2017 Fall

"Phase Equilibria in Materials"

09.13.2017

Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment **Contents for previous class**

Chapter 1 Thermondynamics and Phase Diagrams

- Equilibrium dG = 0

Lowest possible value of G *No desire to change ad infinitum*

- Phase Transformation

$$\Delta G = G_2 - G_1 < 0$$

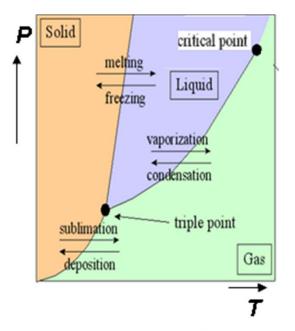
- Single component system

Gibbs Free Energy as a Function of Temp. and Pressure

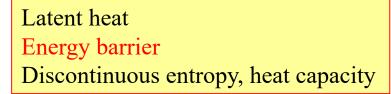
$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S, \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V \qquad \left(\frac{dP}{dT}\right)_{eq} = \frac{\Delta H}{T_{eq}\Delta V} \quad Clausius-Clapeyron Relation$$

- Classification of phase transition

First order transition: CDD/Second order transition: CCD



The First-Order Transitions



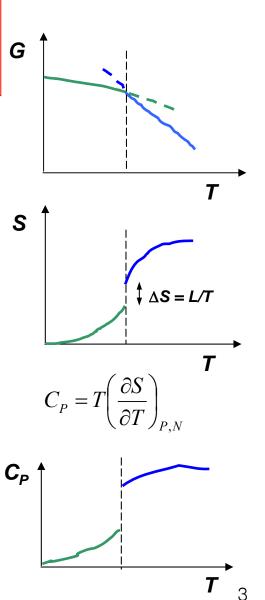
- First Order Phase Transition at T_T:
 - G is continuous at T_T
 - First derivatives of G (V, S, H) are discontinuous at T_T

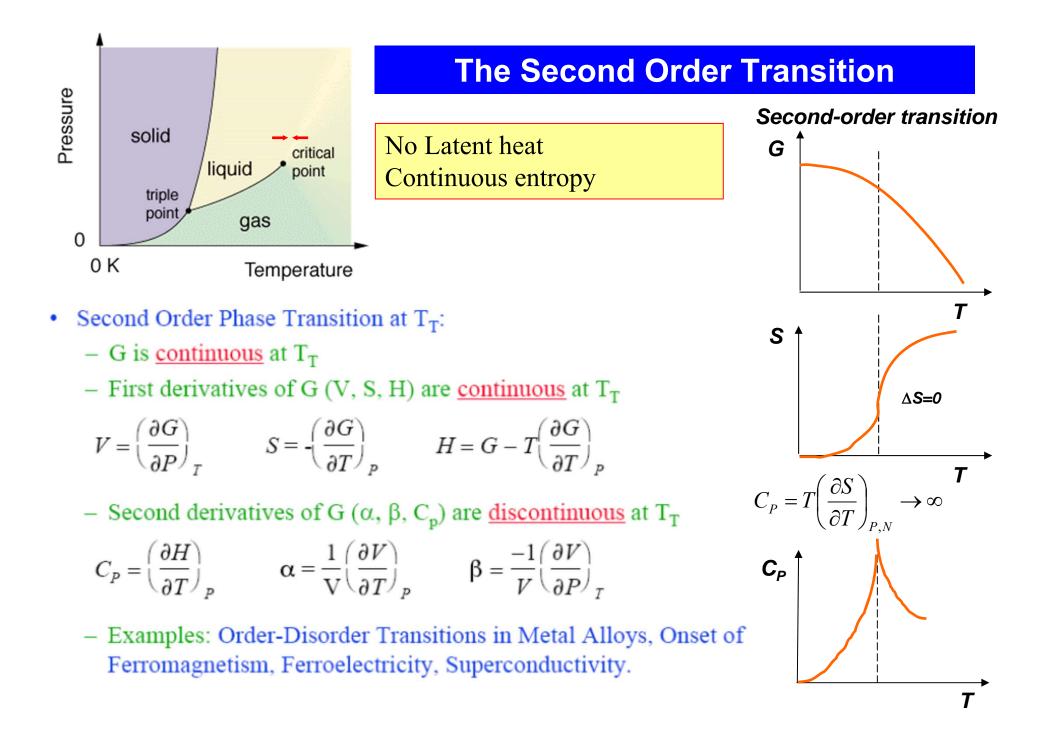
$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = -\left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_P$$

– Second derivatives of G (α , β , C_p) are <u>discontinuous</u> at T_T

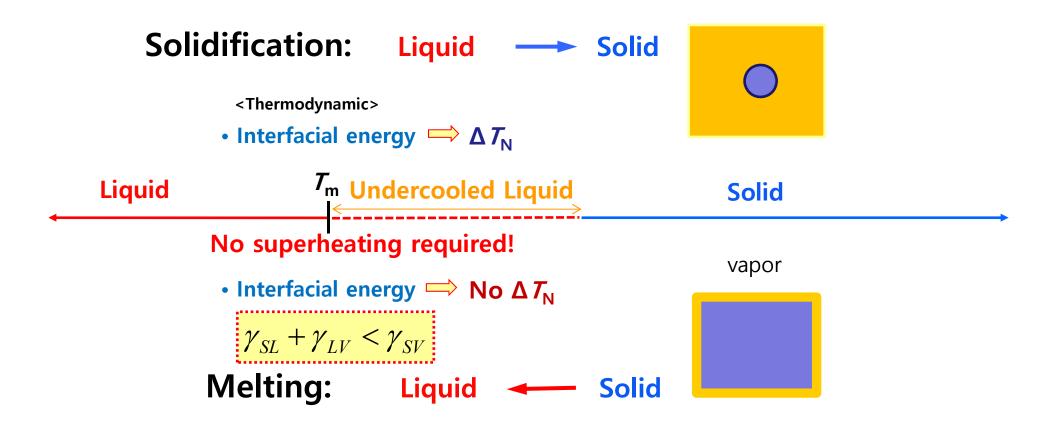
$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

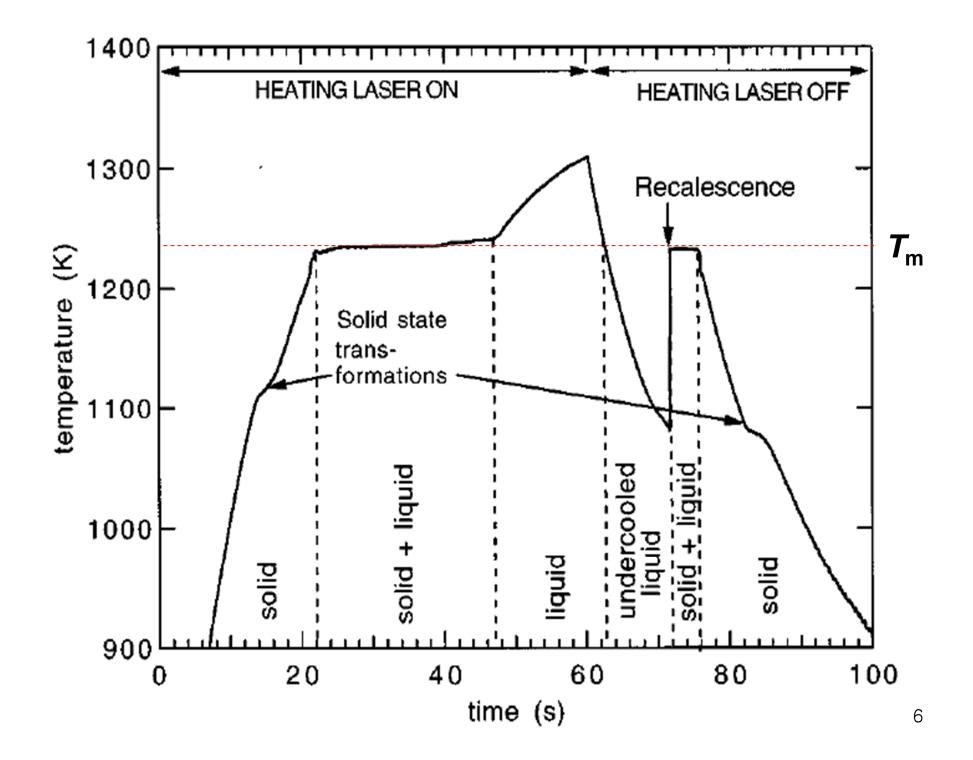
 Examples: Vaporization, Condensation, Fusion, Crystallization, Sublimation.





