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Chapter 3. The Second Law
Phenomena

1. A gas expands and fills the available volume, but does not 

spontaneously contract into a smaller one.

2. A hot body cools to the same temperature as its surroundings, but a 

body does not spontaneously get hotter than its environment.

3. Heating diamonds yields graphite, but heating graphite does not give 

diamonds.  [Diamond by chemical vapor deposition]

4. When a ball (the system of interest) bounces on a floor, the ball does 

not rise as high after each bounce because there are inelastic losses in 

the materials of the ball and floor (that is, the conversion of kinetic 

energy of the ball’s overall motion into the energy of thermal motion). 

The direction of change leads to the greater dispersal of the total energy.

Conclusions
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_____
The First Law of Thermodynamics = Always Valid
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Figure 3A.3

The Kelvin statement of the Second 

Law denies the possibility of the 

process illustrated here, in which 

heat is changed completely into work, 

there being no other change.

The process is not in conflict with 

the First Law because energy is 

conserved.
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Figure 3A.1

The direction of spontaneous change for a ball bouncing on a floor.  On each bounce 

some of its energy is degraded into the thermal motion of the atoms of the floor, and 

that energy disperses. The reverse has never been observed to take place on a 

macroscopic scale.
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Figure 3A.2

The molecular interpretation of the 

irreversibility expressed by the Second Law.

(a) A ball is resting on a warm surface, and the atoms are undergoing thermal motion 

(vibration, in this instance), as indicated by the arrows.

(b) For the ball to fly upwards, some of the random vibrational motion would have to 

change into coordinated, directed motion.  Such a conversion is highly improbable.
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Measuring Dispersal: the Entropy of a System

Entropy S 1. A thermodynamic function that measures how the 

dispersal of energy alters when a system changes from 

one state to another.

2. A state function

• Statistical definition

• Thermodynamic definition

Statistical View of the Entropy

The direction of spontaneous change is:

- from a state with low probability of 

occurring

- to one of maximum probability. 

The direction of spontaneous change for 

a gas in a pair of connected vessels

Vf

Vi
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Irreversible
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Consider an Ideal Monatomic Gas:

Number of microstates of one atom being in Vi :

Number of microstates that N atoms are in Vi :

Number of microstates that N atoms are in Vf :

Entropy S  (??) Number of Microstates W

S = W  not extensive

where k is some constant, Boltzmann constant.

When an ideal gas expands isothermally from Vi to Vf ,

where n: the number of moles, NA: Avogadro’s number
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Assumptions of this calculation

1) Ideal gas: neglect the interaction between particles and neglect     

rotational and vibrational modes.

2) Isothermal process: 

Entropy measures the dispersal of energy, and the natural tendency of 

spontaneous change is towards the states of higher entropy.
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Thermodynamic View of Entropy

Thermal energy  random motion

1. A change in entropy dS is proportional to the amount of heat 

added dq.    [Extensive Properties]

The ratio of a randomizing influence (dqrev)

to a measure of the amount of randomness 

already present (at T)

If the changes are restricted to reversible transfer of heat, then the 

quantity dqrev/T is found to be a state function.

2. Impact of dq on the chaos is inversely proportional to T.

For a given dq, the change in entropy is large when the temperature is 

low, but small if the temperature is high.
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For a reversible and isothermal expansion (Vi  Vf) of an ideal gas,

On integration:

0: isothermal

0: ideal gas
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Figure 3A.6

In a thermodynamic cycle, the overall 

change in a state function (from the initial 

state to the final state and then back to the 

initial state again) is zero.
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For an isolated system, no heat enters or leaves the system irreversively, i.e. dq=0.

This inequality shows that these spontaneous processes must lead to an 

increase in entropy of the universe.

The second law:  In an isolated system, spontaneous processes occur in 

the direction of increasing entropy.
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3A.4(b)  Entropy Change Arising from a Phase Transition

Under the condition of constant pressure, the latent heat is an 

enthalpy of phase transition Ht.

 Both melting and boiling are endothermic processes (Ht > 0).  So, each 

is accompanied by an increase of the system’s entropy.

 If the phase transition is exothermic (Ht < 0, as in freezing or 

condensing), then the entropy change is negative.  This decrease in 

entropy is consistent with localization of matter and energy that 

accompanies the formation of a solid from a liquid or a liquid from a gas.

