PATTERN RECOGNITION

JIN YOUNG CHOI
ECE, SEOUL NATIONAL UNIVERSITY

Notice

Lecture Notes: Slides
References:
Pattern Classification by Richard O. Duda, et al.
Pattern Recognition and Machine Learning by Cristopher M. Bishop

Assistant: 박슬기, 133(ASRI)-412, seulki.park@snu.ac.kr
Evaluation: Quiz 40\%, Midterm 30\%, Final 30\%, Video: Every week two videos are uploaded.

Video 1: upload: Sun. 09:00, Quiz Due: Tue. 24:00
Video 2: upload: Wed. 09:00, Quiz Due: Fri. 24:00
Class web: etl.snu.ac.kr
Office: 133(ASRI)-406, jychoi@snu.ac.kr

INTRODUCTION TO AI: ARTIFICIAL INTELLIGENCE ML: MACHINE LEARNING DL: DEEP LEARNING

JIN YOUNG CHOI
ECE, SEOUL NATIONAL UNIVERSITY

Artificial Intelligence

Filtering
 Estimation
 Optimization

Bayesian Theory

Statistical Machine Learning

Data base
Search, Inference
Decision Tree
Symbolism
Cognitive science
Minsky

Backpropagation Rule
Deep Learning Neural Networks
Connectionism
Neuroscience
Rosenblatt

Artificial Intelligence

Learning from Experience (Observations, Examples)
?

Inference(Reasoning) for a Question

Artificial Intelligence

Learning from Experience (Observations, Examples)
If birds are given, then we can learn their features such as \# of legs, shape of mouth, etc. If cancer patients are given, then we can observe their symptoms via diagnosis

Inference(Reasoning) for a Question
If features of something are given, then we can recognize what is it.
If symptoms of a patient are given, then we can infer what is his decease.

Artificial Intelligence

Learning from Experience (Observations, Examples)
If birds are given, then we can learn their features such as \# of legs, shape of mouth, etc. If cancer patients are given, then we can record their symptoms via diagnosis If $y=y_{1}$, then $x=x_{1}$
If $y=y_{2}$, then $x=x_{2}$

Inference(Reasoning) for a Question

y			x				
y_{1}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	
y_{2}	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	DB
Decision Tree							

If features of something are given, then we can recognize what is it.
If symptoms of a patient are given, then we can infer what is his decease.
If $x=x_{1}$, then $y=y_{1}$
If $x=x_{2}$, then $y=y_{2}$

y			x			
y_{1}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}
y_{2}	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}

Artificial Intelligence

Learning from Experience (Observations, Examples)
If $y=y_{1}$, then $x=x_{1}$
If $y=y_{2}$, then $x=x_{2}$

$$
p\left(x=x_{i} \mid y=y_{j}\right), p\left(y=y_{j}\right)
$$

Density Estimation

Inference(Reasoning) for a Question

$$
\begin{aligned}
& \text { If } x=x_{1} \text {, then } y=y_{1} \\
& \text { If } x=x_{2} \text {, then } y=y_{2} \\
& \qquad \begin{aligned}
p\left(y=y_{j} \mid x=x_{i}\right) & =\frac{\left(p\left(x=x_{i} \mid y=y_{j}\right) p\left(y=y_{j}\right)\right)}{p(x)} \\
p(x) & =\sum_{i} p\left(x=x_{i} \mid y=y_{j}\right) p\left(y=y_{j}\right)
\end{aligned}
\end{aligned}
$$

Bayesian Theory

Artificial Intelligence

Deep Neural Networks for Learning and Inference

$$
o=f(W, x), \text { ex, } o_{j}=p\left(y=y_{j} \mid x=x_{i}\right)
$$

Training (learning)

Find W to minimize the errors between o_{j} and d_{j} for given training data $\left\{\left(x_{p}, l_{p}\right)\right\}$

Inference(Reasoning)
Calculate o_{j} via the deep network

Connectionism

Network Training

Inference (feedforward)

Learning and Inference

Learning and Inference

A general tree structure

Symbolism

Learning and Inference

Bayesian Theory

Learning and Inference

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{t} \mathbf{x}+w_{i 0}
$$

Connectionism

Network Training
Inference (feedforward)

Convolutional Neural Networks

Supervised/Unsupervised Learning,

Generative/Discriminative Model

- Generating images

$$
p\left(z_{1}, z_{2}, z_{3} \mid x\right)
$$

Generative approach:
Model $p(z, x)=p(x \mid z) p(z)$
Use Bayes' theorem

$$
p(z \mid x)=\frac{p(x \mid z) p(z)}{p(x)}
$$

Discriminative approach:
Model $p(z \mid x)$ directly

Unsupervised Learning,

Clustering: K-means, etc.
Variational Auto-Encoder

Statistical Learning

L_{2} Loss

$$
L(d, f(W, x))=\|d-f(W, x)\|_{2}^{2}
$$

Total Loss

$$
\mathcal{L}(W)=\int L(d, f(W, x)) d p(x, d)
$$

where $p(x, d)$ is a joint PDF of x and d, but unknown

Empirical Total Loss

$$
\mathcal{L}_{i}(W)=\frac{1}{N} \sum_{n=1}^{N} L\left(d_{n}, f\left(W, x_{n}\right)\right)
$$

Statistical Learning

$I\left(x_{k}\right)=\log \left(\frac{1}{p_{k}}\right) \rightarrow\left\{\begin{array}{l}\text { base } 2 \rightarrow \text { bits } \\ \text { base } e \rightarrow \text { nats }\end{array}\right.$
32 bits $\rightarrow p_{k}=1 / 2^{32}$ for uniform distribution $\rightarrow I_{k}=32$ bits
(1) $I\left(x_{k}\right)=0$ for $p_{k}=1$
(2) $I\left(x_{k}\right) \geq 0$ for $0 \leq p_{k} \leq 1$
(3) $I\left(x_{k}\right) \geq I\left(x_{j}\right)$ for $p_{k} \leq p_{j}$