Melting and Crystallization are Thermodynamic Transitions





Contents for today's class

- Binary System mixture/ solution / compound Hume-Rothery Rules for Alloys

- Gibbs Free Energy in Binary System Ideal solution and Regular solution
- Chemical potential and Activity

Multi-component system:

Q1: What are binary systems? "Mixture vs. Solution vs. Compound" * Single component system One element (Al, Fe), One type of molecule (H₂O)

- : Equilibrium depends on pressure and temperature.
- * Binary system (two components) \rightarrow A, B
 - : Equilibrium depends on not only pressure and temperature but also composition.
 - Mixture ; A A, B B ; → the physical combination of two or
 A B
 B and boundaries are retained.

Alluvial mining

사금 채취

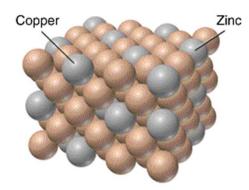
Winnowing

키질

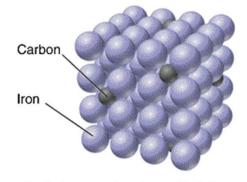
쌀 씻기

달걀 고르기

- Solution ; A-A-A; \rightarrow atomic scale mixture/ Random distribution $\begin{vmatrix} & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$

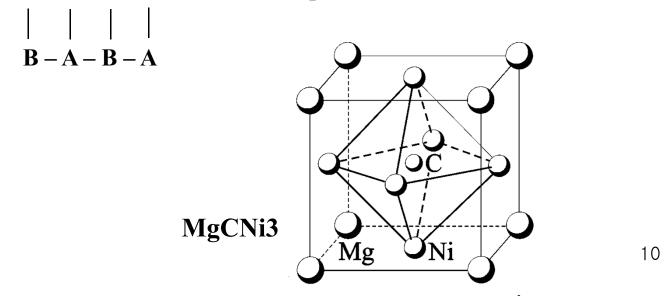


A Brass, a substitutional alloy



B Carbon steel, an interstitial alloy

- Compound ; A - B - A - B ; \rightarrow fixed A, B positions/ Ordered state



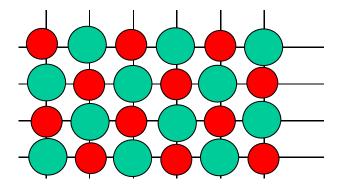
Q2: What is "Alloying"?

Ordered Compounds or Solid Solutions

<u>"Alloying": atoms mixed on a lattice</u> Ordered Compounds and Solid Solutions

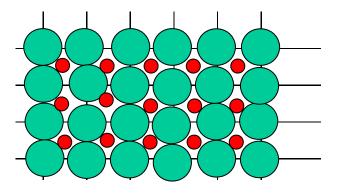
Ordered Substitutional and Interstititials Compounds

Substitutional element replaces host atoms in an orderly arrangement



e.g., Ni₃Al (hi-T yield strength), Al₃(Li,Zr) (strengthening)

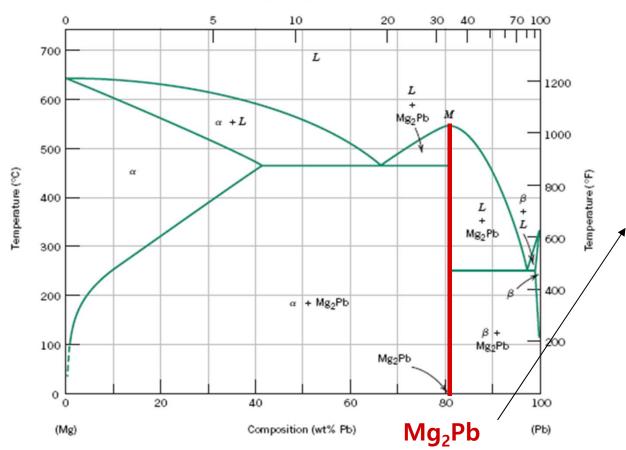
Interstitial element goes into holes in an orderly arrangement

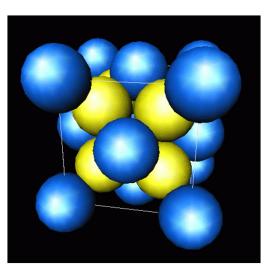


e.g., small impurities, clays ionic crystals, ceramics.

Intermetallic Compounds

Composition (at% Pb)





Antifluorite Structure:

- FCC unit cell with anions occupying FCC sites
- Cations occupying 8 octahedral interstitial sites

Intermetallic compounds form lines - not areas - because stoichiometry (i.e. composition) is exact.

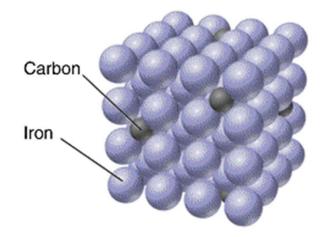
Two Possibilities for Solid Solutions: B atoms in A atoms

Substitutional 'new element replaces host atoms'

Copper Zinc

A Brass, a substitutional alloy

Interstitials 'new element goes in holes'

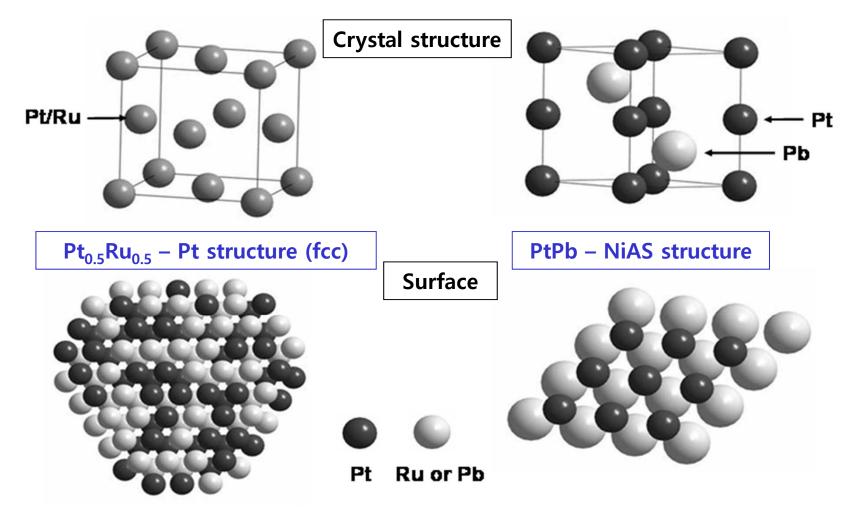


B Carbon steel, an interstitial alloy

Q3: "Solution vs. Intermetallic compound"?

