Collision and Coagulation of Particles

Important especially for the case of high concentration

Particle collision leads to a reduction In total number and an
Increase In the average size

Influence the determination of particle growth &
morphology

Why does collision occur ?

. difference in particle velocity (in vector)

(Brownian motion, Shear flow, turbulent motion,
Differential sedimentation, External force(electrically,

acoustically))
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Collision and Coagulation of Particles

= Fast coalescence limit : can assume spherical particle
(competition between collision and coalescence)

N;; : number of collisions per unit time per unit volume
between particles of volumes (v;, v;) : (unit #/cm? sec)

N; :ﬁ(viivj)ninj
B collision frequency function or coagulation

coefficient : cm3/sec
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Rate of formation of particles of size v,
V, +V, =V, = Z N,
H—j =k
For the case of 1=j, %,B(Vi, v;)nn,.

< due to the indistinguishability of two equal sized particles.)
half particle: red : half particle: blue

n,
ﬁ(VV)EEZZ,B BV, )(ZZ ZZ)_ ,3
nn nn
BV, .)(gg Py 8+8 2 Eg)——ﬂ
yij (— —+—+ ),sinceizn—%
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Rate of loss of particles of v,

Ioss:iNik
TN, ZN

I+ j=k

. Z IB(V Vi )nn _nkZIB(Vi,Vj)ni

I+j =k
Particle dynamics equation for discrete size
when coagulation alone is considered.
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Coagulation mechanisms

Brownian Coagulation
Laminar Shear
Turbulent Shear

Differential Sedimentation
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Brownian coagulation : important for d, << 14m

A, <d, <lum — continuum approach

: thermal motion of gas molecules and its associated
random motion of small particles
1. equal-sized particles of radius r, at concentration n,

. Imagine one particle to be stationary
. point particle deposition on the fixed particle

on o°’n  2¢on
—=D|—+——| n(r,0)=n, n(eo,t)=n, n(2r_,t)=0
- (arz rar] (r, 0)=n, n(ex, t)=n, n(2r,, 1)

Sol. n(r,t)=n, |1 al erfc .
7 r 2./Dt
sk goupNational University
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Th2e rate at which particles arrive at the surface
r=2r
P

2r
J=16zr" D@j =87zr,Dn, | 1+ ——=
or -2, Dt

Initially very rapid collision, but

2r

> << 1,
/\/7Z'Dt

collision rate approaches the steady state

—8zr,Dn,
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When r,, and r,, have Brownian motion simultaneously,

2 2

 ——

— =2 =
‘xi — X, ‘xi X, X - X.
D, = = + —2(' )
2t 2t 2t 2t
(x*} = 2Dt
pl : fixed — same problem
D S rort s
R F={1,i+¥5)

ny, =Ny | 1——— erfc
4 2Dyt

J =4x (1, + 1,1)Dyyny(1+--+) <= steady solution per a single #1 particle
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When there are more than one #1 particle, total collision
rate between #1 and #2 particles per unit volume

J =4r(r, +r,)D,n,n, < #/cm3 sec
. Nij :/B(Vi,vj)ninj

/B(Vi,vj) =47(D, + DZ)(rp1+rp2)
=27(D,+D,)(d, +d ;)

ZKT[ ; Vy]( (o)

KT D KT
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free-molecular regime, i.e., d, <<, =>kinetic theory

f (v)d°v:mean number of particles
per unit volume with center
of mass velocity in the range
between v and v + dv

%
m 2
f(v):n(zmj eXp( w 2kT)

: Maxwell-Boltzmann distribution
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(x:ljvf (v)d®v
n

d°v = dv,dv,dv,
In spherical coordinate
d°v =v°dvsinfddad 9

SV = %j: Ioﬂ joh vidvsingdodg f (v)v

; %
=—| f()vidv= (Ej : mean speed

m
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Collision rate per unit area

#/m“sec : number of collisions per unit area per unit time
1) crude calculation

number of particle having Z-direction velocity
area A

| —

*NZE per unit volume

—

particle with v moves vdt in dt, which makes volume vdtA
.. total number of particles which strike

: L. 1 - .
per unit area per unit time [ gnv L nv
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I1) Exact calculation : consider the distribution of particle velocity
consider particles with velocity v to v+dv its
directionfto d+dfand 9to $+d9I

f (v)d®v vdt dAcos@:number of particles of this type that strike the area dA in time dt
total number of particles that strike a unit area of the wall per unit time

ON =j f (v)vcosad°v

O<v<oo 0<9<27 O<6’<% %<6’<7r

. particles leaving from the wall

d°v=Vvidvsinddod

@, = [ F(VVdv[ZsinG cosode x [ dg =z f(v)vdy

nid OOO f (V)vidv S D, :%n\_/ Effusion flux
n

v
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Fixd, particle

— (=2 —a\}
Vi, =(v1 +V, ) :mean speed
........................ 2 1 -
d,+d, V.
( ) A N, Vi,
,,,,,,,,,,,,,,,,,,,,,,, collision rate per single particle of 1
total collision rate between 1 and 2 particles per unit volume

Ny, =7 (d, +d, fi 0N,

ﬁ_—@ +d)
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Transition regime? Fuchs formula

TABLE 10.1 Fuchs Form of the Brownian Coagulation Coefficient K12

-1
D,+D 8(D,,+D
Ky, =27(D, + Dz)(Dpl + Dp2)|: > L ( Pl p2) :l

D,+D,,+29, (_:12(D|O1 +D,,)

pl

2 3
) KT | 5+4Kn, +6Kn, +18k2ni Phillips(1975)
3muD, | 5-Kn, +(8+7)Kn,

0a=(07+07)" 0= Hap gy (e 1) (01" 0,
=V )

2\ /2

C12 —(C1 +C2 )
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TABLE 10.1. Fuchs Form of the Brownian Coagulation Coefficient KX ,,

D, + Dy, 7 8(D, + D,)
D, + Dy, + 28y, Elz(Dpl ¥ Dp2)

Ky, = 27(D, + D,)(D,, + DpZ)[

5 + 4Kn; + 6Kn’> + 18Kn’
D, = i ' ' ; Phillips (1975)
37D, | 5 — Kn, +(8 + 7)Kn?

g = (gf + g)'/?
55 3 2 P TR
g = 1/GD,I)D,; + )’ — (D}, + I7)*/?] D,

l; =8D,/mc,
¢, = (8kT/mm,)/?
Kn, = 2),,/D,,

z 38 1 G310
¢ = (&} + &)
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Kip (cm® s
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Fig.13 Brownian coagulation coefficient
Oy1 = Dy K(D,;, Dy;) for particles of density p, =1 g
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e continuumregimed , =d
8kT

p2

— = ™ ; Independent of particle size
y7;
7
free molecular — f = 4(EJ dp%
P

The maximum occurs near 0.02um (p, =1g/cc)
The reason is that large particle has low diffusivity and

small particle has small cross-section area —
The maximum near 0.02um
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e Forgivend,,ifd , becomes larger,

pl’

target area increases proportionally to d pz

but, diffusivity decreases with di

Yoog 2
d
for free molecular regime, lim g = £_3kT ] b2

dyo>>dy
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Coagulation coefficient increases more rapidly
with dp2 for free molecular regime than for
continuum regime
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