Corrosion of polymers

corrosion = deterioration by electrochemical reaction with water, alkali, or acid

□ C−C, C−X, C−O bonds are resistant to corrosion.

- Polymers containing amide, ester, or urethane may be attacked by hot acids or alkalies, and hydrolyzed.
 - due to C=O
 - backbone or side-chain

Thermal stability

□ resistance to degradation by heat [열안정성]

- ▶ heat resistance [내열성]
 - resistance to softening by heat
 - ▹ depends on T_g or HDT

groups

- time-temperature zones
- 50% property in air
- Table 1.13

Ch 1 Sl 60

thermal stability depends on the dissociation energy of the weakest bond

E_{diss} vs T_{1/2}
 E_{diss} = bond dissociation energy

$$\Box T_{1/2} = half weight at \frac{1}{2} hr$$

high-temperature polymer

- highly heat-resistant? thermally stable? parallels!
- polymers with high (aromatic) ring content
 - polyphenylene, PPS, PPO
 - aromatic polyesters (Vectra)
 - aromatic polyamides (Kevlar)
 - polyimides
 - polybenzimidazoles
- ladder polymers
- inorganic atom ~ Si, P, ---

OCOR

vvvv + ZnCl

thermal degradation mechanisms (of vinyl polymers)

■ side-chain cleavage $(-CH_2 - CH_2) \rightarrow (-CH_2 - CH_2) \rightarrow (-CH_2 - CH_2) + HCI$

heat stabilizer for PVC

random chain scission

- depropagation [depolymerization]
 - \blacksquare 1,1-disubstituted ~ low $\Delta H_{\text{polym'n}}$ ~ low T_{c}

$$\mathcal{V} - CH_2 \xrightarrow{R} - CCH_2 \xrightarrow{R}$$

□ other polymers? p100-101

Flame [fire] retardation

burning: 2-step process

- pyrolysis [decompose] \rightarrow 'char' + gas Q₁
- combustion [ignite-inflame] \rightarrow combustion product + Q_2

□ for flame retardation [high LOI]

- adding flame retardants later
- fire-resistant polymers
 - low gas [Q₂] and high char yield
 = lower H/C ~ rings
 - High-Temp polymers are fire-resistant.
 - inhibiting gas ~ PVC

Fig 3.80 p390

Ablation

heat protection by sacrificial loss of material

ablative material

- decompose to gas and porous char (protective layer)
- absorb and dissipate energy
- useful in space shuttles
- phenolic resins
- intumescent coating
 - > fire-protection by swelling

Fig 1.72

Deterioration of polymers

- Ioss of property and/or dimension by
 - heat
 - UV or other radiation
 - O_2 or $O_3 \sim$ usually combined with heat or radiation
 - water or chemicals
 - bacteria
- deterioration through
 - degradation
 - oxidative degradation (eqn 1.101-108) ~ chain reaction □ $R^{\bullet} + O_2 \rightarrow ROO^{\bullet} \rightarrow ROOH + R'^{\bullet} \rightarrow RO^{\bullet} + ^{\bullet}OH$
 - hydrolysis ← hydrolyzable group [ester, amide, --]
 - crosslinking

Stabilization 1: antioxidants

- □ 2 types of AO [산화안정[방지]제]
 - primary antioxidants = radical scavenger
 - stop chain reaction
 - hindered phenols, 2° aromatic amines

Ch 1 SI 66

Stabilization 1: antioxidants

2 types (cont'd)

secondary antioxidants (= hydroperoxide scavenger)

- decompose hydroperoxide
- thioethers, thioesters, phosphates

 $P(OR')_3 + ROOH \rightarrow OP(OR')_3 + ROH$

Eqn 1.113,114

(a)	Thioethers, e.g.:

$CH_2CH_2 - COOR$	R
S	$-C_{12}H_{25}$
$ $ $CH_{2}CH_{2} - COOR$	- C ₁₃ H ₂₇
	- C ₁₈ H ₃₇

(b) Phosphites and phosphonites, e.g.:

Fig 1.75

synergistic AO

- homosynergism
 - **\square** 2 or more AOs with the same mechanism (1° or 2°)
- heterosynergism
 - combination of 1° and 2° AOs (2° AO called synergist)
 - BHT/DLTDP ~ most popular combination, approved by FDA

combination of AO and other stabilizer(s) (like UV stabilizer)