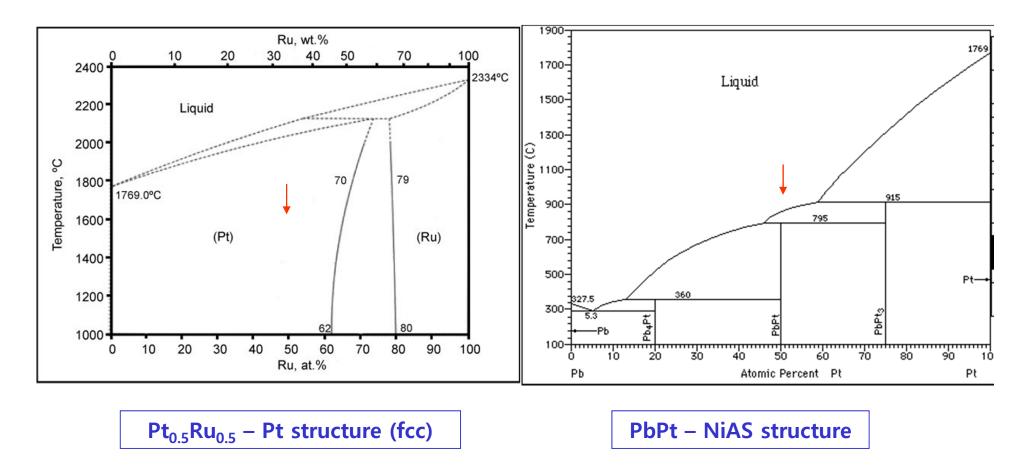
Alloying: atoms mixed on a lattice is solid solution and ordered compound

Solid Solution vs. Intermetallic Compound



ruthenium 루테늄《백금류의 금속 원소;기호 Ru, 번호 44》

Solid Solution vs. Intermetallic Compounds

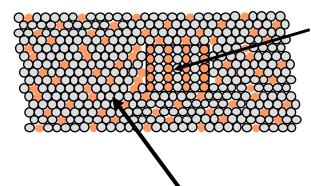


Assumption: a simple physical model for "binary solid solutions"

: in order to introduce some of the basic concepts of the thermodynamics of alloys

Particles of New Phase in Solid-Solution Alloys

• Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

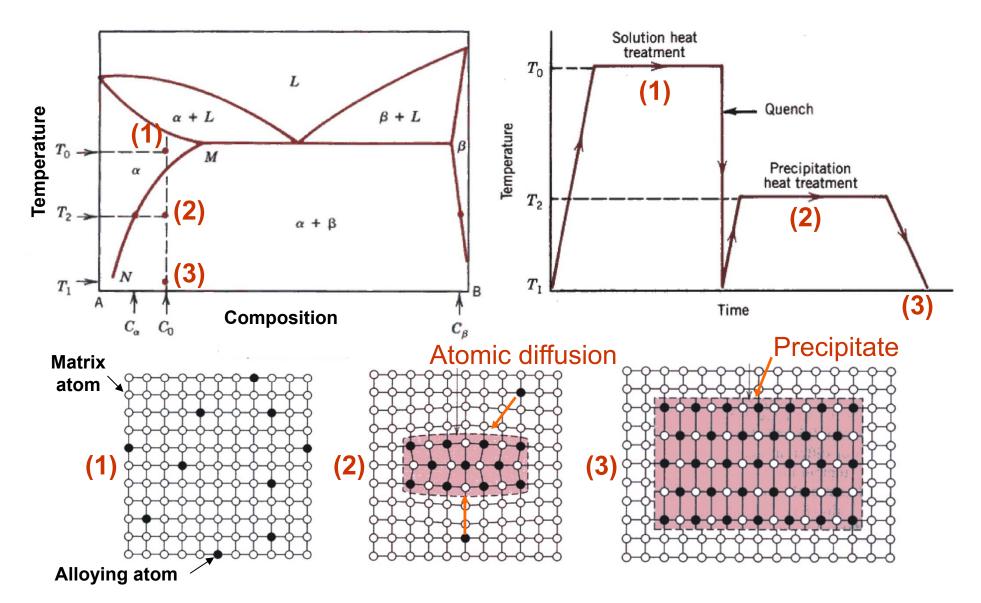


Second phase particle --different composition

--often different structure.

Solid Solution phase: B atoms in A

5) Microstructure control : 2 Secondary phase control



c. Mechanism of Precipitation

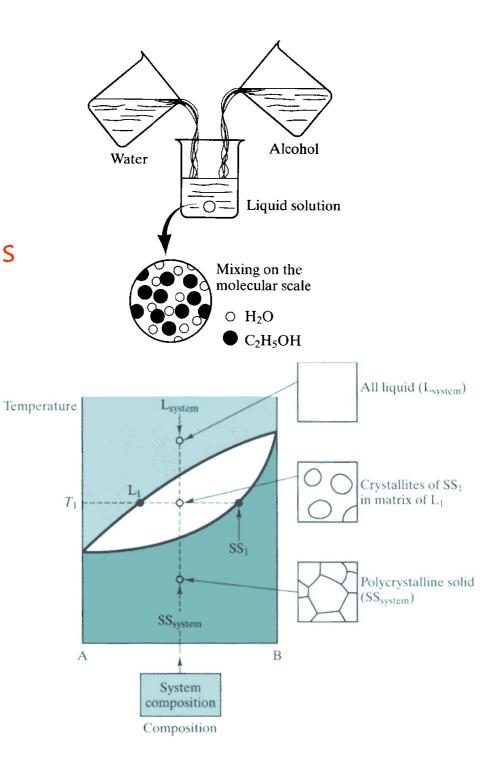
Q4: How can we classify "Solubility"?

Solubility

- Unlimited Solubility
 - Hume Rothery' Conditions
 - Similar Size
 - Same Crystal Structure
 - Same Valance
 - Similar Electronegativity
 - Implies single phase
- Limited Solubility

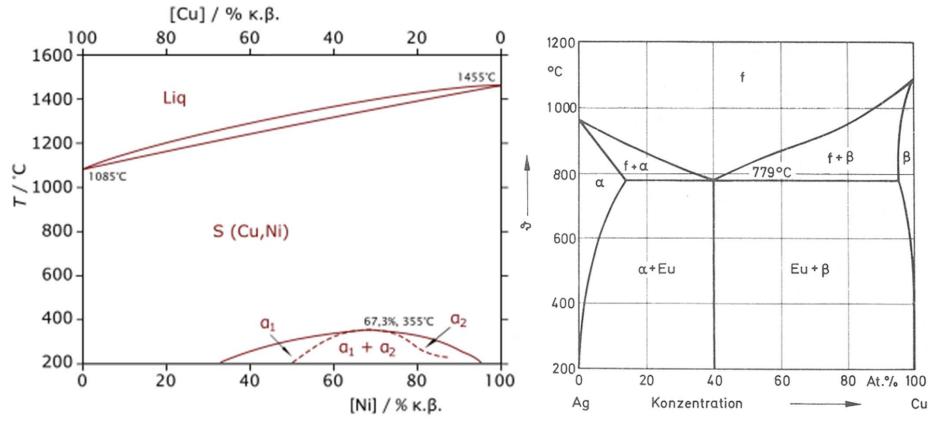
 Implies <u>multiple phases</u>
- No Solubility

 oil and water region



Cu-Ni Alloys

Cu-Ag Alloys



complete solid solution

limited solid solution

* Complete immiscibility of two metals does not exist.

