Coagulation of an initially monodisperse aerosol

"Smoluchowski constant kernel solution"

Assume S = 8kT = K =const
3u

(valid in early stage of monodisperse coagulation in the continuum regime)

orj 8 Z Z nn, —Knkini ()
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k=1, i+j=1 — impossible. Therefore, Eq(1) is valid for k > 2

For k=1, an, _ -Kn > ' n,
dt =)

SN Ky
dt 2
N () = EKI(O()O) _ Nwt(o) R
O T
3. : characteristic time for coagulation
large times t >> 3. N_(t)= Kit

Independent of initial concentration
3. becomes larger for smaller N_ (0) — to freeze particle size distribution,
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Mass concentration remains constant
T T
C=N. (0 p,d =NOZ p,d 1)

d(t):average diameter d(t)

7
d() - N.,(0) — diameter of average mass
d, N (t)

9% KN, =—Kn,

dt 1+ %
‘SC

M _ o~ ) N0
Inm_ KJch(O)m[lJrSj song(t)
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N_(0)(#/cm3) 3, time for particle size to double

10 2018 140 1S
10” 0.2sec 1.4sec
10* 55hr 16days
10° 231days Ayear
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o0

dn, K K
= nn.—KnN =—n"—-Kn,N
dt 2 iﬂzzz I 2" Yoo 2 1 2

N_ (0) %
1+ 45,)

In general,

—NOO(O)(%C)_ t>> 3. nk(t):Noo(O)(ySC)_2~1

SIS —

C
3

jational University
o Particle Control




Fig.14 The Variations in N, n,,
N,... with time for an initially
monodisperse aerosol. The total
number concentration, N_, and the
concentration of n, both decrease
monotonically with increasing time.
The concentration of n, ...pass
through a maximum. (After

Smoluchowski, 1917)
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Effect of particle force fields

#/m2sec J=-D on +cn —drift velocity due to inter particle force

or
c=BF
F=-— d;Dr ®_=Potential energy
r
D = kTT =KkTB B= %: particle mobility

PiNational University
ano Particle Control




Steady State
A7rr?) = const

do
= D4z D (— e

X

() ()
Gexp( (”j exp[ (”j
. n=n exp(—%j+ KT xJ'r K 4
B i KT

at r=a, +a;, n=0 condition

47Dn, (& +4a;) :
G= W: correction factor
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_ () _
W =(a +a;) ) exp( X4T% dx

a; +a,

(1) Van der Waals force due to fluctuating dipoles :
attractive force two spherical particles of radii a; and a;

2
2 2a.a. 2a.a. r’—(a +a.
T
D =-— 6Q 5 ) 2+2 L) 2+|n2 (I J)2
r —(ai+aj) r —(ai—aj) r —(ai—aj)
deo®
Q = ——: Hamaker Constant, v, : molecular volume
Vv

m

Lennard - Jones force constants ¢, o
Table 7. P.198, Friedlander

Y o~
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TABLE 7.1

Hamaker Constants for Two Identical Substances
Interacting Across Vacuum (or Gas at

Low Pressure) (from Israelachvili, 1992, p. 186)

Substance A (10-20 ))
Water : 3.7
Cyclohexane 22
Benzene 5.0
Polystyrene 6.5
Fused Quartz 6.3
Alumina (Al,O3) 14
Iron Oxide (Fe;O3) 4|
Rutile (TiO») 43
Metals (Au, Ag, Cu) 25-40
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Figure 7.3 Increase in rate of collision of particles of equal diameter resulting from the action of
van der Waals forces (Tikhomirov et al., 1942).
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(2) Coulomb force

Z. 7 € _ o
D = ’ Z,Z :number of charges of i and j particles
er

g :dielectric constant of the medium

W =£(ey -1
y
gz e’
y:
kT (g +a;)

for uncharged particles,y=0W =1
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W [ 1+% for small y

If particles have opposite charges,
y iIs negative 1>W >0
.. enhanced collision
If particles are of like sign, y>0, W>1:
collision rate is smaller than for uncharged particles

. 1 : : .
For bipolar aerosols, |y| < > — the effect should be a small increase in coagulation

attractive forces compensate the

decrease caused by repulsion
but |y| >>1bipolar aerosols — large increase in coagulation
The large increase in coagulation resulting from attractive forces strongly
outweighs the decrease caused by repulsion ( Friedlander, p200 )
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Collision frequency function for laminar shear
. Simplified analysis : Smoluchowski

ai+aj

>

s e
- 4
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dF : particle flow into the shaded portion of the
strip dx

dF = njxd—u(ai +a,)sin gdx
dx
Xx=(a +a;)cosd

F = 4an05(ai +aj)3f|j—;l(sin2 6 cos9do

. _4 3 du
WAUADE 3(ai +a,) o
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For equal size S = ﬂdp3 du (Brownian g = &)
3 © dx 31
du
Pis ,BB 1 dX ,udp 1.e., B becomes more important for Iargerd
: du
for fixed Ax

