Polym'n processes

- factors to consider
 - mechanism [radical, ---]
 - state of monomer [gas, ---]
 - form of product [bead, ---]
 - solubility
 - viscosity
- during polym'n
 - heat evolves (slowly or fast)
 - viscosity up (very much)

4 methods of polym'n

- bulk polym'n ~ monomer (+ initiator) only
 - polymer precipitates (like PVC) ~ precipitation polym'n
- solution polym'n ~ monomer(s) (+ initiator) in solvent
 interfacial polymerization (between organic/water phases)
- suspension polym'n ~ M + I in non-solvent
- emulsion polym'n ~ M and I in different phases
- step polymer by bulk or solution only
 - bulk more favored
 - Iow viscosity, low heat evolution

bulk polym'n

simple and pure

problems at high conversion

- heat, viscosity
- autoacceleration [gel effect, Trommsdorf effect]
- stop at low conversion and transfer to tower

solution polym'n

- use of solvent that dissolve M, I, and polymer
 no heat and autoacceleration problem
- isolation of polymer needed
 - evaporation of solvent or precipitation in non-solvent
- useful for polymers used as solution [paint, adhesive]
 or for cutting low MM off

suspension polym'n

- M+I suspended in (heated) water to form droplets
 - with stirring \rightarrow determine size (.1 5 mm)
 - with stabilizer (like PVA) and surfactant
- bulk polym'n in droplet
 - no heat, viscosity problem
 - □ droplet \rightarrow bead ~ `bead polym'n'
- commonly used industrially
 - for many polymers esp for PVC
 - <u>not</u> for lower-T_g (than RT) polymers

emulsion polym'n

- emulsion = colloidal dispersion < few μ m
- monomer + initiator + emulsifier + water
 - water-insoluble M forms micelle (by emulsifier)
 - water-soluble I radical initiates/terminates polym'n (in micelle)
 - latex [polymer particles in water] formed

emulsion polym'n (cont'd)

- microemulsion [mini-emulsion]
 - particle size ~ 100 nm
 - with high shear + costabilizer
- inverse emulsion
- microgel

Fig 1.32

- = micron-size crosslinked polymer
- temperature-sensitive microgel for drug delivery Chapt 5

Configuration and conformation

different configuration ~ isomer

- different polymer
- constitutional isomers
 - PVA [PVOH] and PEO
 - sequence ~ h-to-t dominant
- stereoisomers
 - geometric isomers
 - cis- and trans-1,4-PBD, -PIP

Cis-tactic

Trans-tactic

- tacticity~ stereoregularity
- > different crystallizability and properties

Ch 1 Sl 35

□ different conformation ~ conformer

- the same polymer with different shape (by bond rotation)
 conformational or configurational isomer? misnomer!
- with N bonds of length I₀
 - contour length
 - $r = N I_0 \text{ or } 0.8 N I_0 (\theta = 110^\circ)$

• end-to-end distance, $r = N^{\frac{1}{2}} I_0$

 \Box (artificial) freely-rotating chain $\langle r^2 \rangle = \frac{1 - \cos \theta}{1 + \cos \theta}$

•
$$\theta = 110^\circ \rightarrow r = 2^{\frac{1}{2}} N^{\frac{1}{2}} I_0$$

$$\langle r^2 \rangle = \frac{1 - \cos \theta}{1 + \cos \theta} N l_0^2$$

real chain with unperturbed dimension (amorphous)

•
$$r = (CN)^{\frac{1}{2}} I_0$$

• radius of gyration, $s = (CN/6)^{\frac{1}{2}} I_0$

C = characteristic ratio (5-10)

Aggregation structure

Polymers in the solid state can be either

amorphous

(semi)crystalline

crystals in amorphous ~ crystallinity

semicrystalline from melt spherulite [球晶] composed of lamella lamella [版晶] composed of folded chain

Ch 1 Sl 37

Crystallinity

- vol or wt % of crystal
- High Xtallinity gives high thermomechanical properties [heat resistance, strength].
- Xtallinity depends on
 - chain regularity p60-61
 - linearity
 - step vs chain
 - Inear vs branched
 - tacticity
 - rate of cooling
 - slow-cooling vs quenching

Amorphous state

Polymers are in the amorphous state

- at above T_m for (semi)crystalline polymers ~ melt
 rheology
 Fig 3
- at all T range for amorphous polymers
 viscoelasticity ~ time-dependent
- entanglement
 - entanglement mol wt, $M_e (= \rho RT/G_N^0)$
 - critical mol wt for entanglement, $M_c \approx 2-3 M_e$

p63 M_c at DP of 600? partly yes/no

Structural shape & materials

- linear, branched, crosslinked
- polymer materials [products]
 - plastics [resins]
 - thermoplastic thermoplastics
 - fusible, soluble
 - thermosetting thermosets
 - infusible, non-soluble
 - fibers
 - \Box (cold) drawing \rightarrow orientation
 - rubbers [elastomers]
 - flexible chains
 - crosslinked vulcanization