: The solubility of one metal in another may be so low (e.g. Cu in Ge <10⁻⁷ at%.) that it is difficult to detect experimentally, but there will always be a measure of solubility.

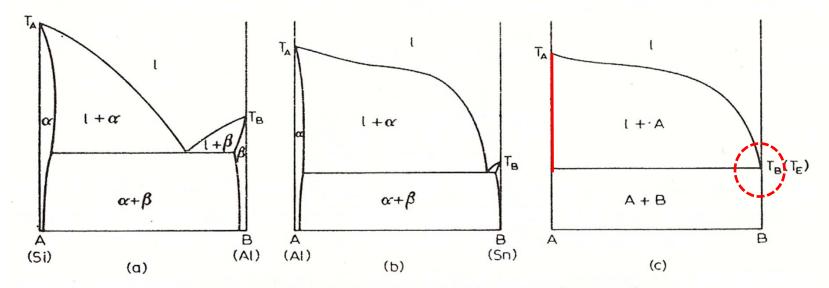


Fig. 53. Evolution of the limiting form of a binary eutectic phase diagram.

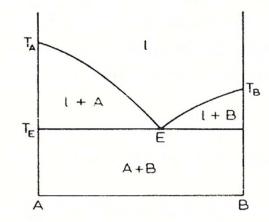
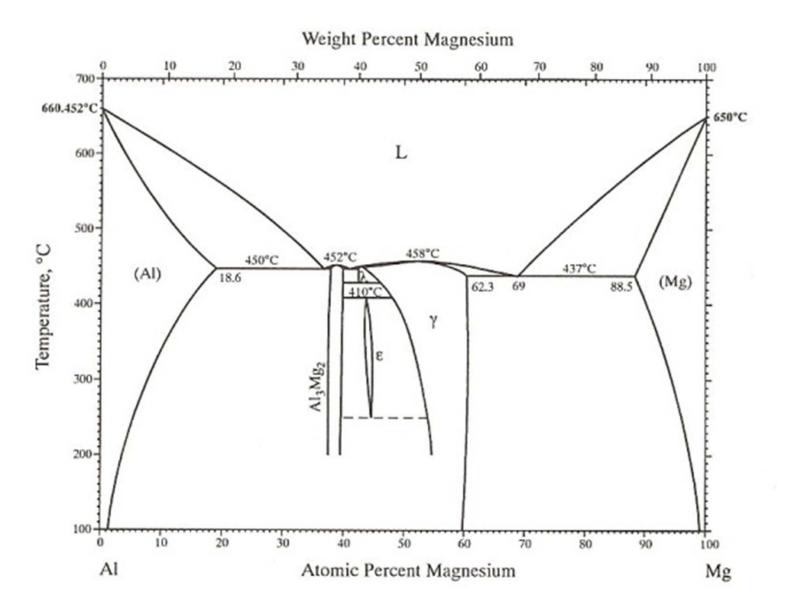
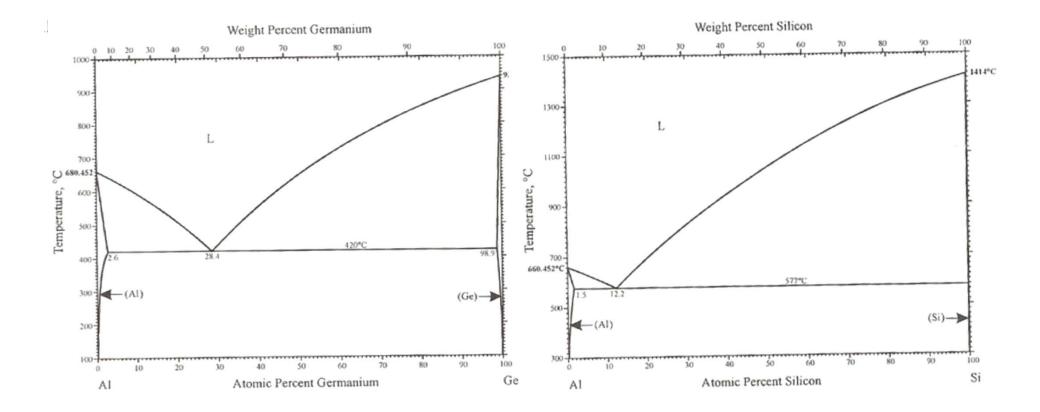
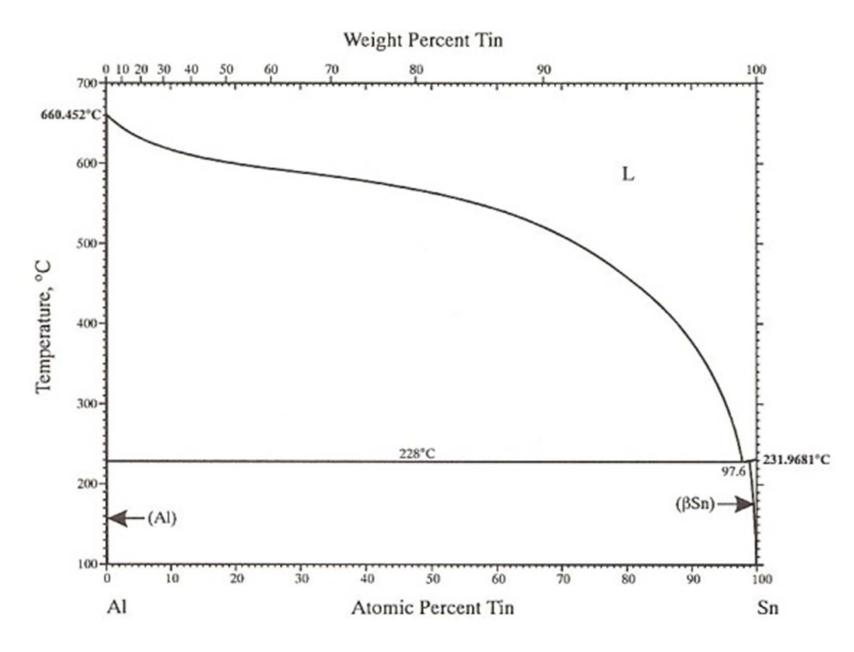


Fig. 54. Impossible form of a binary eutectic phase diagram.



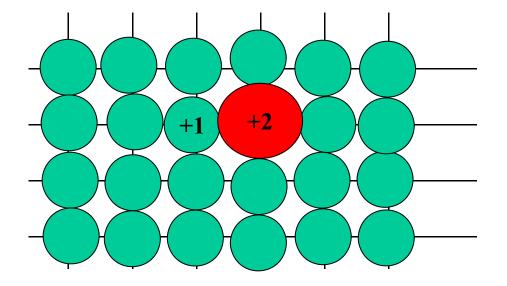




Q5: Can we roughly estimate what atoms will form solid solutions? "Hume-Rothery Rules"

Hume-Rothery Rules for Alloys (atoms mixing on a lattice)

Will mixing 2 (or more) different types of atoms lead to a solid-solution phase?



