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2A.1  Heat, Work, and Energy

Newton’s first law: The velocity is conserved in magnitude and 

direction in the absence of an external force:                    is conserved.

Newton’s second law:

If a body moves a distance dx through a force field F(x), the 

change of the kinetic energy is
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This change is the work done on the body by outside forces:

If this force is a function of x alone, not of time, the force can be 

related to a potential energy function U(x):

The total energy, the sum of the kinetic energy plus the potential energy, 

is conserved.
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2A.4(b) Heat Capacity

Heat: Extensive Property

Temperature: Intensive Property

For electrical heat,

: Joule’s law of electrical heating

: Heat Capacity [Meaning and Definition]

: The heat capacity is a function of temperature.
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: molar heat capacity at constant volume

: molar heat capacity at constant pressure

: heat capacity at constant volume - Theoretician

: heat capacity at constant pressure - Experimentalist
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2A.2 Internal Energy Function, U

System: Some part of the world that we are interested, and plan to 

describe thermodynamically.

Surroundings: The rest of the world outside the system.

Closed System: In which the transfer of matter to and from the 

surroundings is forbidden. Energy may be 

exchanged between a closed system and the 

surroundings.

Isolated System: When a closed system cannot work nor exchange 

heat with its surroundings.

5
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Figure 2A.1

(a) An open system can exchange matter and energy with its surroundings.

(b) A closed system can exchange energy with its surroundings, but it 

cannot exchange matter.

(c) An isolated system can exchange neither energy nor matter with its 

surroundings. 
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U: internal energy function

w: an amount of work

q: heat

The First Law: dU = dq + dw

The sign convention

(+): flow into the system

( ): flow out from the system

James P. Joule:

- Combined mechanics and caloric theory

- Heat is simply another form of energy.

- The total energy of an isolated system is conserved.

Energy

- nuclear binding energy

- mass energy (Einstein’s mc2)


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(a) A diathermic system is one that allows energy to escape as heat through 

its boundary if there is a difference in temperature between the system 

and its surroundings  (‘dia’ = through).

(b) An adiabatic system is one that does not permit the passage of energy 

as heat through its boundary even if there is a temperature difference 

between the system and its surroundings.

(a) (b)
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Figure 2A.2

(a) When an endothermic reaction occurs in an adiabatic system, the temperature 
falls.

(b) If the reaction is exothermic, then the temperature rises.

Endothermic 

Reaction

Exothermic 

Reaction
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2A.3 Work

If the position moves from a position x1 to x2

against an opposing force F, the work will be:

The negative sign in this equation confirms to our stated convention 

that work done by the gas is negative.

The opposing pressure:
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Figure 2A.5

When a piston of area A moves out 

through a distance dz, it sweeps out 

a volume dV = A dz. The external 

pressure, pex, is equivalent to a 

weight pressing on the piston, and 

the force opposing expansion is F 

= pexA.
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Figure 2A.6

The work done by a gas when it expands 

against a constant external 

pressure, pex, is equal to the shaded 

area in this example of an indicator diagram. 
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________

Table 2A.1

Surface Tension = Interfacial Free Energy
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2A.3(c)  Reversible Expansion

In thermodynamics, a reversible change is one that can be 

reversed by an infinitesimal modification of a variable.

where pin may be a function of volume.
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Figure 2A.7

The work done by a perfect gas when it 

expands reversibly and isothermally is equal 

to the area under the isotherm p = nRT/V.

The work done during the irreversible
expansion against the same final pressure is 
equal to the rectangular area (shown darker).

Area=pexV
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Isothermal Reversible or Irreversible Expansion

The larger the opposing pressure (for a given V), the more work will be 

done. There is a limit to how large pex can be, of course, since if it is 

greater than the pressure of the driving gas (p), no expansion will occur at 

all. How can the work be maximized?

Consider an ideal gas in a cylinder with a movable piston, with the 

pressure pi = 10 atm and volume Vi = 1 m3. Let us assume that the 

opposing pressure (also 10 atm at the start) consists of 1 atm due to the 

air outside and 9 atm due to nine weights sitting on the piston (each 

exerting 1 atm pressure). If all the weights are removed at once, the 

gas will expand against the constant pi = 1 atm until its pressure is 1 atm

– that is, until it reaches equilibrium. If the expansion is isothermal, its 

final volume will be 10 m3, and the work done is:  
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2A.4 Heat

U(T,V): internal energy

From the first law,

pV work
any other work

(e.g. electrochemical)

At constant volume, no other work
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Fig. 2A.10

The internal energy of a system 

varies with volume and 

temperature, perhaps as shown 

here by the surface.