□ AO for polymers pp110-118

polyolefins

□ mixture of phenols and phosphates, commonly
 □ HDPE < PP ≈ LDPE ← tertiary C, Xtallinity

- styrenics
 - □ `crystal' PS < ABS \approx HIPS \leftarrow double bonds
- PC
 - yellowing ~ phosphates
- polyacetal ~ depolym'n
 - \square hindered phenol + amines ~ amine react with CH₂O

□ AO for polymers (cont'd)

PVC

□ HCl, =, • ~ Pb comp'ds, reactive plasticizers

$$CI + \cdots CH_2 - CH \cdots - HCI \rightarrow \cdots CH - CH \cdots \rightarrow \cdots CH = CH \cdots + CI$$

rubber

- ozonolysis of double bond when stretched
- staining [color, C] or non-staining

Transition metals catalyze radical rxn of hydroperoxide (even with AO).

 $ROOH + M^{n+} \rightarrow RO^{\bullet} + M^{(n+1)+} + OH^{-}$

 $\text{ROOH} + \text{M}^{(n+1)+} \rightarrow \text{ROO}^{\bullet} + \text{M}^{n+} + \text{H}^{+}$

- induce metal-catalyzed oxidation of polymers
- esp critical in polyolefin cable insulation
- needs metal deactivators
 - chelating agents
 - `copper inhibitor' in cable insulating PO

Stabiliz'n 2: Light [UV] stabilizer

Ch 1 SI 72

photo-oxidation by UV (around 300 nm)

Hydroperoxides ROOH Carbonyl compounds > C = O Catalyst residues (Ti, ...) Charge transfer complexes (RH, O₂)

$$\xrightarrow{\Delta,h\nu} Free radicals M^{n+}/M^{(n+1)+} (R, RO, (1.118) HO, HO_{2},...)$$

critical in outdoor use

- □ protect with 광안정제 by
 - preventing UV absorption UV absorber
 - deactivation of initiation ← `quencher'
 - decomposing ROOH ~ same to AO
 - scavenging radical ~ same to AO

UV absorber

hydroxybenzophenones, hydroxyphenyl benzotriazoles

R determines absorption wavelength compatibility
 UV energy consumed by reaction, (and not produce •)

□ quencher [Q]

- takes over energy from K*
 - □ K ~ chromophore
 - by 'Forster mechanism'
- then, release energy
 - by heat or fluorescence
- metal [Ni or Co] phenol complexes

carbon black

sometimes useful

HALS

hindered amine light stabilizer

R°

R

very effective

hv

R

OR

=NH

stabilize by 'Denisov cycle'

RO₂

UV stabilizers for polymers pp128-131

- polyolefins ~ UV absorber + Ni quencher used; HALS more effective
- styrenics ~ HIPS and ABS for indoor use only; UV absorber + HALS can be used for outdoor use
- PVC ~ UV absorber for outdoor; HALS <u>not</u> effective
- PC ~ yellowing;
 UV absorber effective
- PMMA ~ more stable [transparent]; absorber and HALS effective
- polyacetal ~ unstable; carbon black; absorber/HALS
- PU ~ aliphatic DI/ester diol stable; HALS effective

Diffusion and permeability

important in

- processing ~ plastisol, casting, lubrication
- usage ~ membrane (selectivity), packaging (barrier)
- diffusivity
 - size of gas (and liquid)
 - state of polymer ~ Xtallinity, T_q
- permeability
 - absorption-diffusion-desorption
 - $\bullet P = D S Table 1.17$
 - $P = F_{polymer} G_{gas} H_{p-g}$ Table 1.18 • $G \sim size$, bp, polarity
 - permeability and selectivity Table 1.17
 trade-off between P and α

Compounding

= mixing polymer with other ingredients

- stabilizers
- modifiers
- □ fillers [충진제]
 - for reinforcing [보강제] a/o cost
 - organic or inorganic
 - fibrous [FRP] or particulate
 - macro-, micro-, or nano-composite
 - Table 1.19-20