Empirical observations have identified 4 major contributors through :

Atomic Size Factor, Crystal Structure, Electronegativity, Valences

Hume-Rothery Rules for Mixing

Empirical rules for <u>substitutional solid-solution formation</u> were identified from experiment that are not exact, but give an expectation of formation. Briefly,

1) Atomic Size Factor The 15% Rule

If "size difference" of elements are greater than $\pm 15\%$, the lattice distortions (i.e. local lattice strain) are too big and solid-solution will not be favored.

DR%=
$$\frac{r_{solute} - r_{solvent}}{r_{solvent}} \times 100\%$$
 < ±15% will not disallow formation.

2) Crystal Structure Like elemental crystal structures are better For appreciable solubility, the crystal structure for metals must be the same.

3) Electronegativity DE ~ 0 favors solid-solution.

The more electropositive one element and the more electronegative the other, then "intermetallic compounds" (order alloys) are more likely.

4) Valences Higher in lower alright. Lower in higher, it's a fight. A metal will dissolve another metal of higher valency more than one of lower valency. 29

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

• Cu-Ni Alloys

Rule 1: r_{Cu} = 0.128 nm and r_{Ni} = 0.125 nm.DR%= $\frac{r_{solute} - r_{solvent}}{r_{solvent}} x100\%$ = 2.3%favorable $\sqrt{r_{solvent}}$

Rule 2: Ni and Cu have the FCC crystal structure. favorable $\sqrt{}$

Rule 3:
$$E_{Cu}$$
 = 1.90 and E_{Ni} = 1.80. Thus, DE%= -5.2% favorable $\sqrt{}$

Rule 4: Valency of Ni and Cu are both +2. favorable $\sqrt{}$

Expect Ni and Cu forms S.S. over wide composition range.

At high T, it does (helpful processing info), but actually phase separates at low T due to energetics (quantum mechanics).

Hume-Rothery Empirical Rules in Action

Is solid-solution favorable, or not?

• Cu-Ag Alloys

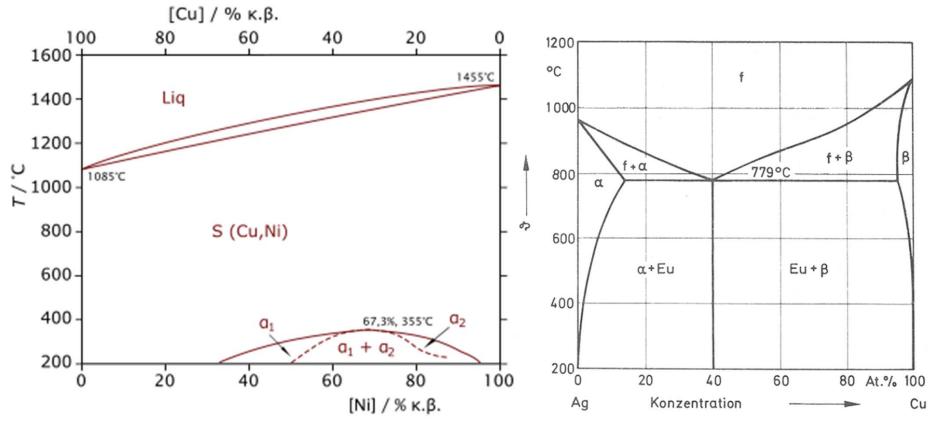
Rule 1: $r_{Cu} = 0.128$ nm and $r_{Ag} = 0.144$ nm.DR%= $\frac{r_{solute} - r_{solvent}}{r_{solvent}} x100\%$ = 9.4%favorable $\sqrt{}$ Rule 2: Ag and Cu have the FCC crystal structure.favorable $\sqrt{}$ Rule 3: $E_{Cu} = 1.90$ and $E_{Ni} = 1.80$. Thus, DE%= -5.2%favorable $\sqrt{}$ Rule 4: Valency of Cu is +2 and Ag is +1.NOTfavorable

Expect Ag and Cu have limited solubility.

In fact, the Cu-Ag phase diagram (T vs. c) shows that a solubility of only 18% Ag can be achieved at high T in the Cu-rich alloys.

Cu-Ni Alloys

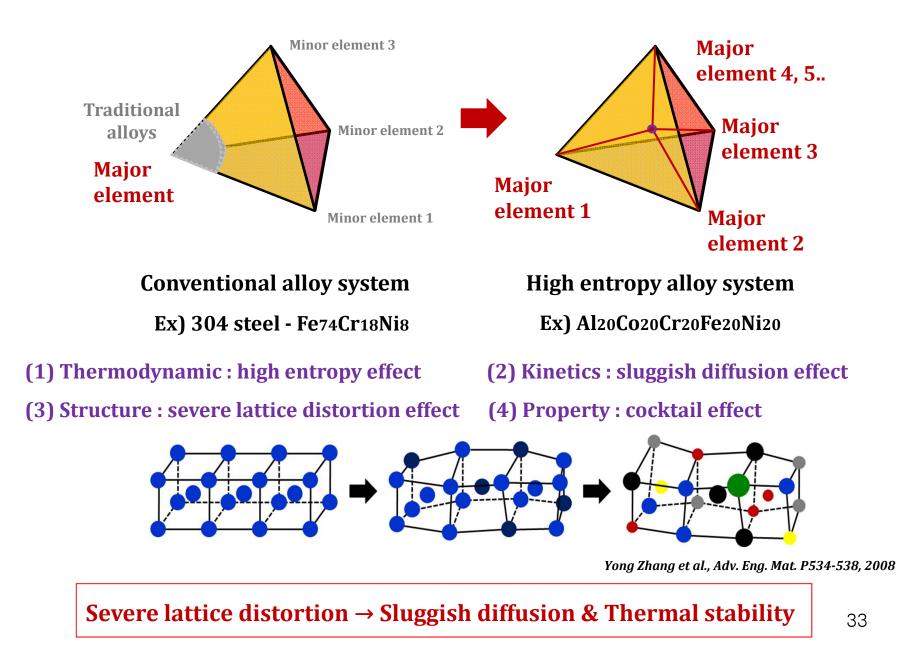
Cu-Ag Alloys



complete solid solution

limited solid solution

High entropy alloy (HEA)



Q6: How to calculate

"Gibbs Free Energy of Binary Solutions"?

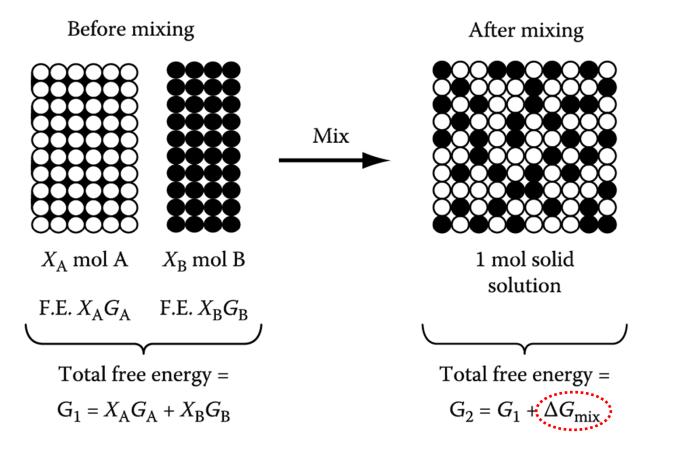
 $G_2 = G_1 + \Delta G_{mix}$ J/mol

Binary Solutions: binary solid solution/ a fixed pressure of 1 atm2) Gibbs Free Energy of Binary Solutions

* Composition in mole fraction $X_A, X_B, X_A + X_B = 1$

Step 1. bring together X_A mole of pure A and X_B mole of pure B

Step 2. allow the A and B atoms to mix together to make a homogeneous solid solution.

