T p V
  
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Write the p, Vm and T of van der Waals equation in terms of the reduced 

variables, and then express the latter in terms of the relations in eqs:
2

,/ 27 , 3 , 8 / 27 .c m c cp a b V b T a bR  

2 2 2

, ,

2 22 2 2

8

827

27 3 27 (3 )(9 ) 9

r c
r c

m r m cm r m c

r
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r rr r

RT TRT a a
p p p

V b V V bV V V

a
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a a aT abR
p p p

b bV b b bV bV b b V

    
 
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 
     

 

2

8 3

3 1

r
r

r r

T
p

V V
  



These have the same form as the original equation.  However,

the constants a and b, which differ from gas to gas, have disappeared.
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Figure 1C.9

The compression factors of four gases 

plotted using reduced variables. The 

curves are labelled with the reduced 

temperature Tr=T/Tc. The use of 

reduced variables organizes the data 

on to single curves.
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1C.1(a) The Compresssion Factor

1C.1(b) The Virial Series

Define the compression factor: 

For ideal gas,

For real gas, 

 We might represent Z as a power series in the mole concentration:

B=B(T) : the second virial coefficient

C=C(T) : the third virial coefficient
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Figure 1C.3

The variation of the compression factor 

Z = pVm/RT with pressure for several 

gases at 0°C. A perfect gas has Z = 1 at 

all pressures.  Notice that, although the 

curves approach 1 as p  0, 

they do so with different slopes. 
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Estimation of Virial Coefficients

The virial coefficients can be related to the van der Waals constants.
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Figure 1C.4

The compression factor approaches 1 

at low pressures, but does so with 

different slopes.  Real gases may have 

either positive or negative slopes, and 

the slope may vary with temperature. 

At the Boyle temperature, the slope is 

zero and the gas behaves perfectly 

over a wider range of conditions than 

at other temperatures.
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The Boyle Temperature

For all gases, there is some temperature at which B(T) = 0.

Boyle temperature  the repulsive and attractive forces 

cancel each other, giving nearly ideal behavior.

Example: Estimate the Boyle Temperature of N2:

the actual value is 324 K.

From van der Waals constants,
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The Lennard-Jones Potential

12 6
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The integral part of the equation for the second virial coefficient 

can be done analytically, but the solution is complicated and in the 

form of an infinite series.
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Second virial coefficient 

(See page 13)

1C.1 Intermolecular Forces
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For the Lennard-Jones (LJ) potential, the exponent in the integral is:

Note that /k has unit of temperature, i.e., Kelvin. This suggests 

the use of two reduced parameters. 

Define a parameter
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Note that the reduced virial coefficient is a universal function of 

the reduced temperature. The integral must be evaluated 

numerically for each of    .T
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Mixed Gases (Ideal Mixture)

The simplest assumption is that of an ideal mixture.

The ideal-mixing approximation assumes that the properties of a 

mixture are either the sum or the mean of the properties that the 

pure gases would have under the same conditions.

Daltons’s law

where pi is the partial pressure, the pressure exerted by 

the individual gases.

The total pressure of a gas is in proportion to the numbers of molecules 

present:

where xi is the mole fraction.
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The partial pressures pA and pB of a 

binary mixture of (real or perfect) gases 

of total pressure p as the composition 

changes from pure A to pure B.

The sum of the partial pressures is equal 

to the total pressure.

If the gases are perfect (ideal), then the 

partial pressure is also the pressure that 

each gas would exert if it were present 

alone in the container. 
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Ideal Mixture
Pi V = Ni kB T
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Problems from Chap. 1

1A.2

1A.5(b)   1A.8(b)   1A.9(b)

1A.6

1B.2

1B.2(b)   1B.3(b)   1B.6(b)

1B.4   1B.6

1C.2

1C.3(b)   1C.7(b)