Fig 1.48

Ch 1 SI 40

Regions of viscoelastic behavior

Ch 1 Sl 41

glassy – T_g – rubbery plateau – rubbery flow – liquid flow
 local – part of chain – entanglement – disentangle - slip

Thermal transitions

$\Box T_m[T_f]$

- melting temperature
 - for crystallites to melt [fuse]
- melting transition is a 1st-order phase transition

$$\left(\frac{\partial \mathbf{G}}{\partial \mathbf{P}}\right)_T = \mathbf{V}$$

(1) 'europed (1) '

Temperature, (T)

T_m0

- equilibrium melting temp
- T_m of perfect crystal
 - infinitely thick crystal
 - of infinitely long chain

Ch 1 SI 43

\Box T_m or T_a dictate use temperature range. Read p67-68

TABLE 1.5 Glass Transition Temperatures (Tg) and Crystalline Melting Temperatures (Tm) of Polymers

Polymer	$T_{\rm g}$ (°C)	$T_{\rm m}(^{\circ}{\rm C})$
Polyethylene (high density)	- 115	137
Polyoxymethylene	- 85	181
Polyisoprene (natural rubber)	- 73	28
Polyisobutylene	- 73	44
Polypropylene	- 20	176
Poly(vinylidene chloride)	- 19	190
Poly(chlorotrifluoroethylene) (kd-F)	45	220
Poly(hexamethylene adipamide) (nylon-6,6)	53	265
Poly(ethylene terephthalate) (Terylene, Dacron)	69	265
Poly(vinyl chloride)	81	212
Polystyrene	100	240
Poly(methyl methacrylate) (Perspex, Lucite)	105	200
Cellulose triacetate	105	306
Polytetrafluoroethylene (Teflon)	127	327

- semicrystalline polymers ~ below T_m or betw T_q and T_m
- elastomer or rubber ~ above T_a

Factors affecting T_q

chain flexibility ~ intramolecular p70-71

- backbone flexibility
 - effect of O, Si, Ph, ---
- (substituent) steric effect
 subs size ↑ → T_a ↑
- configurational effect
 cis < trans, syndio > iso
- intermolecular interaction
 - dispersion [VdW] force □ subs size $\uparrow \rightarrow T_g \downarrow$
 - dipole interaction
 main-chain and side-chain polarity
 - H-bonding


```
PE < PP < PS < PVN
PMA < PMMA
PE < PP > PB > C3 -- < C8 < C9
PE < PVC > PVDC
PA66 \approx PET
```

Factors affecting T_m

- □ symmetry
 - linear > side groups
 - cis < trans; ortho < para</p>
- chain flexibility
 - stiffer > flexible
- intermolecular interactions
 - VdW, dipole, H-bonding
- tacticity
- branching
- mol wt

Thermodynamics of T_m

□
$$\Delta G_m = \Delta H_m - T\Delta S_m$$

□ $T_m^0 = \Delta H_m^0 / \Delta S_m^0 \leftarrow \Delta G_m = 0$
■ $T_m^0 =$ equili melting temp

- ΔH_m related to interchain interaction, CED
- ΔS_m related to chain flexibility

Ch 1 SI 47

Relation between T_g and T_m

- **D** Both of T_g and T_m determined by
 - chain flexibility and
 - intermol interaction.
- Two-thirds rule
 - T_g ≈ 2/3 T_m typically
 PEster, nylon, ---

Ch 1 SI 48

- T_g ≈ 0.5 T_m for linear polymers [symmetrical]
 PE , POM , PVDF, ---
- T_g ≈ 0.75 T_m for vinyl polymers [asymmetrical]
 PS, PVC, PMMA, ---
- T_g ≈ 0.8 T_m for unusual polymers
 branched polymers, PC, PPO, ---

Improving performance

high-performance structural polymers

- high thermomechanical properties
 - heat resistance [HDT] and strength [TS]
- cf> engineering plastics
- for high(er) performance
 - high crystallinity
 - annealing
 - crosslinking
 - chain stiffening
 - substituents
 - rings in backbone
 - ladder

Crosslinking of polymers

- network structure
 - rubbers, thermosets
 - What you see is one molecule.
 - not fusible, not soluble

- formed by curing [setting, hardening] of prepolymers
- □ method 1 ~ reaction of (multi-)functional groups
 - for thermosets
 - phenolic and amino resins [PF, UF, MF]
 - epoxies, unsaturated PEsters, PU foams, alkyds ---
 - curing with or without heat, w/ or w/o hardener
 - many for composite matrix
 - Fig 1.57-63 and Chapt 4