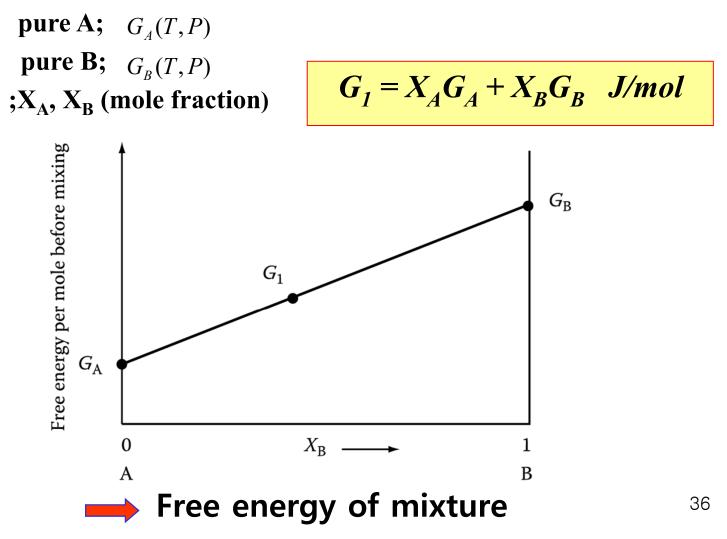


1.3 Binary Solutions

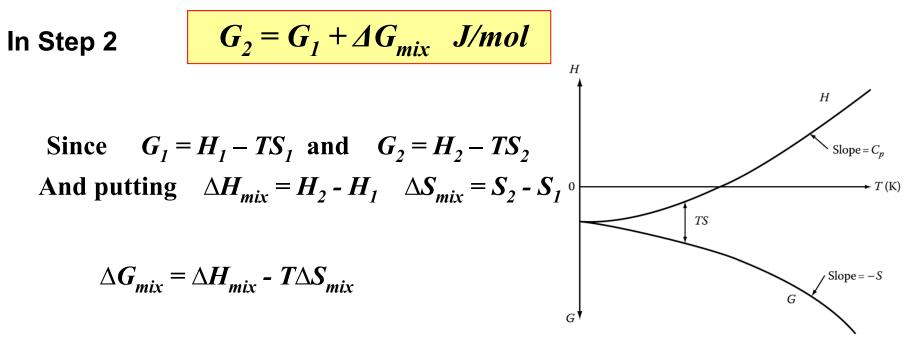
Gibbs Free Energy of The System

In Step 1

- The molar free energies of pure A and pure B



Gibbs Free Energy of The System



 $\Delta H_{mix} : Heat of Solution i.e. heat absorbed or evolved during step 2$ $\Delta S_{mix} : difference in entropy between the mixed and unmixed state.$

→ How can you estimate ΔH_{mix} and ΔS_{mix} ?

Q7: How can you estimate "ΔG_{mix} of ideal solid solution"?

$$\Delta G_{mix} = -T\Delta S_{mix} \implies \Delta G^{mix}$$

$$\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$$

Mixing free energy, ΔG_{mix}

- Ideal solution

Assumption 1; $\Delta H_{mix} = 0$:

; A & B = complete solid solution

(A,B; same crystal structure) $\longrightarrow \Delta G_{mix} = -T \Delta S_{mix} J/mol$

; no volume change

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

Entropy can be computed from randomness

by Boltzmann equation, i.e.,

$$S = k \ln w$$

- *w* : degree of randomness, *k*: Boltzman constant
- → thermal; vibration (no volume change)
- → Configuration; number of distinguishable ways of arranging the atoms

$$S = S_{th} + S_{config}$$

Ideal solution

Excess mixing Entropy

If there is no volume change or heat change,

$$w_{config} = 1 \longrightarrow before_solution_(pureA_pureB)$$

$$w_{config} = \frac{(N_A + N_B)!}{N_A! N_B!} \rightarrow after_solution_(N_A, N_B) \longleftarrow$$

Number of distinguishable way of atomic arrangement

$$\Delta S^{mix} = S^{after} - S^{before} = k \ln \frac{(N_A + N_B)!}{N_A! N_B!} - k \ln 1$$

Since we are dealing with 1 mol of solution,

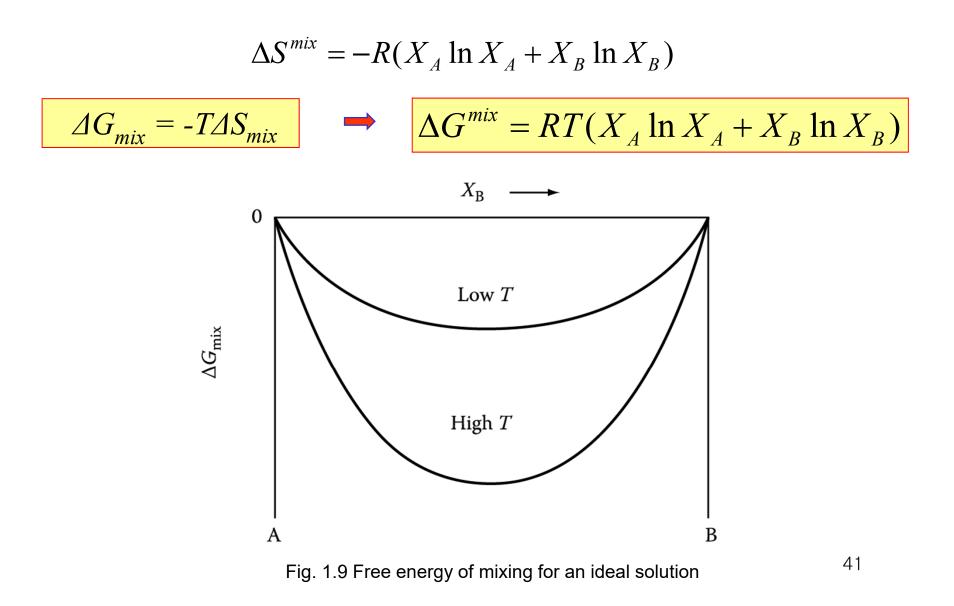
$$\rightarrow \mathcal{N}_{\mathcal{A}} = \mathcal{X}_{\mathcal{A}}\mathcal{N}_{0} , \ \mathcal{N}_{\mathcal{B}} = \mathcal{X}_{\mathcal{B}}\mathcal{N}_{0}, \ \mathcal{N}_{\mathcal{A}} + \mathcal{N}_{\mathcal{B}} = \mathcal{N}_{0}$$

