2017 Fall

"Phase Equilibria in Materials"

11.29.2017 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Chapter 11. Ternary phase Diagrams Intermediate Phases

Intermdediate phases may melt congruently or incongruently. They may occur as either binary or ternary phases.

11.1. Binary intermediate phases

Fig. 78. Phase diagram with a congruent intermediate phase.

the eutectic point e5 on the quasi-bniary section δC is saddle point.

the straight line is the quasi-binary eutectic horizontal c5e5d5.

• Binary intermediate phases

a) Binary intermediate phases

: Quasi binary eutectic rxn. between Ga, As and Zn

- The region in which GaAs is the primary phase to crystallize from the liquid is lightly shaded.
- It illustrates the dominating behavior of the high melting phase GaAs in this system
- For clarity, no solid solubility between any of the phases has been indicated.

quàsi-binary eutectic $l \rightleftharpoons GaAs + Zn$	at	414 °C,
quasi-binary eutectic $l \rightleftharpoons GaAs + Zn_3As_2$	at	972 °C,
quasi-binary eutectic $l \rightleftharpoons GaAs + ZnAs_2$	at	754 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn + Ga$	at	~ 20 °C,
ternary eutectic $l \rightleftharpoons \text{GaAs} + \text{Zn} + \text{Zn}_3\text{As}_2$	at	~410 °C,
ternary eutectic $l \rightleftharpoons GaAs + Zn_3As_2 + ZnAs_2$	at	~750 °C,
ternary eutectic $l \rightleftharpoons GaAs + ZnAs_2 + As$	at	~720 °C.

As-Ga-Zn system

• Binary intermediate phases

- 3) No quasi binary eutectic : two ternary eutectic A e₁ e₂ В Ø $L \rightarrow \alpha + \beta + \gamma$ ď $L \rightarrow \alpha + \beta + \delta$ e₅: saddle point e₃
- $l \leftrightarrow \alpha + \beta + \gamma$ $l \leftrightarrow \alpha + \beta + \delta$ $l \leftrightarrow \alpha + \gamma + \delta$ $l \leftrightarrow \beta + \gamma + \delta$

- **11.1 Congruently-melting intermediate phases**
- Binary intermediate phases: Kurnakov rule
 - 1) Case1: with only binary congruent intermediate phases

 $K = E = c_2 + 1 = q + 1 = m + 1$

K = # of secondary triangles E = # of ternary eutectic points c_2 = binary congruent intermediate phases q = quasi binary reaction

m = saddle point

2) Case2: with only ternary congruent intermediate phases

 $K = E = 2c_3 + 1 = 2/3q + 1 = 2/3m + 1$

 $c_3 =$ ternary congruent intermediate phases

3) Case3: with both binary and ternary congruent intermediate phases

 $K = E = 1 + c_2 + 2c_3 = q + 1 - c_3 = m + 1 - c_3$

 Isothermal section at a temperature just above the lowest melting ternary eutectic (III)

 $l + \eta + \varepsilon$

 $\eta + \varepsilon + \gamma$

 $\beta + \delta + \varepsilon$

Ste

- Rhines has noted that the relation k=1+c₂+2c₃ can be used to check ternary isothermal section irrespective of whether they contain congruent or incongruent phases.
 - K: # of 3 phase tie triangles,

•

- C₂: # of single phase regions joined to a binary edge (excluding the α, β, γ terminal solid solutions based on components A, B and C),
- C₃: # of single phase regions completely within the ternary system.

$$K = E = 1 + c_2 + 2c_3 = 1 + 3 + 2 = 6$$

α

 $\alpha + \delta + \eta$

77

The Kurnakove and Rhines' rules are useful in checking the construction of ternary systems and their isothermal sections when intermediate phases are involved.

b) Ternary intermediate phase: <u>behaves as a pure metal</u> in that it freezes isothermally and its appearance is associated with a maximum on the liquidus/solidus surfaces

a) ternary system formed when two of the Binaries contain incongruent intermediate phases

- (a) Equilibria when the quasi-peritectic point P is located in the partial system AδC
- (b) Equilibria when the quasi-peritectic point P is located in the partial system Cδε

Tabular representation of the ternary space model (a) :

ß

b) one ternary intermediate phase and all three binary eutectic

Tabular representation of the ternary equilibria, e.g. Al-Mg-Zn system

Vertical section along tiel line 1-2-3

Chapter 12. Ternary phase Diagrams Liquid Immiscibility

Liquid immiscibility in one or more of the binary systems can lead to either three-phase or four-phase equilibria in the ternary system.

Immiscibility can arise if either monotectic or syntectic reactions occur in the binary system; true ternary immiscibility is also possible.

- 1) Liquid immiscibility in binary system
- * Monotectic reaction: Liquid1 ↔Liquid2+ Solid

* Syntectic reaction:

 $Liquid1+Liquid2 \leftrightarrow \alpha$

K-Zn, Na-Zn, K-Pb, Pb-U, Ca-Cd

2) One binary liquid miscibilty gap in ternary system

• Binary Monotectic, syntectic and metatectic reactions in combination with each other as well as with binary eutectic and peritectic reactions.

12.1. Two Binary Systems are Monotectic

• The AB and BC binaries are monotectics, the AC binary is eutectic.

* Tabular foam of the system when two binaries contain monotectics

where L_{Ga} is the heat of fusion of Ga (1336 cal/g.-atom), T_0 is the m.p. of Ga (302.93 °K), T is the ternary eutectic temperature, R the gas constant, and X_{Ga} the Ga content of the ternary eutectic E_1

12.2. One Binary System is Monotectic

Liquid immiscibility in ternary system

a) Projection of the system when only one binary is monotectic and two binaries are simple eutectic.

12.2. One Binary System is Monotectic

* Tabular foam of the system when two binaries contain monotectics

quasi-binary system Fe-Fe₃C: monotectic/ Fe-Fe₃C & Fe-FeS: simple eutectic

12.3. None of the Binaries contain liquid miscibility gaps but <u>True Ternary Liquid Immiscibility Appears</u>

12.3. True Ternary Liquid Immiscibility Appears

* Tabular foam of the system when true ternary liquid immiscibility appears

