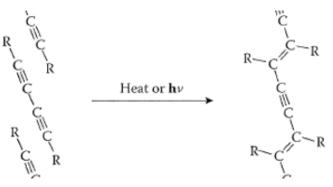

#### POF

- compared to GOF
  - flexible ~ workable
  - larger diameter ~ connectable, dispersion (→ low bandwidth, slow)
  - high loss ~ short-range
- core/cladding/jacket
  - core ~ PMMA popular
    - clearer than PC, more ductile than PS
  - cladding ~ lower RI ~ fluoropolymers
  - jacket ~ PE, nylon, --
- for high bandwidth POF
  - double-step index, graded-index
- for low-loss POF
  - low RI, heavy elements
  - PMMA-d8 or fluoropolymers ~ expensive

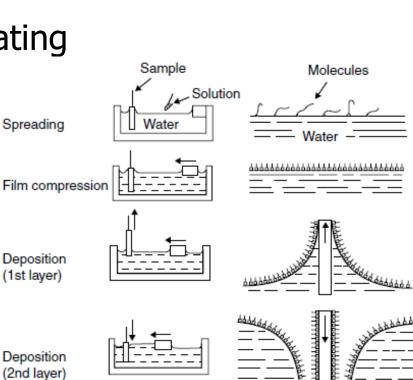


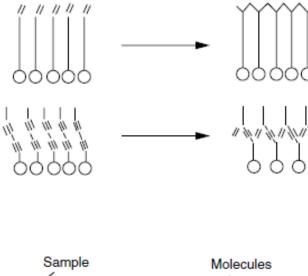



## Polymers for NLO

polarization [P] of material by electric field [E]

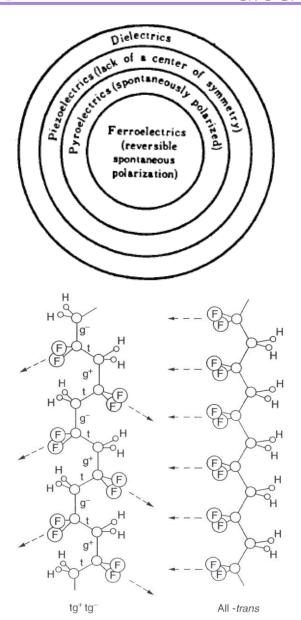
$$\Delta P = \chi^{(1)}E + \chi^{(2)}EE + \chi^{(3)}EEE + \cdots$$


- linear ~ change in RI
  - transportation, waveguide
- (2nd) non-linear
  - 2nd harmonic generation = change in freq
  - freq doubler, amplification, optical mixing, hologram
  - need asymmetric structure
- NLO material
  - inorganic ~ LiNbO<sub>3</sub>, ---
  - polymeric
    - organic-dispersed, main-chain, side-chain
    - processability, adhesion, cheap



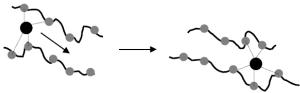

**(b)** 

### LB films


- for well-defined thin film
- monolayer at air/water interface
  - deposited and polymerized
  - polymerized and deposited
- deposition by dipping or rotating
- applications
  - NLO
  - e-beam resists
  - molecular electronics
  - sensors, ---



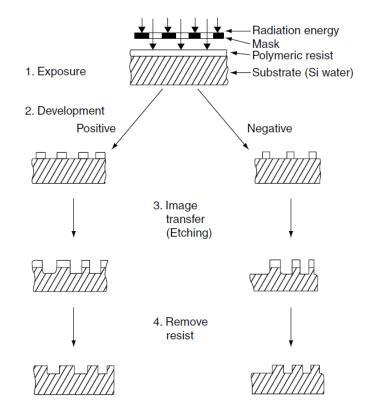



# Piezo-, pyro-electric polymers

- piezo-, pyro-, ferro-electric
- PVDF and copolymers
- poling
  - poling [polarization] at high T
  - cooled with polar orientation
- compared to ceramics
  - workable, cheap, large size
  - low piezoelectric coefficient
- applications
  - heat detector
  - earphone, speaker, microphone
  - touch button