- = organic or polymeric compound
 - to improve flexibility and/or processability
 - to lower T_g a/o ductile-brittle transition temp
- primary vs secondary plasticizer
 - primary ~ fully miscible with polymer
 - secondary plasticizer
 - partially miscible to polymer, miscible to 1° plasticizer
 - used with primary plasticizer
 - extender plasticizer, internal lubricant
 - to optimize cost, viscosity and processability
 - chlorinated HC, linseed oil

most extensively used for PVC

two categories

plasticizers =
environmental hormones

- □ solvent-type ~ aromatic, easy gelation
- oil-type ~ aliphatic, screening, cold-resistant
- □ in practice, intermediate betw the two ~ DOP, DBP etc

choice of plasticizer

- solubility parameter ~ not too far, not too close
- popular plasticizers
 - phthalates ~ DOP, DDP, ---
 - phosphates ~ TCP, TOP, ---
 - fatty acid esters ~ sebacates, adipates, ---
 - polymeric ~ oligomeric; polymeric
 - HC and Cl-HC ~ extenders
- antiplasticizer

Polymers are insulators.

- Iow surface conductivity → build-up of static [frictional] electricity → shock, dust, clinging
- □ AA ~ conducting or hygroscopic compounds
- external vs internal
 - external ~ applied on the surface
 - internal ~ compounded during or before processing
 has to be migrated to the surface ~ partial miscibility
- □ ionic vs non-ionic
 - ionic ~ N, S, or P compounds
 - non-ionic ~ organic-OH

$$\begin{array}{c} \mathsf{CH}_{3} \\ | \\ [\mathsf{C}_{11}\mathsf{H}_{23}\mathsf{CONHCH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2} \underbrace{-\mathsf{N}}_{N} \underbrace{-\mathsf{CH}_{3}}_{|}^{+} \mathsf{CH}_{3}\mathsf{SO}_{4}^{-} \\ | \\ \mathsf{CH}_{3} \end{array}$$

burning

- pyrolysis \rightarrow combustible gas + char
- combustion \rightarrow heat
- □ flame retardants Appendix A3
- halogen comp'ds
 - halogenated HC, --- ~ releasing HX
 - HX stop radical chain reaction and block oxygen

Inhibition $HO' + HBr = H_2O + Br'$

efficiency ~ dep on C-X bond strength

Aliphatic bromides > aliphatic chlorides = aromatic bromides > aromatic chlorides • not for indoor use

P comp'd

- carbonization [charring] + forming protective layer
 - by the reaction with polymer
 - more effective for polar polymers, less for POs
- phosphates, phosphites, ---
- sometimes (for non-polar) with halogenated HC + Sb₂O₃
 ~ synergistic
- X/Sb mixture
 - Sb₂O₃ as a synergist
 - reduces the amount of halogen

 $Sb_2O_3 + 2HCl \rightarrow 2SbOCl + H_2O$

inorganics

MDH, ATH, --

 $2\text{Al}(\text{OH})_3 \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O}$

nanoclays, layered double hydroxide [LDH]

- layering in the char
- intumescent
 - forming gas ~ H₂O, NH₃
 - helps carbonization

Smoke suppressants

smoke

- polymer as a fuel \rightarrow CO and black smoke
- small in PO, depolymerization polymers
- large in PVC, aromatic polymers

□ SS

• inducing crosslinking (\rightarrow char) ~ Mo, Zn comp'd

 $2ZnO.3B_2O_3 + 12HCl \rightarrow Zn(OH)Cl + ZnCl_2 + BCl_3 + 3HBO_2 + 4H_2O$

- ZnCl₂ ~ a Lewis acid ~ catalyst of Friedel-Craft alkylation
- producing H₂O ~ ATH
 - SS awa FR

Antimicrobials

- has to be migrated onto the surface
- protective or biocidal
- types
 - organics or organometallics
 - some toxic
 - some leaching out
 - inorganics
 - metals [Ag, Zn, Ti, ---] on substrates [zeolites, silica, ---]
 - not toxic
 - Iong-lasting

Toxicity

- □ Most polymers are <u>not</u> toxic.
 - Residual monomers, catalysts, and additives may be toxic.
- biomedical polymers
 - packaging, tubing, bags ~ PE, PP are OK; PVC
 - implants ~ epoxy, PU, silicone
 - adhesives ~ cyanoacrylates; butyl, octyl, not methyl
 - dental materials ~ bis-GMA

- nanomedicine
- drug delivery

biodegradable polymers

in medicine [sutures, scaffolds, DDS] ~ PLA, PGA, PGL

oxo-(bio)degradation

- adding degradent ~ programmed degradation
- complete degradation to $H_2O + CO_2$