 If the transition is endothermic (Ht > 0, as in the melting and 

vaporization), then the entropy change is positive, which is consistent 

with dispersal of energy and matter in the system.
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The entropy change of transition:

large entropy change due to H-bonds

A wide range of liquids gives approximately the same entropy of 

vaporization.  Trouton’s rule
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Figure 3A.8

Suppose: 

An energy qh (for example, 20 kJ) is supplied to 

the engine, and

qc is lost from the engine (for example, qc = 15 

kJ), and discarded into the cold reservoir.

The work done by the engine is equal to qh + qc 

(for example, 20 kJ + (15 kJ) = 5 kJ).

The efficiency is the work done divided by the 

heat supplied from the hot source. = 25%

13

Engine

Cold Reservoir
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3A.3(a) Reversible Heat Engine:  The Efficiency

Since the temperature of a cold reservoir is lower than that of a hot one, 

an overall increase of entropy can be produced even if qh is withdrawn 

from the hot reservoir, and less than qh is transferred to the cold.

is zero.

Therefore, we are free to use some kind of device, an engine, to draw off 

the difference             as work.

The work that an engine may produce is: 

The Carnot efficiency () is the ratio of the maximum work 

generated to the heat absorbed.
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Example:

Calculate the Carnot efficiency (reversible heat engine) of  an 

internal combustion engine where Th = 3200 K and Tc = 1400 K.

Solution:

Compare with the practical efficiency (  25%) of internal combustion 

engines.
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Figure 3A.7

Step 1:  Reversible isothermal expansion at temperature Th.

Step 2:  Reversible adiabatic expansion in which the temperature falls from Th to Tc .

Step 3:  Reversible isothermal compression at Tc.

Step 4:  Reversible adiabatic reversible compression,

Restores the system to its initial state.
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The Carnot Cycle

All engines work on a cycle.

Step 1  [Isothermal at qh].

The gas absorbs heat (qh) from 

the high-temperature resorvoir

(temperature Th) and expands 

isothermally and reversibly 

from V1 to V2.

(since isothermal, ideal gas) 
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Step 2  [Adibatic].

The gas expands adiabatically 

and reversibly from V2 to V3; in 

doing so, its temperature drops 

from Th to Tc.
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Step 3 [Isothermal at qc].

The gas is compressed from V3 to 

V4 while in thermal contact with 

the low temperature resorvoir

(temperature Tc), isothermally 

and reversibly.
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Step 4  [Adibatic].

The gas is compressed 

adiabatically and reversibly from 

V4 to V1, warming in the process 

from Tc to Th.
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Adding these together,

For an ideal gas, and for reversible and adiabatic expansion* 
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Apply the relation to the steps 2 and 4: 

 The efficiency of a Carnot engine is the ratio of the net work (-w) 

to the fuel burned to provide the heat qh.
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Figure 3A.10

A general cycle can be divided into small Carnot cycles. The match is exact in the limit 

of infinitesimally small cycles. Paths cancel in the interior of the collection, and only 

the perimeter, an increasingly good approximation to the true cycle as the number of 

cycles increases, survives.

Because the energy or entropy change around every individual cycle is zero, the integral 

of the energy or entropy around the perimeter is zero too.
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Brief Illus. 3A.6

When energy leaves a hot reservoir as 

heat, the entropy of the reservoir 

decreases.

When the same quantity of energy 

enters a cooler reservoir, the entropy 

increases by a larger amount.

Hence, overall there is an increase in 

entropy and the process is 

spontaneous.

Relative changes in entropy are 

indicated by the sizes of the arrows.

24
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(a) The flow of energy as heat from a cold source to a hot sink is not spontaneous.  As 

shown here, the entropy increase of the hot sink is smaller than the entropy decrease of 

the cold source, so there is a net decrease of entropy.

(b) The process becomes feasible if work is provided to add to the energy stream.  Then 

the increase of entropy of the hot sink can be made to cancel the entropy decrease of the 

cold source.

25
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The criterion for natural, spontaneous change solely 

in terms of the properties of the system is:

i) Constant volume:

for spontaneous

ii) Constant pressure:

for spontaneous
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Now one can define new thermodynamic functions for the criterion of 

spontaneous process.

i) Helmholz function:

ii) Gibbs function:      

At constant temperature,

A: maximum work function or work function

Consider an isothermal system changing reversibly and delivering 

maximum work. 