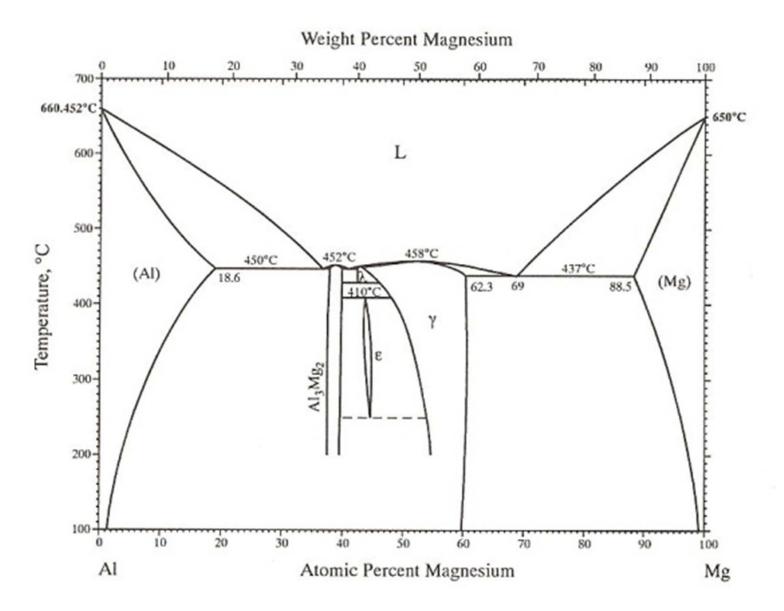
using Stirling's approximation $\ln N! \approx N \ln N - N$

and $R = kN_0$ (the universal gas constant)

$$= \kappa [(N_o \ln N_o - N_o) - (X_A N_o \ln X_A N_o - X_A N_o) - (X_B N_o \ln X_B N_o - X_B N_o)]$$
$$= -R(X_A \ln X_A + X_B \ln X_B)$$
⁴⁰

Excess mixing Entropy





Q8: How can you estimate

"Molar Free energy for ideal solid solution"?

$$G_2 = G_1 + \Delta G_{mix}$$
 \implies $G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$

$$G_2 = G_1 + \varDelta G_{mix}$$

$$G = X_A G_A + X_B G_B + RT(X_A ln X_A + X_B ln X_B)$$

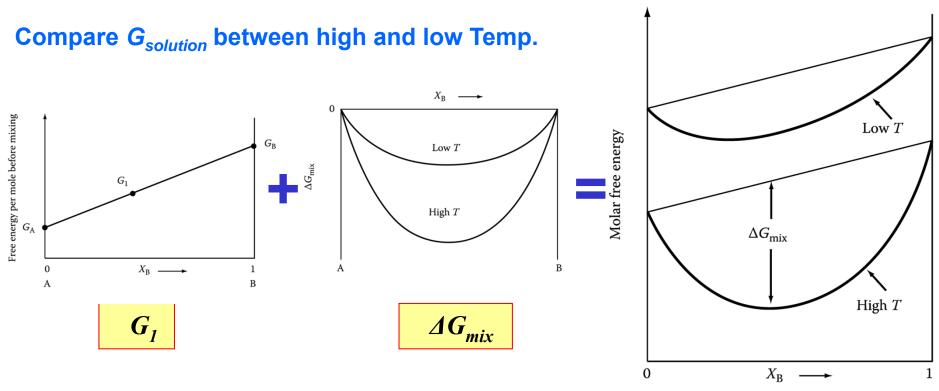


Fig. 1.10 The molar free energy (free energy per mole of solution) for an ideal solid solution. A combination of Figs. 1.8 and 1.9.

Q9: How the free energy of a given phase will change when atoms are added or removed? "Chemical potential"

G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough ($\because \mu_A$ depends on the composition of phase)

 $dG' = \mu_A dn_A$ (T, P, n_B : constant)

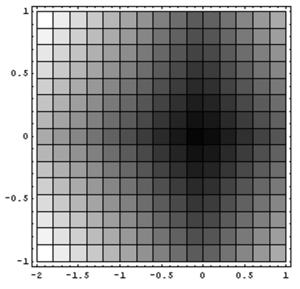
 $\mu_{\textbf{A}}$: partial molar free energy of Aor chemical potential of A

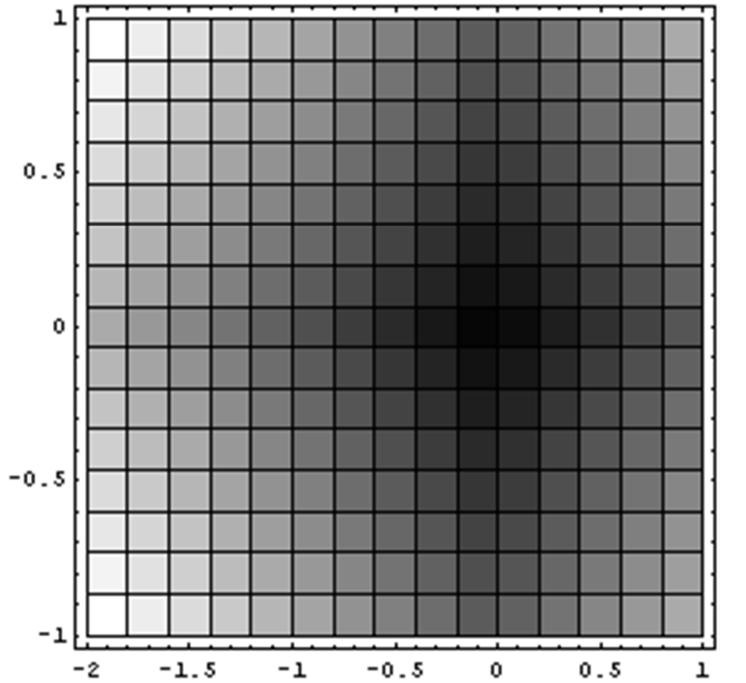
 $\mu_{\mathsf{A}} = \left(\frac{\partial \mathsf{G'}}{\partial \mathsf{n}_{\mathsf{A}}}\right)_{\mathsf{T},\mathsf{D},\mathsf{T}} \qquad \mu_{\mathsf{B}} = \left(\frac{\partial \mathsf{G'}}{\partial \mathsf{n}_{\mathsf{B}}}\right)_{\mathsf{T},\mathsf{D},\mathsf{T}}$

For A-B binary solution, $dG' = \mu_A dn_A + \mu_B dn_B$

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B \qquad ^{46}$$





G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough ($\because \mu_A$ depends on the composition of phase)

 $dG' = \mu_A dn_A$ (T, P, n_B : constant)

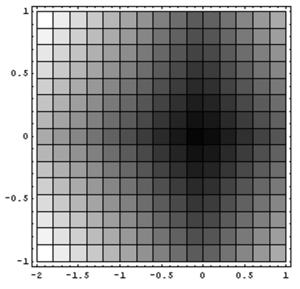
 $\mu_{\textbf{A}}$: partial molar free energy of Aor chemical potential of A

 $\mu_{\mathsf{A}} = \left(\frac{\partial \mathsf{G'}}{\partial \mathsf{n}_{\mathsf{A}}}\right)_{\mathsf{T},\mathsf{D},\mathsf{T}} \qquad \mu_{\mathsf{B}} = \left(\frac{\partial \mathsf{G'}}{\partial \mathsf{n}_{\mathsf{B}}}\right)_{\mathsf{T},\mathsf{D},\mathsf{T}}$

For A-B binary solution, $dG' = \mu_A dn_A + \mu_B dn_B$

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B \qquad ^{\scriptscriptstyle 48}$$



Q10: "Correlation between chemical potential and free energy"?