For nearly same sized particles

dn, 1 32 ,du =32 ,du
k& z —a —n.n.—z —a’—nn
dt 24543 dx ') &3 dx "

dN, _ 100U sy 20y, N 1)

o0

dt 3 dx
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4
—ra’N_ =V =const

3
dN_ _ A du NN,
dt T dx
" N_(0) _ 4\/ dut
N T dx

o0
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Figure 7.6 When shear coagulation dominates, a plot of log N versus ¢ should give a straight line.
This was confirmed experimentally at the higher shear rates with a monodisperse hydrosol (Swift and

Friedlander, 1964).
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Other Collision Mechanism

Turbulent shear

%
&, 3
| :(120vj (A +dy2)

<« Saffman and Turner(1956),
On the Collision of dropsin Turbulent clouds,
JFM, vol.1, pp.16-30

& % du
(—kj <> — lamina shear
V dx
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turbulent shear
&, -energy dissipation by turbulence
(cm2/sec3) : rate of dissipation of Kinetic energy per unit mass

A0EY2 |
gk:E 2 U*® for a pipe flow

f: Fanning friction factor
3, =f %pu : :Fanning friction factor

Ip=4f DL%,OU * :Darcy friction — Moody chart

h
Differential sedimentation

B=y-7(a+a;)’(v,—v;) y:capture efficiency

Y o~
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Figure 7.7 Comparison of coagulation mechanisms for particles of 1-um diameter interacting with
particles of diameter between 0.1 and 10 um. Coagulation by shear based on €; = 5 and 1000
cm?/sec’. Differential sedimentation curves were obtained by an approximate calculation assuming
Stokes flow around the larger of the falling spheres (Friedlander, 1964). ¢, = 5 cm?/sec? corresponds
to the open atmosphere at a height of about 100 m (Lumley and Panofsky, 1964). At a height of 1 m,
€4 ~ 1000 cm*/sec’ and shear becomes the dominant mechanism of coagulation for larger particles.
For the core region of a turbulent pipe flow, the energy dissipation (based on Laufer, 1954) is given by

4 f3/23
=Ly
6‘1 d(z)

where f is the Fanning friction factor, d is the pipe diameter, and U is the gas velocity. For a smooth
pipe, 10 cm in diameter, with air at 20°C and a Reynolds number of 50,000, €; ~ 2 x 10* cm?/sec?.
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Particle dynamics for continuous distribution function

dnk A Z N, ZN
— P Z ,B(V,,V )n _nkiﬂ(vi’vk)ni
= B(v,v)n(v)n(v)dvdv
a(ndV)_l_-v AV P o
E _2_.0,B(v,v v)n(v)n(v v)dv}dv

[ ﬁ(v,x?)n(x?)n(v)dx?)}dv
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Self Preserving Distribution

-Similarity solution exists after long time passes (pure
coagulation)

-They are independent of initial size distribution.
ndv (vj (vj -V
—=y|=\|d| = V=—o

N Y Y N

o0 o0

- Fraction of particles in a given size range is a
function only of particle volume normalized by the
average particle volume
N_* N_v
n(v,t) = Y w(n) n=

<<

V

N_ = _[OOO ndv

Vv :j: nv dv
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In terms of particle radius a,

V= gﬂa3 n_(a)da = n(v)dv

-.n,(a) = 4ra’n(v)

3
Nv N4 5 |(N,)? N VA
n= X =—2__ga oc<| = a . —al —=
V. V3 Vv +Tla Vv
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n,(a N,’ N 2

es n.(a) = 4ra® —=
LAY v, (77,) (@) Y v, (77,)

2 %

since  4ra? N, =4mn,” N,

V73
N /53

— on(at)= °°y v, (17.)
V 3
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Friedlander, p. 211

4/3

Ra(dp, 1) = — 5 Va(na) (7.72)
where n; = d,(Noo/¢)'/?. Both N, and ¢ are in general functions of time. In the
simplest case, no material is added or lost from the system, and ¢ is constant. The
number concentration N, decreases as coagulation takes place. If the size distribution
corresponding to any value of N, and ¢ is known, the distribution for any other value of
N corresponding to a different time, can be determined from (7.69) if ¥ (1) is known. The
shapes of the distribution at different times are similar when reduced by a scale factor. For
this reason, the distribution is said to be self-preserving.

