
Formaldehyde resins

PF or phenolic resin

hard, heat- and chemical-resistant thermoset

prepolymers

- resole [resol]: aldehyde xs, basic condition, polyalcohol, 3-4 rings, liq. or solid, cured by heat ~ one-stage resin ~ coating, laminate
- novolac [novolak]: phenol xs, acidic condition, polynuclear phenol, 5-6 rings, solid, cured by amine (hexa) ~ two-stage resin ~ molding

UF resin

- $H_2N-CO-NH_2$ (f=4) + CH_2O
- addition-condensation
- superior to PF
 - colorable, electrical insulation, water-stability
- adhesive for wood, molding
- □ MF resin

UF + MF = amino resins

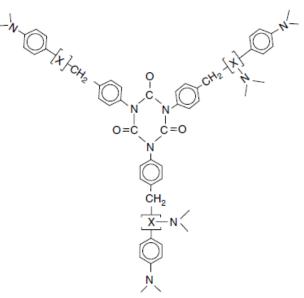
- melamine ~ f=6
- better than UF and expensive
 - hard, water-, heat-, staining-, electrical-resistance
 - houseware, tableware, tabletop

- diisocyanate [DI] (Fig 4.28) + polyol (Fig 4.29)
- crosslinked rubber
 - Fig 4.30
 - high strength/stability rubber, expensive
 - roll mill or RIM ~ automotive and shoe industry

TPU

- soft segment ~ long-chain polyol
- hard segment ~ urethane or urea block
- molded for engineering rubber applications
- TPU fiber ~ Spandex, Lycra
 - dry-spun of amide solution

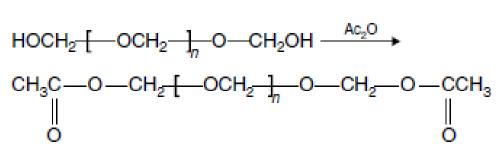
foam


• flexible ~ high M_c , foaming by water (+ HCFC)

cushion, cushioned packaging

- (semi)rigid ~ low M_c, multifunctional DI
 - engineering foam, insulation
- polyisocyanurate foam
 - better fire, thermal resistance

coating


- based on aliphatic DI
- flexible, tough, yellowing-resistant

polyethers

polyacetal [POM]

- polym'n of formaldehyde or trioxane
- low $T_c \rightarrow$ depolym'n
 - end-capping

- copolym'n w/ other ether like EO
- = engineering plastic with high X_c , T_m
- applications ~ parts ~ compete with nylon
 - stiffer, better fatigue, water-resistant (than PA66)
 - worse impact

□ PEO [POE]

water-soluble, biocompatible

PEG ~ low MW w/ OH end-group

- □ MW < 600 ~ surfactants, lubricants
- □ MW > 600 ~ base for cosmetics and phamaceuticals

cream, shampoo, ointment, ---

- PEO ~ high MW (~10E5)
 - applications Table 4.24
 - water-soluble packaging and encapsulation

PPG

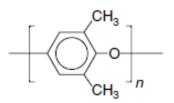
- polym'n of propylene oxide
- polyol for PU foam
- surfactant, lubricant (copolym'n with PEO)

Ероху

DGEBA prepolymer (resin)

- BPA + epichlorohydrin
- epoxy [epoxide] equivalent
- curing
 - amine Table 4.27
 - tertiary (catalytic); primary or secondary
 - aliphatic (fast, adhesive); aromatic (slow, laminates)

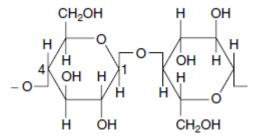
cH₂-CH-CH₂-O-


- anhydride Fig 4.35
 - opened and open epoxy
 - higher thermal stability than amine-cured epoxy

variations ~ novolac, PPG, halogenated, alicyclic, acyclic

coating > laminate (composite) > adhesive, ---

PPO


- oxidative coupling of 2,6-dimethyl phenol
- engineering plastic
 - high T_g, high strength
 - (dimensional and hydrolytic) stability
- blended with other polymers ~ mPPO
 - PS or HIPS ~ Noryl ~ compete with other EPs, cheaper
 - nylon ~ Noryl GTX ~ fender

Ch 4 SI 43

Cellulose polymers

- cellulose ~ from plants (pulp)
 - crystalline, H-bonding ~ intractable
- regenerated cellulose

Ch 4 SI 44

- xanthation ('viscose'), formed, and hydrolysis
- viscose rayon (fiber), cellophane (film)
- cellulose nitrate
 - camphor-plasticised ~ Celluloid
 - table tennis ball, eyeglasses frame, knife handle
- cellulose acetate
 - acetylation then partial hydrolysis
 - acetate rayon fiber, photo film
- other esters and ethers

Sulfide polymers

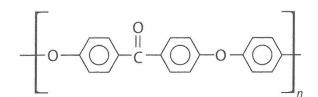
polysulfide

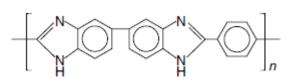
- linear or crosslinked ~ elastomeric
- sealing, gasket

PPS

- EP ~ comparable to PPO
- brittle, high heat resistant
- high ESC resistance, arc-resistance
- automotive parts

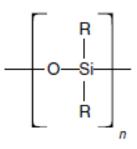
Ch 4 SI 45

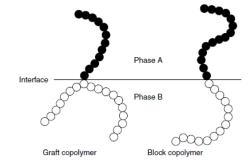

Aromatic polymers


Polysulphones

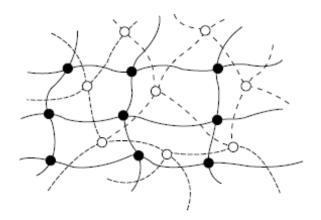
- SO₂ containing ~ amorphous ~ transparent
- (BPA-)PSF, PES, PAES Table 4.30
- **super EP** ~ higher T_g Fig 4.36
- PEK, PEEK
 - semicrystalline, high T_m
 - high-end engineering applications

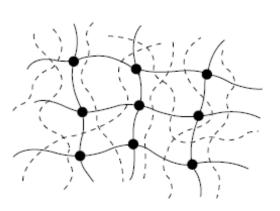
PBI


- higher use Temp than PI
- fiber ~ flight suits


Silicones

- □ hydrolysis/polym'n of SiR_xCl_{4-x} → PDMS (R=Me)
- silicone fluid (oil)
 - linear low MW PDMS
 - Iubricant, water-repelling finish
- silicone resin
 - Xlinked PDMS ~ R/Si < 2</p>
 - good thermal and electrical, bad mechanical
 - Iaminate for PCB
- silicone rubber
 - PDMS later crosslinked by RTV (Fig 4.38) or heat-cure
 - thermal, electrical, non-stick, biocompatible, ablative


Polymer blends


- polyblend, polymer alloy
- □ $\Delta S_{mix} \approx 0 \rightarrow \Delta H_{mix} < 0$ for miscibility
 - Most pairs are immiscible w/o specific interaction.
 - miscibility, compatibility, compatibilizer
- miscible blends ~ properties additive
 - PS/PPO
- immiscible blends
 - compatibilized ~ nylon/PPO
 - uncompatibilized ~ PC/PBT, PC/ABS
- nanoblends ~ domain < 100 nm</p>
 - in-situ polym'n/compatibilization
 - PP/nylon ~ nylon polymerized w/ end-functionalized PP

IPN

- polym'n/Xlinking of polymer A and B
 - sequential (SIPN) or simultaneous (SIN)
 - full-IPN or semi-IPN
 - no or little phase separation
 - silicone/Kraton[®] SEBS
 - biocompatibility and mechanical strength