# Polymer electrolytes for battery


- to replace liq electrolyte in LIB
  - leakage, explosion
  - intrinsic solid polymer electrolytes
    - polymer w/ heteroatom + alkali metal salt [PEO/LiClO<sub>4</sub>]
    - highly stable
    - low room temperature ion conductivity
      - Li moves through amorphous region
    - modifications
      - blend, composite, crosslinking, plasticizing
  - polymer gel electrolytes
    - crosslinked polymer + liquid electrolyte [PVDF/EC]
    - high conductivity, low stability



- □ for fuel cell membrane
  - PEMFC, DMFC
  - proton conductivity, separating fuel from O<sub>2</sub>
  - fluoropolymers like Nafion
  - heat resistant polymers with polar groups
    - □ PI, PSF, PBI, PPO, ---
    - high thermomechanical stability

## Polymers for lithography

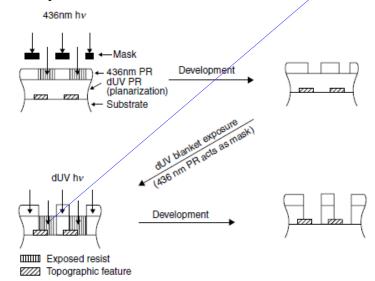
- photoresist
  - coat expose w/ mask develop etch remove
    - □ positive ~ exposed area removed ← degrad'n, solubilize
    - □ negative ~ exposed area remains ← polym'n, Xlinking

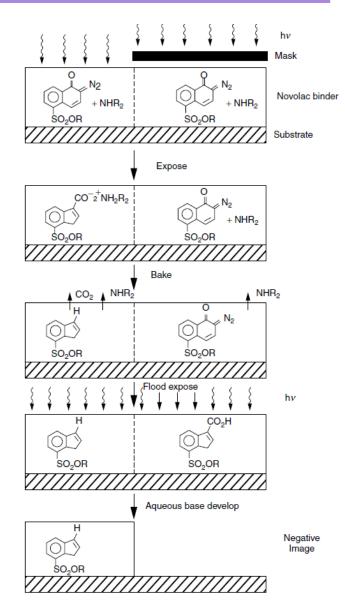


- photoresist (cont'd)
  - better resolution with lower  $\lambda$  light

Critical Dimension(nm) = 
$$k_1$$
 ( $\lambda$ /NA)

- near-, mid- (350> $\lambda$ >280 nm), deep-UV
- excimer laser ~ 248 (KrF), 193 (ArF), 157 (F<sub>2</sub>) nm
- resolution enhancement
  - CD  $\sim 2 \lambda \rightarrow$  CD  $\sim (1/3) \lambda \rightarrow ?$
- extreme UV (13.5 nm)
  - needs reflective system (← lens)


- negative PR
  - self-photocrosslinking
    - near-UV


- crosslinking by photosensitizer
  - near-UV

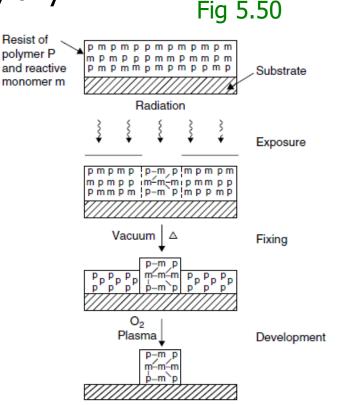
#### positive PR

- enhancing solubility
  - cresol novolac/DNS
    - DNS ~ insoluble in alkali, binding polymer photoreactive to alkali-soluble
  - near- to deep-UV

- image reversal
  - convert posi image to nega image
  - amine-treated DNS system
  - deep-UV negative
- PCM (portable conformable mask)
  - multilayer mode
  - $\blacksquare$  expose to different  $\lambda$