50

Correlation between chemical potential and free energy For 1 mole of the solution (T, P: constant)

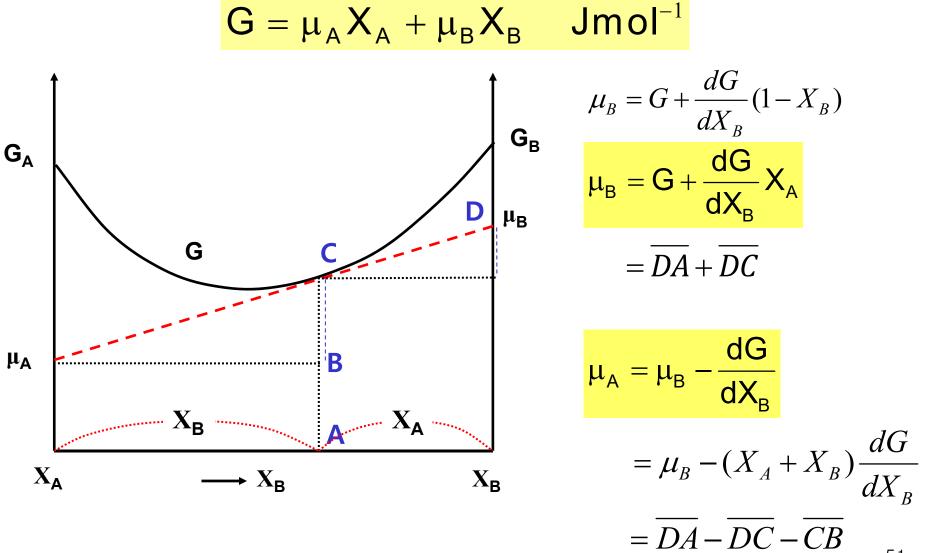
$$\begin{split} \mathbf{G} &= \mu_{A} X_{A} + \mu_{B} X_{B} \qquad \text{Jm ol}^{-1} \\ \mathbf{dG} &= \mu_{A} \mathbf{dX}_{A} + \mu_{B} \mathbf{dX}_{B} \qquad \mathbf{G} = \begin{pmatrix} \mu_{B} - \frac{\mathbf{dG}}{\mathbf{dX}_{B}} \end{pmatrix} X_{A} + \mu_{B} X_{B} \\ &= \mu_{B} X_{A} - \frac{\mathbf{dG}}{\mathbf{dX}_{B}} X_{A} + \mu_{B} X_{B} \\ &= \mu_{B} - \frac{\mathbf{dG}}{\mathbf{dX}_{B}} X_{A} + \mu_{B} X_{B} \\ &= \mu_{B} - \frac{\mathbf{dG}}{\mathbf{dX}_{B}} X_{A} \\ &= \mu_{B} - \frac{\mathbf{dG}}{\mathbf{dX}_{B}} (1 - X_{B}) \\ &\qquad \mu_{B} = \mathbf{G} + \frac{\mathbf{dG}}{\mathbf{dX}_{B}} X_{A} \end{split}$$

Correlation between chemical potential and free energy

For 1 mole of the solution

(T, P: constant)

1) Ideal solution



51

Correlation between chemical potential and free energy For 1 mole of the solution (T, P: constant)

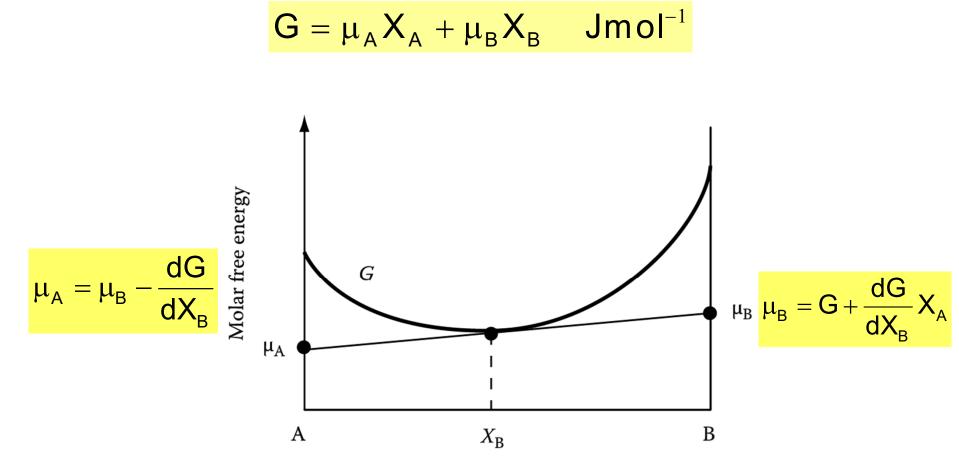


Fig. 1.11 The relationship between the free energy curve for a solution and the chemical potentials of the components.

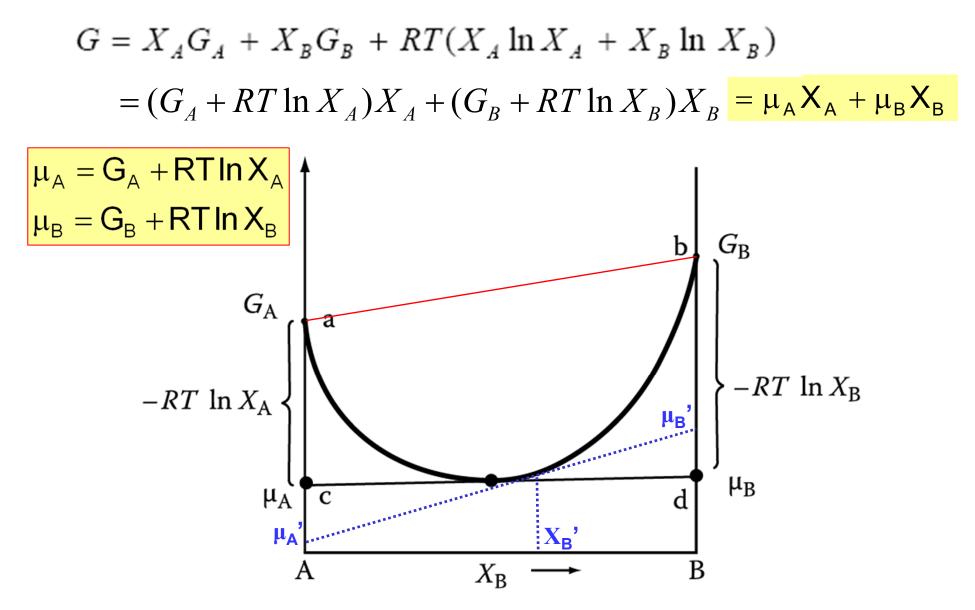


Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class

- **Binary System** mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

Ideal solution (\Delta H_{mix} = 0) $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$$

Regular solution $\Delta H_{mix} = P_{AB}\varepsilon \quad \text{where } \varepsilon = \varepsilon_{AB} - \frac{1}{2}(\varepsilon_{AA} + \varepsilon_{BB})$ $G = X_A G_A + X_B G_B + \Omega X_A X_B + RT(X_A \ln X_A + X_B \ln X_B)$

$$\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$$

 $dn_A \sim small enough$ ($\because \mu_A$ depends on the composition of phase)