The variation of the internal energy 

with temperature at one particular 

constant volume is illustrated by 

the curve drawn parallel to T.

The slope of this curve at any point 

is the partial derivative  .  
V

U T 
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2A.1 Work and Heat

Internal energy is stored in molecular bonds: in molecular translation, 

rotation, and vibration, and the energy of mutual interactions of molecules.

In molecular terms, the process of heating is the transfer of energy that 

makes use of the differences in thermal motion - the random motion of 

molecules - between the system and the surroundings.

In summary, heat stimulates random motion (of either the system or 

the surroundings).

In molecular terms, work is the transfer of energy that makes use of 

organized motion.  When a weight is raised or lowered, its atoms 

move in an organized way.

The electrons in an electric field move in an orderly direction (drift velocity).

19
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Figure 2A.3

When energy is transferred to the 

surroundings as heat, the transfer 

stimulates disordered motion of the 

atoms in the surroundings.

Transfer of energy from the 

surroundings to the system makes use of 

disordered motion (thermal motion)

in the surroundings.

20
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2B Enthalpy
In many cases, it is more convenient to use temperature and pressure, 

rather than temperature and volume, as independent variables.

not heat capacity

Define a new function called the Enthalpy H

 0 doubly infinitestimal
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(*)

(**)

By combining eqs (*) and (**), one obtains

Now impose the condition that pressure is kept constant,

The increase in the property H is equal to the amount of heat 

added to a system at constant pressure.
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2B.2 Calculation of CpCV
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Figure 2B.3

The slope of a graph of the enthalpy of a 

system subjected to a constant pressure 

plotted against temperature is the 

constant-pressure heat capacity.

The slope of the graph may change with 

temperature, in which case the heat 

capacity may varies with temperature.

For gases, the slope of the graph of 

enthalpy vs. temperature is steeper 

than that of the graph of internal 

energy versus temperature, and Cp is 

larger than CV. 
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Figure 2B.1

When a system is subjected to constant 

pressure and is free to change its volume, some 

of the energy supplied as heat may escape back 

into the surroundings as work.

In such a case, the change in internal energy is 

smaller than the energy supplied as heat. 
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Figure 2E.1

To achieve a change of state from one 

temperature and volume to another 

temperature and volume, we may 

consider the overall change as 

composed of two steps.

In the first step, the system expands at 

constant temperature; there is no 

change in internal energy if the 

system consists of a perfect gas.

In the second step, the temperature of 

the system is decreased at constant 

volume. The overall change in 

internal energy is the sum of the 

changes for the two steps. 
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2E.1 Reversible Adiabatic Changes

The work of adiabatic change 

Note that CV is dependent only on the temperature for ideal gas.

Ti ,Vi → Tf ,Vf
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2E.1  Reversible Adiabatic Expansion of a Perfect Gas

Combining the two equations,
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On inserting pV = nRT, the last equality becomes
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We can predict the temperature of a gas that has expanded 

adiabatically and reversibly from a volume Vi and temperature Ti

to a volume Vf .

The work done on the ideal gas as it expands adiabatically and 

reversibly from Vi to Vf becomes
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2E.2 p-V Relation for Perfect Gas (Adiabatic Changes)

Defining             , we obtain 
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Combining the above two equations,

Since           for all gases, the pressure p falls off faster with volume

(               : the curve is called an adiabat) than in the case of 

isothermal expansion (            ).
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Figure 2E.2  An adiabat depicts the variation of pressure with volume when a 
gas expands reversibly and adiabatically.

(a) An adiabat for a perfect gas.

(b) Note that the pressure declines more steeply for an adiabat than it does for 
an isotherm because the temperature decreases in the former.
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Consider the case of a monatomic gas at a temperature T. We 

know that the kinetic energy of one atom of mass m is

According to the equipartition theorem, the average energy of 

each term is         , where k is the Boltzmann constant. Therefore, 

the mean energy of the atoms is         and the total energy of the 

gas (there being no potential energy contribution) is           , 

or           . We can therefore write

where             is the molar internal energy at T=0, when all 

translational motion has ceased and the sole contribution to the 

internal energy arises from the internal structure of atoms. This 

equation shows that the internal energy of a perfect gas increases 

linearly with temperature.