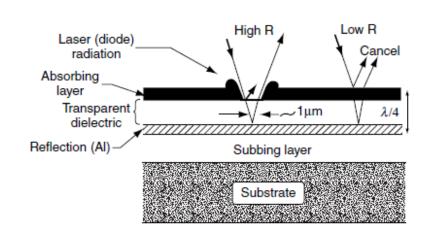

- CAR (chemically amplified resist)
  - photolabile acid generator/acid-labile polymer
    - I or S salt
    - t-butyl carbonate or esters
    - copolycarbonates
- self-developing
  - depolymerization
  - □ low T<sub>c</sub>
- PR for higher resolution
  - □ Si, F, --- polymers

$$(CH_2-CH)_{\overline{n}} \xrightarrow{(i) h\nu} \xrightarrow{\phi_3S^+ SbF_6^-} \xrightarrow{(i) \Delta} -(CH_2-CH)_{\overline{n}} + CO_2 + CH_2 = CC_{CH_3}^{CH_3}$$

$$C-OC(CH_3)_3$$
(a) O

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}$$

- e-beam resist
  - shorter λ
  - positive ~ PMMA, polyolefin sulfone
  - negative ~ polymers with glycidyl, allyl
  - X-ray or ion-beam promising
- plasma developable PR
  - no-solvent, dry ~ no undercut
  - plasma-resistant polymers
    - aromatic or heteroatom
  - photolocking
- nanoimprinting, dip-pen [DPN]
- block copolymers




## Photoresist for printing

- printing plates
  - replacing metal plates for newspaper etc
  - solid plates ~ photo-crosslinkable polymers
  - allyl-PU, acrylates, ---
- photoengraving
  - for illustrations, photographs
  - photosensitive coating on metal crosslinked and etched
- printed circuits
  - circuit/negative PR/Cu exposed and etched

## Polymers for optical disc

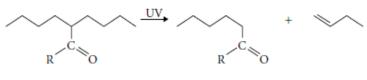
- ROM ~ injection molding of PC on metal stamper
  - PC ~ transparent, low birefringence (low MW), low hygroscopic
- WORM
  - absorbing layer ~ metal/polymer or dye
- rewritable
  - inorganic ~ magnetic
  - organic
    - □ bump ~ rubber/thermoset
    - LCP
    - pyroelectric polymer
- □ DVD ~ high density, low  $\lambda$  laser



#### Adhesives

- liquid (to wet) to solid (for strength)
  - monomer or prepolymer polymerize
    - epoxy, cyanoacrylate, PF, ---
  - polymer at  $T > T_m(T_q)$  or in solution
- solvent-based
  - PU ~ one- (high MW, shoe) or two-part (low MW, engineering)
  - substituted nylon, rubbers
- water-based
  - no VOC
  - water-soluble ~ PVA, --
  - emulsion or dispersion ~ PVAc, EVA, ----

- hot-melt
  - fast, no VOC
  - EVA, polyesters, polyamides, ---
  - low service T and strength
- radiation-curable
  - UV-curing of acrylate- or epoxy-terminated resin
    - epoxy, PU, polyester, ---
    - fast, no VOC
    - need transparency, shallow cure depth
  - e-beam curing ~ expensive
- pressure-sensitive adhesives ~ post-it


# Degradable polymers

#### photodegradable

- environmental issue ~ time of degradation
  - UV-absorbing group like C=O
  - photosensitizer
- photoresist