Since TdS = dqrev,

at constant temperature

It follows that if we know A for a process, we also know the 

maximum amount of work that the system can do. 
27
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3C.1(e)  Some Remarks on the Gibbs Function  

At constant temperature

where dwrev is the maximum work of the system (expansion work 

(-pdV) + other kinds of work).

0 (constant pressure)

At constant pressure and temperature, the change of the Gibbs 

function in a particular process gives the maximum extra work.  

This extra work is called the net work.
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3B  The Variation of Entropy with Temperature    

If Cp is independent of temperature in the temperature range of 

interest, we obtain

At some temperatures between 0 and T, the materials may change its 

phase and absorb heat in the process.

In the vicinity of absolute zero:
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Figure 3B.1

The determination of entropy from heat capacity data.

(a) The variation of Cp/T with the temperature for a sample.

(b) The entropy, which is equal to the area [in (a)] beneath the upper curve 

up to the corresponding temperature, plus the entropy of each phase 

transition passed.
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At absolute zero, all quenchable energy has been quenched. In the 

case of a perfect crystal at absolute zero, all the atoms are in a regular, 

uniform array, and the absence of disorder and thermal chaos suggests 

that the entropy is the same in every case.

The Third Law of Thermodynamics:

All perfect crystals have the same entropy at absolute zero.

If the value zero is arbitrarily ascribed to the entropies of the 

elements (in the perfect crystalline form stable at T = 0 K),

then all perfect crystalline compounds also have zero entropies at 

absolute zero.

31
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n: composition 

Combining the first law and second law

The first law says

For reversible processes in the absence of any kind of work other than 

pV-work,

Master equation or fundamental equation

32
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Chapter 3D  Combining the First and Second Laws
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Comparing eqs (4) and (5), we obtain relationships.

Equation (6) enables a temperature to be expressed solely in terms of 

extensive thermodynamic quantities. If the volume is constant, the 

relation states that the ratio of the change in energy (a First Law concept) 

to the corresponding change in entropy (a Second Law concept) is equal 

to the temperature of the system, whatever its nature or composition.

33
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3.8(a)  Various Maxwell Relationships

U : exact differential

By using the relation No. 4,

Maxwell relation

G : exact differential 

(4)

Maxwell relation
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Note:

35
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relation Maxwell
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relation Maxwell

aldifferentiexact  :
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3D.1(b) The Variation of Internal Energy with Volume

Derivation

Dividing equation (5) by dV and imposing constant temperature,

Combining equations (6), (7) and (15), one can obtain

Substitution of equation (12) into equation (16)
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Example 3D.2

Show thermodynamically that             is zero for an ideal gas, 

and compute its value for a van der Waals gas.

Solution:

For an ideal gas, pV=nRT.

Combining two equations,

The equation of state of a van der Waals gas
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3D. 2  Properties of the Gibbs Free Energy

Master equation

40
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Figure 3D.1

The variation of the Gibbs energy of a 

system:

- with temperature at constant P

- with pressure at constant T

The slope of the former is equal to the 

negative of the entropy of the system 

and that of the latter is equal to the 

volume 

41
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Figure 3D.2

The variation of Gibbs energy with the 

temperature is determined by the entropy.

Because the entropy of the gaseous phase of 

a substance is greater than that of the liquid 

phase, and the entropy of the solid phase is 

smallest, the Gibbs energy changes most 

steeply for the gas phase, followed by the 

liquid phase, and then the solid phase of the 

substance.
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3D.2(b)  The Change of Gibbs Energy with Temperature

Equation (20) implies that, as S is always a positive quantity, G must decrease 

when the temperature is raised at constant pressure (see Figure 3D.1). 

Combining eqs (20) and (21),

Combining eqs (22) and (23), one obtains

(23)

Gibbs-Helmholtz equation 
43

(3D.10)
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For a chemical reaction,

initial state (reactants)final state (products) 
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3D.2(c)  The Change of Gibbs Free Energy with Pressure

For a reaction in which Gi changes to Gf ,

where V= Vf Vi.

Integration of the above equation results in

For liquid or solid, volume depends only very weakly on the pressure:

Except at very high pressure,                     is very small and virtually no 

error is introduced.