(A)

(B)

Molecular Interpretation of Internal Energy     (Ideal Gas)
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Since the heat capacity at constant volume is:

the heat capacity of a monatomic perfect gas can be calculated by 

inserting the equation (B) into equation (C). That is,

(C)

(D)

For a linear molecule, we must consider rotational contributions 

in addition to translational contributions. Linear molecule has 

two rotational modes of motion, each contributing a term         to 

the internal energy.
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Fig. A.2  A non-linear molecule 

can rotate around three axes and 

therefore the mean rotational 

energy is       , and there is a 

rotational contribution of          

to the molar internal energy.
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For any kind of expansion of any kind of material, the work 

done on the system as it changes from Vi to Vf is given by

where pex, the external pressure, depends upon how the change is 

organized.

0 0 ideal gas

isothermal
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2C  Thermochemistry  (p. 80)

Thermochemistry: the study of the heat produced or required by   

chemical reaction

Reaction enthalpy

2C.1  Standard Enthalpy Changes

Absolute enthalpies of substances are not known.  Still, enthalpies 

relative to an arbitrary standard state may be used, provided the same 

standard state is used for the reactants and products.

The standard enthalpy change, Ho: the change in enthalpy for a 

process in which the initial and final substances are in their standard 

states. Here the standard state of some substance is its most stable form 

under 1 bar ( atm) and at the temperature specified.

38

pV QHQU     ,

Reactant (Equilibrium or Metastable) + ∆H  →   Product (Equilibrium)

∆H : + or -
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Examples of standard enthalpy change

1. standard enthalpy of Vaporizatoin

H2O(l)  H2O(g)

2. standard Reaction enthalpy

CH4(g)+2O2(g)  CO2(g)+2H2O(l)

Enthalpies of physical changes

1. standard enthalpy of Vaporization

2. standard enthalpy of Fusion

Si(s)  Si(l)

3. standard enthalpy of Sublimation

C(s, graphite)  C(g)

39

molkJKHvap /66.40)373(  

molkJKH /890)298(  


vapH

molkJKHfus / 50)273(  

molkJKHsub /69.716)298(  

~0.5 eV/atom
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A change in enthalpy is independent of the path 

between the two states:

A(s)  A(g)       

A(s)  A(l)        

A(l)  A(g)        

overall: A(s)  A(g)

A consequence of H being a state function is that 

the standard enthalpy of a forward process and its

reverse must be equal and opposite:

Ho(reverse) =   -Ho(forward)

40



Fig. 2C.1

)(TH sub



)(TH fus



)(THvap



)()()( THTHTH vapfussub

 

Reactant (Equilibrium or Metastable) + ∆H  →   Product (Equilibrium)
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2C.1(b) Enthalpies of Chemical Changes

1. standard enthalpy of combustion

C6H12O6+ 6O2  6CO2+ 6H2O    

Glucose 포도당

2. enthalpy of hydrogenation

CH2=CH2+H2  CH3CH3 Ho(298K) = -132 kJ/mol

Benzene + 3H2  C6H12          Ho(298K) = -246 kJ/mol

Why is the enthalpy of hydrogenation of benzene is less than the 

value of three times of enthalpy of hydrogenation of ethylene? 

Because of resonance stabilization of benzene.

41


cH

molkJKHc /808,2)298(  

1323246 
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2C.1(c) Hess’s Law

The enthalpy change of any reaction may be expressed as the sum of 

the enthalpy changes of a series of reactions into which the overall 

reaction may formally be divided.

CH2=CH(CH3)(g)+H2(g)  CH3CH2CH3(g)      Ho= -124 kJ/mol

CH3CH2CH3(g)+5O2(g)  3CO2(g)+4H2O(l)

CH2=CH(CH3)(g)+    O2(g)  3CO2(g)+3H2O(l)

9
2

42

1
2

CH2=CH(CH3)(g)+H2(g)  CH3CH2CH3(g) -124 kJ/mol

CH3CH2CH3(g)+5O2(g)  3CO2(g)+4H2O(l) -2220 kJ/mol

H2O(l)  H2(g)+    O2(g) +286 kJ/mol

CH2=CH(CH3)(g)+    O2(g)  3CO2(g)+3H2O(l)                          

molkJHc /2220 

? 
cH

molkJHc /2060 

2

9

Reactant (Equilibrium or Metastable) + ∆H  →   Product (Equilibrium)

H (T,P,Nj):  State Function 
Reversible



http://bp.snu.ac.kr

2C.2(a) Enthalpy of Formation

The standard enthalpy of formation    of a 

substance is the standard reaction enthalpy for its 

formation from elements in their reference states.