#### biodegradable

- biodegradable polymers
  - aliphatic polyesters
    - PHB, PHV
    - PLA, PGA
    - PCL
  - aminoacid derivatives
  - polyorthoesters



$$\begin{pmatrix}
O & CH_3 & CH_5 \\
C & CH_2 & CH_2 \\
C & CH_2 & CH_3
\end{pmatrix}$$

$$\begin{pmatrix}
CH_2 & CH_2 \\
C & CH_2 \\
C & CH_2
\end{pmatrix}$$

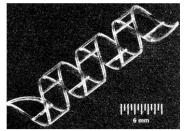
$$CH_2 & CH_3$$

$$CH_3 & CH_4$$

$$CH_4 & CH_2$$

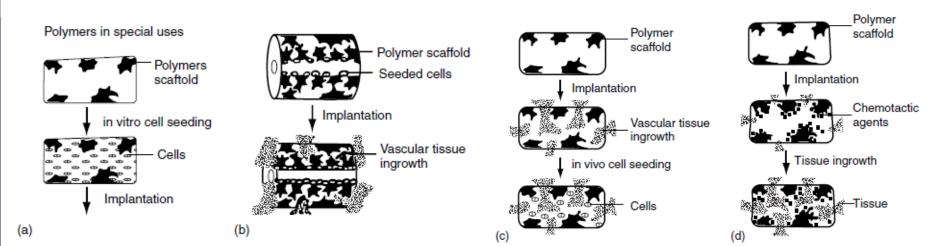
$$CH_5 & CH_5$$

$$CH_7 & CH_2$$


$$CH_7 & CH_9$$

$$CH_9 & CH_9$$

$$CH_9$$


hydroxybutyrate unit hydroxyvalerate unit

- environmental issue ~ packaging
  - □ blending starch ~ 'biocollapsible'
  - □ PHB, PHV, P(HB-co-HV) ~ Biopol®
    - bio-produced and biodegradable ~ expensive
  - PLA
- for pesticides ~ controlled release
  - chelating or ester pendant group
  - encapsulation in starch, lignin, PHB, PLA
- DDS
  - encapsulation in PLGA (biodegradable), PEO, PHEMA (not)
  - oral, injection, or transdermal
- surgical instruments
  - suture, stent, screw, ---





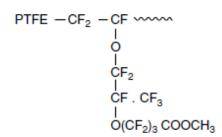
- tissue engineering
  - organ regeneration or cell therapy
  - biodegradable polymer as scaffold
    - PLA (2 yrs), PGA (8 wks), PLGA
    - skin and cartilage commercialized
  - hydrogel
    - injectable
    - PEO, PVA, PHEMA copolymers



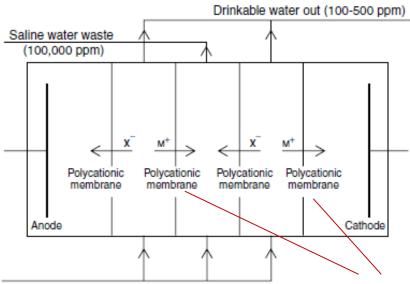
## Ionic polymers

#### ion-containing polymers

- low ion conc'n ~ ionomer
- high ion conc'n
  - □ linear ~ water-soluble ~ polyelectrolyte ~ thickener, sizing
  - □ crosslinked ~ insoluble ~ ion-exchange resin


#### ionomers

- P(E-co-MAA) ~ random copolymer then ionized
  - □ ionic crosslinking ~ physical ~ processable
  - □ small crystallites ~ transparent, tough ~ packaging
- elastomeric ionomers
  - AA, MAA copolymerize with BD, EPDM, ---, then ionized
  - □ ionic vulcanization ~ higher strength, processable
  - □ not used as TPE ~ low service T, high stress relaxation
  - adhesives, coatings, ---

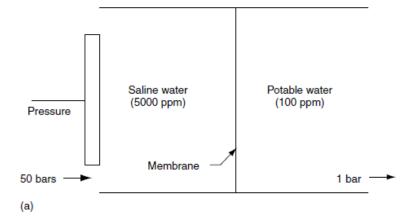

- Nafion ~ ion-exchange membrane
  - cation exchange
  - fuel cell, alkaline cell
  - electrodialysis
    - desalination