The determination of the form of ¥ is carried out in two steps. First, the special form of
the distribution function (7.69) is tested by substitution in the equation of coagulation for the
continuous distribution function (7.67) with the appropriate collision frequency function. If
the transformation is consistent with the equation, an ordinary integrodifferential equation
for ¥ as a function of 7 is obtained. The next step is to find a solution of this equation
subject to the integral constraints (7.70) and (7.71) and also find the limits on #n(v). For
some collision kernels, solutions for ¥ (1) that satisfy these constraints may not exist.
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SIMILARITY SOLUTION FOR BROWNIAN COAGULATION

i or Brownian coagulation in the continuum range, the collision frequency function is given
by (7.16). Substitution of the similarity form (7.69) reduces the coagulation equation for
the continuous distribution (7.67) with (7.16) to the following form:

1 dN.. dy
s o)
N dt [¢+Jd ]

1 1
f Y@ — o[+ 6 -’ [~,/3 + ] di

lr—m)c
2kT . 1 1 -

) | " v [2'° + #'7°] [n‘” & -1,3] dii (1.73)

The change in the total number concentration with time is found by integrating over all
collisions:

dN, 1 [ 7 . . &
dt°° = / / B (v, D)n(w)n(®) dv dv (7.74)
o Jo

The factor 1/2 is introduced because the double integral counts each collision twice. By
substituting (7.69) and (7.16) in (7.74), we obtain

dN, 2kT
_71;92 = __(1 + ab)N2, (1.75)

where

o0
a =f n'3y dn (7.752)
0
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and

o0
b =[ 3y dn (7.75b)
0

Equation (7.76) is of the same form as (7.21) for the decay of the total number concen-
tration in a monodisperse system. However, the constant has a somewhat different value.
Substituting (7.75) in (7.73) and consolidating terms, the result is

d ! e
1+ ab)n% +(2ab—by' " —ay )y + fo ACRENIAG)

n—i\"’
[1+(_ﬁ ) jldﬁ:O (7.76)

which is an ordinary integrodifferential equation for ¥ with 7 the independent variable.
Hence the similarity transformation (7.69) represents a possible particular solution to the
coagulation equation with the Brownian motion coagulation mechanism.

IPNational University
ano Particle Control




It is still necessary to show that a solution can be found to the transformed equation
(7.76) with the integral constraints, (7.70) and (7.71). Analytical solutions to (7.76) can be
found for the upper and lower ends of the distribution by making suitable approximations
(Friedlander and Wang, 1966). The complete distribution can be obtained numerically by
matching the distributions for the upper and lowcr ends, subject to the integral constraints

that follow from (7.70) and (7.71):

o0
f vdn=1 (7.76a)
0 .

and

o0 ;
f nydn=1 (7.76b)
0

The results of the numerical calculation are shown in Fig. 7.8, where they are compared
with numerical calculations carried out for the discrete spectrum starting with an initially
monodisperse system. There is good agreement between the two methods of calculation.
Other calculations indicate that the similarity form is an asymptotic solution independent
of the initial distributions so far studied. The values of a and b were found to be 0.9046
and 1.248, respectively. By (7.75) this corresponds to a 6.5% increase in the coagulation
constant compared with the value for a monodisperse aerosol (7.21). The results of more
recent calculations using a discrete sectional method are shown in Table 7.2.

To predict the size distribution of a uniform aerosol coagulating in a chamber without
deposition on the walls, the following procedure can be adopted: The volumetric concentra-
tion of aerosol is assumed constant and equal to its (known) initial value. The change in the
number concentration with time is calculated from (7.75). The size distribution at any time
can then be determined for each value of v = ¢n/N, from the relation n = (N2 /¢) ¥ (n), y
using the tabulated values. The calculation is carried out for a range of values of 7. ntrol



SIMILARITY SOLUTION: COAGULATION
IN THE FREE MOLECULE REGION

Is it possible to make the similarity transformation (7.62) for other collision mechanisms?
In general, when the collision frequency B(v, ¥) is a homogeneous function of particle
volume, the transformation to an ordinary integrodifferential equation can be made. The
function B(v, ¥) is said to be homogeneous of degree A if B(av, a?) = a*B(v, U). However.
even though the transformation is possible, a solution to the transformed equation may not

exist that satisfies the boundary conditions and integral constraints.
When the particles are much smaller than the mean free path, the collision frequency

function is given by (7.17)