 For solids and liquids, 

G is virtually independent of pressure for solid or liquid.

(*)
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Figure 3D.3
The variation of the Gibbs energy with the 

pressure is determined by the volume of 

the sample.

Because the volume of the gaseous phase 

of a substance is greater than that of the 

same amount of liquid phase, and the 

volume of the solid phase is smallest (for 

most substances), the Gibbs energy 

changes most steeply for the gas phase, 

followed by the liquid phase, and then the 

solid phase of the substance.

Because the volumes of the solid and 

liquid phases of a substance are similar, 

they vary by similar amounts as the 

pressure is changed.
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Figure 3D.4

The difference in Gibbs energy of a 

solid or liquid at two 

pressures is equal to the rectangular 

area shown.

We have assumed that the variation of 

volume with pressure is negligible.

47

     

     
pVG

VpppGpG

dppVpGpG

mm

mifimfm

p

p
if

f

i





 
 

Solid or Liquid


i

iidnVdpSdTdG  (Chap. 5)



http://bp.snu.ac.kr

For an ideal gas,

Inserting the above equation into equation (*) yields

(*)
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Figure 3D.5

The difference in Gibbs energy for 

a perfect gas at two pressures is 

equal to the area shown below the 

perfect-gas isotherm.
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V
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3D.2(c)  Chemical Potential of an Ideal Gas

Standard state of an ideal gas = 1 atm

Gibbs function at 1 atm = G 0

At any other pressure p,

For one mole of material,

Molar Gibbs Free Energy

We write                  : Chemical Potential
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Figure 3D.6

The molar Gibbs free energy of a 

perfect gas is proportional to ln p.
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Real Gases: the Fugacity

: applicable to ideal gases

For real gases, we are to determine the pressure dependence of the 

volume of a sample of real gas and to calculate G(p) from                  

by numerical integration.

The quantity f plays the role of the pressure, but it has a value which 

ensures that the chemical potential is given by the last equation 

whatever the pressure. Here f is called as the fugacity of gas.

The following equation is true for all substances.

Hence, for a real gas,
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For an ideal gas,

The difference of the two equations
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Figure 3.25

The molar Gibbs free energy of a 

real gas. As p  0, the molar Gibbs 

free energy coincides with the value 

for a perfect gas. When attractive 

forces are dominant (at intermediate 

pressures), the molar Gibbs free 

energy is less than that of a perfect 

gas and the molecules have a lower 

‘escaping tendency’. At high 

pressures, when repulsive forces are 

dominant, the molar Gibbs free 

energy of a real gas is greater than 

that of a perfect gas. Then the 

‘escaping tendency’ is increased.
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The Real Volume-Pressure Dependence

Compression factor

For a real gas, z =z (p, T )
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Standard States of Real Gases

For an ideal gas, p = 1atm: standard state

For a real gas, f = 1atm: standard state

g : fugacity coefficient

The chemical potential of 

an ideal gas

Deviation from ideality
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Open System and Changes of Composition

At constant pressure and temperature, Gibbs function has no changes.  

However, when composition change, Gibbs function changes.

where n1, n2, … are the amount of substances 1, 2, …present.

Let the composition be fixed and permit only the temperature and 

pressure to change.

(1)

(2); (3)
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Derivation in

Chap. 5
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(선행학습 )
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Suppose now that substance 1 is the only substance present.

G  the amount of material present

At constant temperature and pressure, 

Therefore, the chemical potential of species 1 is the measure of how the 

Gibbs function of species 1 changes when the amount present is varied.

More than One Component:

Partial Molar Gibbs Free Energy for atom i

= Chemical Potential for atom i

(4)
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in Chap. 5

(선행학습 )
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Substituting eqs (2), (3) and (4) into eq (1), one obtains

More general form

the master equation of chemical thermodynamics

59

(later)

(reversible)
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(선행학습 )

진짜물질

Derivation in

Chap. 5
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Problems from Chap. 3

3A.2  

3A.1(b)  3A.2(b)  3A.3(b) 3A.5(b)  3A.7(b)

3A.2

3B.8

3D.2

3D.1(b)  3D.2(b)  3D.3(b)

3.2

Entropy (Boltzmann Formula) +   열역학제2법칙 짱중요

Binary alloy에서 A and B 측정방법: 선행학습 (Chap. 5)_____________