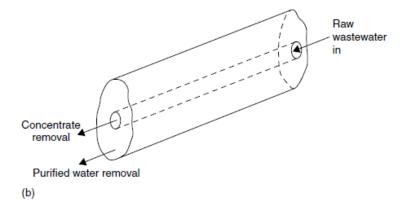
$$\begin{array}{c|c} \mathsf{PTFE} - \mathsf{CF}_2 - \mathsf{CF} & \\ & \mathsf{I} \\ & \mathsf{O} \\ & \mathsf{I} \\ & \mathsf{CF}_2 \\ & \mathsf{I} \\ & \mathsf{CF} \cdot \mathsf{CF}_3 \\ & \mathsf{I} \\ & \mathsf{O}(\mathsf{CF}_2)_2 \, \mathsf{SO}_2 \, \mathsf{F} \end{array}$$

Nafion precursor



Flemion precursor



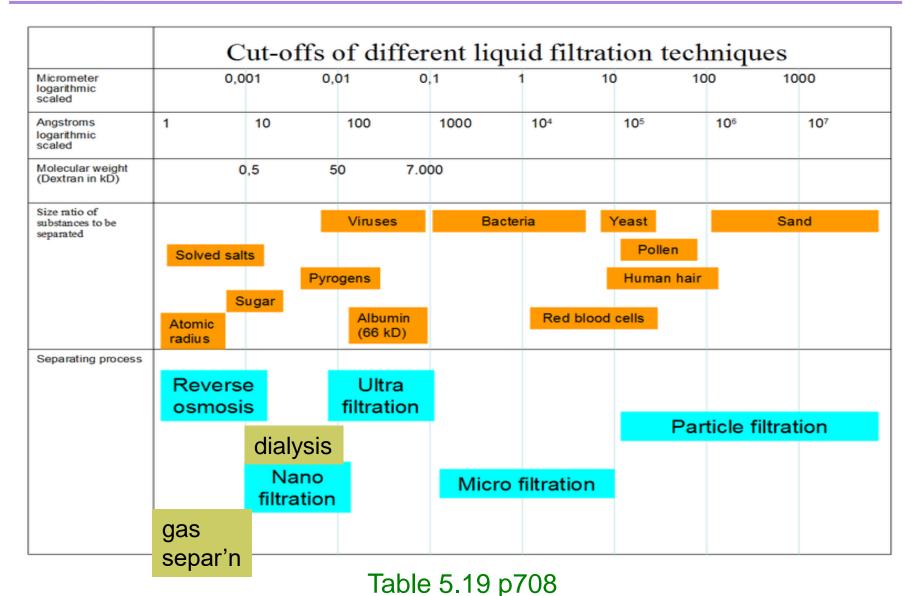


Saline water feed (5000 ppm)

polyanionic membrane

- PSF, PES ionomers
  - sulfonation of PSF, PES
  - reverse osmosis membrane
    - need not be ionic
    - should be hydrophilic
    - desalination, purification

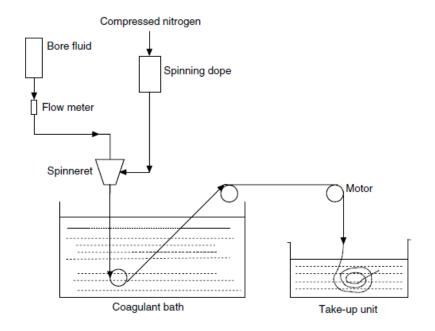
$$-0 - \overline{\mathbb{R}} - \overline{\mathbb{C}} + \overline{\mathbb{C}} +$$