6C(s, gr)+3H2(g)  C6H6(l) 

It is convenient to adopt the convention that the 

enthalpy of every element in its standard state is zero.

The reaction can be regarded as proceeding by 

decomposing the reactants into elements and then 

forming those elements into products.

43

Page 85

molkJlH f /0.49),HC( 66  


fH

_ _ __

__Reference Point

Cohesive Energy = Energy required to form separate neutral atoms

in their ground state from the solid at 0 K at 1 atm

Si(s) = 4.6 eV/atom Charles Kittel

“Introduction to Solid State Physics”

Cohesive Energy ≈ Enthalpy of Formation ≈ Enthalpy of Sublimation
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The reaction enthalpy in terms of enthalpies of formation

In general,

aA+bB + ∆H = cC+dD

∆H = cC+dD-aA-bB

44

}(B)H)A({)}()({ 
ffff bHaDHdCHcH 

 
J

fJ JHvH )(

(2C.5a)
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This expression applies to every species involved in the reaction, and so 

the reaction enthalpies at Tf and Ti are related by the Kirchhoff’s Law:

45
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___________
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Time Independent
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Figure 2C.2

An illustration of the content of Kirchhoff's law.

When the temperature increases, the enthalpies 

of the products and the reactants both increase, 

but may do so to different extents.

In each case, the change in enthalpy depends on 

the heat capacities of the substances.

The change in reaction enthalpy reflects the 

difference in the heat capacities. 

46

Cp = slope

given P
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The Relation between  H and U

For liquids and solids, 

In the case of reactions involving gases, assuming that the gas 

behaves as an ideal gas, pV=nRT.

47

    )react()prod()( pVpVUpVUH 

    .0)react()prod(  pVpV

UH 

   
   

   

RTnUH

nnn

nRTnRTU

pVpVUH
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gasgasgas









reactprod Since

reactprod      

reactprod

____

H = H (product) – H (reactant) 

____
Ex. CH2=CH(CH3)(g)+H2(g)  CH3CH2CH3(g) 

_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
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2D  State Functions and Differentials  (p. 90)

State Function: Properties that are determined only by the present state 

of the system, and are independent of how that state has 

been prepared.

e.g., internal energy, volume, pressure, temperature, 

density, refractive index, etc.  In Equilibrium

Path Function: Properties that are related to what is happening to the 

system when changes are in progress.

e.g., work, heat, etc.

48

(p. 91)
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Exact and Inexact Differentials

U, V: state function

Since the integral is path independent, the differential of a state 

function is called an exact differential.

q, w: path function

The integrals of their differentials in going from state a to b depend 

upon the path chosen. Therefore, their differentials are called 

inexact differentials.
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dU: complete or exact differential

d w or d q : incomplete or inexact differential

1. q is not a state function, and the heat added cannot be 

expressed in the form of qf – qi .

2. The path of integration should be specified because q

depends on the path selected.
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Example 2D.1

: Expansion of an ideal gas

1. Path 1: Free (reversible) expansion against zero external pressure.

2. Path 2: Reversible, isothermal expansion accompanied by the

appropriate influx of heat

Find w, q and dU for each path.

Solution:

dU=0 for an expansion of an ideal gas  (Ti = Tf)

칠판그림필요
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As the volume and temperature of a 

system change, the internal energy 

changes.

An adiabatic and a non-adiabatic path are 

shown as path 1 and 2, respectively:

They correspond to different values of q

and w, but to the same value of U.

The sum of two inexact differentials can be an exact differential.

Volume, V

Internal

energy, U

Temperature, T

Path 1,

w  0, q = 0

Path 2,

w’  0, q’  0

52

U(T,V) or U(T,P)

dU = dq + dw- -
Figure 2D.1

Figure 2D.1

-190325(월)
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2D.2 Changes in Internal Energy U: State Function

The internal energy at (V + dV, T+dT) differs from that at (V , T) by 

an infinitesimal amount, which we write dU.

CV?

The rate of change of the internal energy as the volume 

of the system is changed isothermally

Definition of ‘internal pressure’
53
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Manipulating the First Law
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How the Internal Energy Varies with Volume



the rate of change of volume with 

increase of temperature

The isobaric thermal-expansion coefficient 
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is a measure of how the interactions change when the 

volume of the sample is changed isothermally.        