Entropy : a measure of the average amount of information conveyed per message, i.e., expectation of Information

$$
H(x)=E\left[I\left(x_{k}\right)\right]=\sum_{k} p_{k} I\left(x_{k}\right)=-\sum_{k} p_{k} \log p_{k}
$$

Statistical Learning

Entropy becomes maximum when p_{k} is equiprobable 32 bits $\rightarrow p_{k}=1 / 2^{32}$ for uniform distribution $\rightarrow I_{k}=32$ bits

$$
\begin{aligned}
& \rightarrow 0 \leq H(X) \leq-\sum_{k=1}^{2^{32}} \frac{1}{2^{32}} \log \frac{1}{2^{32}}=32 \\
& \rightarrow H(X)=0 \text { for an event } p_{k}=1 \text { and } p_{j \neq k}=0
\end{aligned}
$$

Cross Entropy Loss:

$$
\begin{aligned}
& \mathcal{L}(\mathrm{W})=-\sum_{k}^{K} t_{k} \log f_{k}(W, x) \\
& \quad f_{k}(W, x)=\frac{e^{a_{k}}}{\sum_{j} e^{a_{j}}}(\text { softmax })
\end{aligned}
$$

$t_{k}:$ target label (one hot: 0000100)

Statistical Learning

Cross Entropy Loss:

$$
\begin{aligned}
& \mathcal{L}(\mathrm{W})=-\sum_{k}^{K}\left[t_{k} \log f_{k}(W, x)+\left(1-t_{k}\right) \log \left(1-f_{k}(W, x)\right)\right] \\
& \quad f_{k}(W, x)=\frac{1}{1+e^{-a_{k}}}(\text { sigmoid }) \\
& \left.t_{k}: \text { target label (multi-hot: } 00110100\right)
\end{aligned}
$$

Statistical Learning

Theorem (Gray 1990)

$$
\sum_{k} p_{k} \log \frac{p_{k}}{q_{k}} \geq 0
$$

Relative entropy (or Kullback - Leibler divergence)

$$
\begin{aligned}
& D_{K L}(p \| q)=\sum_{k} p_{k} \log \frac{p_{k}}{q_{k}} \\
& D_{K L}(p \| q)=0 \text { for } p \equiv q
\end{aligned}
$$

p_{k} probability mass function
q_{k} reference probability mass function

Scene and Object Generation

$\mathcal{L}(\theta, \phi)=\mathcal{L}_{\text {ref }}+\mathcal{L}_{\text {pose }}+\mathcal{L}_{i d}$.

$$
\begin{aligned}
& \mathcal{L}_{\text {ref }}=\mathbb{E}_{q_{\phi}\left(z \mid x_{a}^{k}, \varphi_{a}^{k}\right)} {\left[\log p_{\theta}\left(x_{a}^{k} \mid z\right)\right] } \\
& \quad D_{K L}\left(q_{\phi}\left(z \mid x_{a}^{k}, \varphi_{a}^{k}\right) \| p_{\theta}(z)\right) . \\
& \mathcal{L}_{\text {pose }}=\mathbb{E}_{q_{\phi}\left(z|x| x_{a}^{k}, \varphi_{2}^{k}\right)} {\left[\log p_{\theta}\left(x_{a}^{l} \mid z\right)\right] } \\
& \quad D_{K L}\left(q_{\phi}\left(z \mid x_{a}^{k}, \varphi_{a}^{l}\right) \| p_{\theta}(z)\right) \\
& \quad- \lambda_{u} \cdot D_{K L}\left(q_{\phi}\left(u \mid x_{a}^{l}\right) \| q_{\phi}\left(u \mid x_{a}^{k}\right)\right) . \\
&\left.\mathcal{L}_{i d}=\mathbb{E}_{q_{\phi}\left(z \mid z x_{b}^{\prime}, \varphi_{a}^{k}\right)}\right)\left.\log p_{\theta}\left(x_{b}^{k^{\prime}} \mid z\right)\right] \\
& \quad D_{K L}\left(q_{\phi}\left(z \mid x_{b}^{k^{\prime}}, \varphi_{a}^{k}\right) \| p_{\theta}(z)\right) \\
& \quad-\lambda_{c} \cdot D_{K L}\left(q_{\phi}\left(c \mid \varphi_{b}^{k^{\prime}}\right) \| q_{\phi}\left(c \mid \varphi_{a}^{k}\right)\right)
\end{aligned}
$$

Motion Retargeting

Outline of ML techniques

Course Outline

Intro. AI, ML, and DL
Intro. Linear Algebra
Intro. Prob. \& Information
Bayesian Decision Theory
Dim reduction PCA \& LDA
Learning Rules
Support Vector Machine
Deep Convolutional Networks
Bayesian Networks
Parametric pdf Estimation
Non-Parametric pdf Estimation

Boltzman Machine
Markov Chain Monte Carlo
Inference of Bayesian Net, MCMC
Inference of Bayesian Net, VI
Traffic Pattern Analysis, VI
Recent Papers

- Active Learning
- Imbalanced Data Learning
- Out of Distribution
- Weakly Supervised Learning
- Etc.

Questions

1. Describe the common things and differences among symbolism, connectionism, and Bayesian approach.
2. Explain supervised/weekly-supervised/ unsupervised learning.
3. What is the difference between discriminative and generative model?