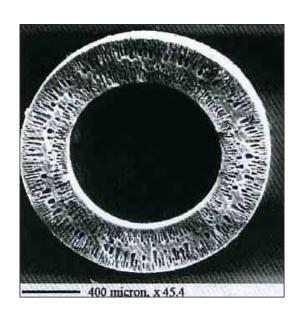





- □ ion-exchange resins Table 5.18
  - cation exchange  $PSO_3^-H^+ + M^+X^- \rightleftharpoons PSO_3^-M^+ + H^+X^-$ 
    - □ P(S-co-DVB) sulfonated ~ regenerated by acid
  - anion exchange  $\mathbb{P}_{NR_3^+OH^-} + H^+X^- \rightleftharpoons \mathbb{P}_{NR_3^-X^+} + H_2O$ 
    - P(S-co-DVB) chloromethylated/aminated ~ regenerate by alkali
  - ampholytic
    - cation and anion exchanger in one bead
    - $\ \ \, \text{regenerated by hot water} \quad \text{$\stackrel{COOH}{\mathbb{N}R_2}$} \quad \text{$\stackrel{COO^+Na^+}{\mathbb{N}}$}$
  - specific ~ modified to be selective to specific ion

- applications
  - □ deionizing water ~ cation/anion
  - softening water ~ cation
  - metal recovery
- □ ionene ~ ion in backbone


- □ scavenger resin ~ polymer with reagent
  - for purification in organic synthesis


## Polymer membranes



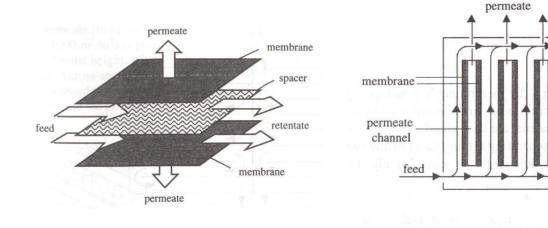
- morphology
  - isotropic (homogeneous; dense or porous)
  - anisotropic (asymmetric; dense to porous)
  - composite (dense/porous)
- preparation
  - melt extrusion
    - □ polymer only ~ dense, isotropic
    - □ polymer/diluent ~ temp-induced phase separation ~ porous
  - wet extrusion
    - polymer solution extruded and coagulated
    - to air, vapor, or liquid ~ isotropic or anisotropic

- polymerization/crosslinking/formation
  - prepolymer crosslinked between plates
  - □ for rubbery gas separation membranes ~ PEO, PDMS
- spinning
  - with bore fluid to coagulation bath
  - for hollow-fiber membranes

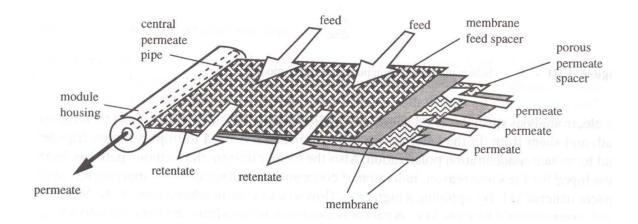




feed


channel

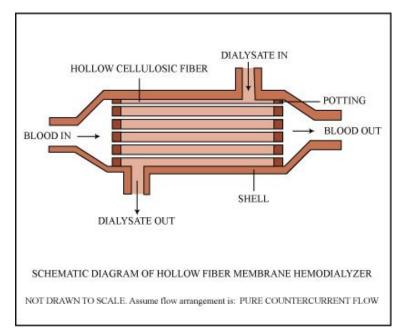
concentrate


permeate

#### membrane modules

plate-and-frame




spiral wound



stop disc

- tube-in-shell
  - high flux, high solid content
- hollow fiber
  - large surface to volume
  - need clean feed (plugging)





#### applications

- hemodialysis, hemofiltration
  - cellulosics, PSF, PC-PE block
- plasmapheresis
  - cellulose acetate, PE, PP
- oil/water emulsion separation
  - □ hydrophilic preferred (PEO) ~ less adsorption
- gas separation
  - $\bigcirc$  O<sub>2</sub> ~ medical, environmental, industrial (combustion)
  - $\square$  N<sub>2</sub> ~ explosion, food
  - □ H<sub>2</sub> ~ energy
  - □ CO<sub>2</sub> ~ energy, environment
  - PP (porous)/PDMS (dense), PSF, PC