This is supported by noting that the case of a van der Waals gas,        

We expect that the coefficient is smaller for gases than 

for solids because we know that molecular interactions 

are not very important in gases.
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Figure 2D.4

For a perfect gas, the internal energy is 

independent of the volume (at constant 

temperature).

If attractions are dominant in a real gas, 

the internal energy increases with 

volume because the molecules become 

further apart on average.

If repulsions are dominant, the internal 

energy decreases as the gas expands.
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Joule Experiment

Figure 2D.5

A schematic diagram of the apparatus used by 

Joule in an attempt to measure the change in 

internal energy when a gas expands into a 

vacuum.

The heat absorbed by the gas is proportional to 

the change in temperature of the bath.

He observed no change in temperature.

w = 0 (expansion into the vacuum)

High

pressure

gas

Vacuum

Thermometer
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Use equation                                       to prove that             of an ideal 

gas is zero: that is, evaluate the right-hand side using                   

Evaluate              for the van der Waals equation.

Exercise:

Solution:

For an ideal gas,
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van der Waals Gas

The van der Waals constant a is directly related to the attractive 

forces between the molecules, as is the internal pressure.
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Note:

61

____
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2D.3 Temperature Dependence of Enthalpy

the change of volume under the influence of 

pressure at constant temperature

Isothermal Compressibility

Negative sign, because k is convenient positively.
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2D.3 The Joule-Thompson Effect
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Figure 2D.6

A diagram of the apparatus used for measuring the 

Joule-Thomson effect.

The gas expands through the porous barrier, which 

acts as a throttle, and the whole apparatus is 

thermally insulated.

As explained in the text, this arrangement 

corresponds to an isenthalpic expansion 

(expansion at constant enthalpy).

Whether the expansion results in a heating or a 

cooling of the gas depends on the conditions.

Porous
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∆q = 0

Figure 2D.7 A diagram representing the 

thermodynamic basis of Joule-Thomson expansion. 

The pistons represent the upstream and downstream 

gases, which maintain constant pressures either side 

of the throttle. The transition from the top diagram to 

the bottom diagram, which represents the passage of a 

given amount of gas through the throttle, occurs 

without change of enthalpy.

isothermal compression: the work done on the gas

(left side) (0 )i i i ip V pV   

isothermal expansion: the work done on the gas

(right side) ( 0)f f f fp V p V    

the total work on the gas
i i f fpV p V 

f i i i f fU U pV p V  

 the change in internal energy

f f f i i i

f i

U p V U pV

H H

   

  (no change in enthalpy, isenthalpic)
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JT > 0:  if dT < 0 and dp < 0, the gas cools on expansion.

JT < 0:  if dT > 0 and dp < 0, the gas is heated by expansion.

Gases showing heating effects (JT < 0) show a cooling (JT > 0) effect when 

their temperature has been lowered beneath their inversion temperature.

Below its inversion temperature a gas is cooled on expansion. For a 

sufficiently large pressure drop, the cooling may drop the temperature below 

the boiling point of the gas, when the liquid will form. This principle is 

applied to making refrigerator.
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Figure 2D.10

The sign of the Joule-Thomson coefficient, JT, 

depends on the conditions. Inside the boundary, 

the shaded area, it is positive and outside it is 

negative. The temperature corresponding to the 

boundary at a given pressure is the inversion 

temperature of the gas at that pressure.

For a given pressure, the temperature must be 

below a certain value if cooling is required.  

However, if it becomes too low, the boundary is 

crossed again and heating occurs.

Reduction of pressure under adiabatic 

conditions moves the system along one of the 

isenthalps, or curves of constant enthalpy. 

The inversion temperature curve runs through 

the points of the isenthalps where their slopes 

change from negative to positive.
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Figure 2D.11

The inversion temperatures for three 

real gases, nitrogen, hydrogen, and 

helium.
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Figure 2D.12

The principle of the Linde 

refrigerator is shown in this 

diagram. The gas is recirculated 

and, so long as it is beneath its 

inversion temperature, it cools on 

expansion through the throttle. The 

cooled gas cools the high-pressure 

gas, which cools still further as it 

expands. Eventually liquefied gas 

drips from the throttle.
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The Exact Relation between CV and Cp

CV
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(Derivation in Chap. 3)
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For an ideal gas, pV = nRT.
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Problems from Chap. 2

2A.2(b)  2A.3(b)  2A.4(b)  2A.4

2B.2  2B.3(b)  2B.4

2C.1(b)  2C.3(b)  2C.7(b)

2D.3(b)  2D.4(b)  2D.4

2E.2(b)  2E.3(b)