Melamine

method 2 ~ vulcanization

- for elastomers
- with peroxide ~ PE, polyolefins, silicones eqn (1.66-72)
 - stable but expensive
- with sulfur ~ natural rubbers, SBR --
 - cheap and common
 - \square with accelerators, activators Chapt 2
- with oxide/amine ~ fluororubbers, acryl rubbers, eqn (1.73) and Chapt 4
 ≠ aging (of glassy polymer)
- <cf> oxidative Xlinking = aging (of rubber)
 - undesirable
 - prevented by antioxidant

silicon

silicone = siloxane polymer

(b)

(C)

(a)

(d)

S_n S_n

(e)

method 3 ~ radiation

- with (low-dose) ion beam
- for PE and vinyl polymers
 - not for 1,1-disubstituted or PVC ~ degradation Table 1.6
- mechanism similar to peroxide vulcanization
- useful for coatings, adhesives, (packaging) films

```
\sim CH_2CH_2 \sim \xrightarrow{hv} \sim CHCH_2 \sim + H
```

```
\sim CH_2CH_2 \sim + H \rightarrow \sim CHCH_2 \sim + H_2
(neighboring chain)
```

eqn (1.74-76)

method 4 ~ photochemical

- with UV/vis
- useful for photoresists, finishes, --
- with external or internal photosensitizer eqn (1.79-80)

$$\begin{array}{ccc} O & O \\ \parallel & \parallel \\ Ph - C - Ph \xrightarrow{hv} (Ph - C - Ph) * \xrightarrow{RH} Ph - C - Ph + R^{\circ} \\ [Ph = phenyl (C_{6}H_{5}) group] \end{array}$$

□ method 5 ~ ionic

- ionomers
- thermally reversible Xlinks

Solubility of polymers

Ch 1 Sl 54

$$\Box \ \Delta G_{\rm mix} = \Delta H_{\rm mix} - T \Delta S_{\rm mix} \ Eqn(1.87)$$

- $\Delta S_{mix} > 0$
 - $\Box \Delta S_{\rm m}^{\rm comb} = -\mathbf{k}[N_1 \ln \phi_1 + N_2 \ln \phi_2]$
 - much smaller for polymer solutions
 - Flory-Huggins theory
- $\Delta H_{mix} \ge 0$
 - "like dissolves like"
 - $\Box \Delta H_{mix} = 0$ when solute is the same to solvent
 - □ if not, $\Delta H_{mix} > 0$
 - $\square \Delta H_{mix} < 0$ only when specific interaction like H-bonding exists
- For solution, $\Delta H_{mix} < T \Delta s_{mix}$
 - \square ΔS_{mix} not much dep on type and MW (> $M_{th})$ of polymers

Solubility parameter

- $\Delta H_{\text{mix}} = V_{\text{mix}} \phi_1 \phi_2 (\delta_1 \delta_2)^2$ Eqn(1.86), by Hildebrand
 - $\bullet \delta = (\Delta E/V)^{\frac{1}{2}} = [(\Delta H_{vap} RT)/V]^{\frac{1}{2}}$
 - $\Box \Delta E/V =$ cohesive energy density [CED]
 - $\delta = \text{solubility parameter} \qquad [MPa^{\frac{1}{2}}] = [(1/2)(cal/cm^3)^{\frac{1}{2}}]$

smaller ΔS_{mix}

 δ of PP = 9.2

- \Box δ of solvents Table 1.8 δ of polymers Table 1.9 (RT, amorphous)
- $\Box \Delta \delta < 1$ (cal/cm³)^{1/2} for solution of polymer/solvent
 - $\Delta\delta$ < 10 for solvent/solvent
- semicrystalline polymers are not soluble δ of C₆H₆ = 9.2
 - due to positive ΔH_{fusion}
 - for solution, high Temp and/or specific interaction

Determination of δ

- from ΔH_{vap} data ~ for low mol wt, not for polymers
- experimentally with solvent of known δ
 - swelling
 - viscosity

\square δ from group contribution

$$\delta = \frac{\rho}{M} \sum F \quad \text{Eqn(1.88)}$$

\square F ~ molar attraction constant Table 1.7; Do Example 6

solubility map

$$\Delta E = \Delta E_{d} + \Delta E_{p} + \Delta E_{h} \quad Eqn(1.90)$$

$$\delta^2 = \delta_d^2 + \delta_p^2 + \delta_h^2$$

constructing map with

$$\Box$$
 δ_d , δ_p , $\delta_h \sim 3$ -D, Hansen Table1.10

$$\Box$$
 f_d, f_p, f_h ~ triangle Eqn(1.94)

□
$$\delta_v$$
 [= ($\delta_d^2 + \delta_p^2$]^{1/2}], $\delta_h \sim 2-D$