B, v) = (i)l/s (ﬁT_)uz [_1_ N l]1/2 (W4 l~)1/3)2
v

4r Op v

which is a homogeneous function of order 1/6 in particle volume. The similarity transfor-
mation can be made and a solution can be found to the transformed equation in much the
same way as in the previous sections (Lai et al., 1972). Values of the dimensionless size
distribution function v (n) for the free molecule and continuum regimes are also given in
Table 7.2. For the free molecule regime, the change in the total number of particles with
time is

dNe  a ( 3\ rekT\'?* |
- JR (W It /6 ar11/6
dt 2 (47[ ) ( Lp ) ¢ Neo a0

The constant « is an integral function of ¥ and is found to be about 6.67 by numerical
analysis.
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TABLE 7.2

Values of the Self-Preserving Size Distribution for the Continuum (¥.)

and Free Molecule (¥ ) Regimes Calculated by a Discrete Sectional

Method (Vemury and Pratsinis, 1995)

7 *f Ye
0.006 0.0408 0.1218
0.007 0.0632 0.1581
0.008 0.0891 0.1933
0.009 0.1176 0.2271
0.010 0.1479 0.2592
0.015 0.3079 0.2895
0.020 0.4560 0.4170
0.025 0.5809 0.5124
0.030 0.6830 0.5852
0.035 0.7654 0.6418
0.040 0.8315 0.6868
0.045 0.8846 0.7230
0.050 0.9271 0.7525
0.060 0.9880 0.7766
0.070 1.0261 0.8132
0.080 1.0486 0.8384
0.090 1.0605 0.8559
0.1 1.0649 0.8678
0.2 0.9668 0.8755

TABLE 7.2

Continued

0.3 0.8351 0.8563
0.4 0.7232 0.7883
0.5 0.6309 0.7156
0.6 0.5542 0.6466
0.7 0.4895 0.5830
0.8 0.4344 0.5252
09 0.3871 0.4730
1.0 0.3459 0.4259
1.5 0.2041 0.3834
2.0 0.1247 0.2271
2.5 0.0777 0.1348
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1.0 I ] ]

— Numerical solution to (7.76) e
| --- Hidy and Lilly (1965)

|
0.001 0.01 0.10 1.0 5.0

n= Nocv/¢

Figure 7.8 Self-preserving particle size distribution for Brownian coagulation. The form is approx-
imately lognormal. The result obtained by solution of the ordinary integrodifferential equation for
the continuous spectrum is compared with the limiting solution of Hidy and Lilly (1965) for the
discrete spectrum, calculated from the discrete form of the coagulation equation. Shown also are points
calculated from analytical solutions for the lower and upper ends of the distribution (Friedlander and
Wang, 1966).
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Figure 7.9 Comparison of experimental size distribution data for tobacco smoke with prediction
based on self-preserving size spectrum theory. ¢ = 1.11 x 1077, Ny, = 1.59 x 107 cm™3. The peak
in the number distribution measured in this way occurs atd, ~ 0.2 pm (Friedlander and Hidy, 1969).
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Figure 7.10 Experiment and theory compared for an aging tobacco smoke aerosol. Calculation based
on¢ = 1.11 x 10”7 and experimental values of N (Friedlander and Hidy, 1969).
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Husar (1971) studied the coagulation of ultrafine particles produced by a propane torch
aerosol in a 90-m3 polyethyiene bag. The size distribution was measured as a function .
of time with an electrical mobility analyzer. The results of the experiments are shown in
Fig. 7.11 in which the size distribution is plotted as a function of particle diameter and in
Fig. 7.12 in which ¢ is shown as a function of n both based on particle radius. Numerical
calculations were carried out by a Monte Carlo method, and the results of the calculation are
also shown in Fig. 7.12. The agreement between experiment and the numerical calculations
is cuite satisfactory.

10— g Figure 7.11 Coagulation of aerosol particles much
o o smaller than the mean free path. Size distributions
& : measured with the electrical mobility analyzer (Husar,
i o 1971).
10°E E
o :
= [ B
s i i
o i -
§
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103 102 e lib” rSIty

dp (ym) > Control




v v oyttt Rigyre 7.12 Size distribution data of Fig. 7.11 for co-
agulation of small particles plotted in the coordinates
of the similarity theory. Shown also is the result of

a Monte Carlo calculation for the discrete spectrum
(Husar, 1971).
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