PATTERN RECOGNITION

JIN YOUNG CHOI

ECE, SEOUL NATIONAL UNIVERSITY

Lecture Notes: Slides

References:

- Pattern Classification by Richard O. Duda, et al.
- Pattern Recognition and Machine Learning by Cristopher <u>M. Bishop</u>
- Assistant: 박슬기, 133(ASRI)-412, seulki.park@snu.ac.kr
- Evaluation: Quiz 40%, Midterm 30%, Final 30%,
- Video: Every week two videos are uploaded.
 - Video 1: upload: Sun. 09:00, Quiz Due: Tue. 24:00
 - Video 2: upload: Wed. 09:00, Quiz Due: Fri. 24:00
- Class web: etl.snu.ac.kr
- Office: 133(ASRI)-406, jychoi@snu.ac.kr

INTRODUCTION TO AI: ARTIFICIAL INTELLIGENCE ML: MACHINE LEARNING DL: DEEP LEARNING

JIN YOUNG CHOI

ECE, SEOUL NATIONAL UNIVERSITY

Filtering Estimation Optimization

Bayesian Theory

Statistical Machine Learning

Data base

Backpropagation Rule

Search, Inference Decision Tree

Symbolism

Cognitive science Minsky Deep Learning Neural Networks

Connectionism

Neuroscience

Rosenblatt

Learning from Experience (Observations, Examples)

?

Inference(Reasoning) for a Question

?

Learning from Experience (Observations, Examples)

If birds are given, then we can learn their features such as # of legs, shape of mouth, etc. If cancer patients are given, then we can observe their symptoms via diagnosis

Inference(Reasoning) for a Question

- If features of something are given, then we can recognize what is it.
- If symptoms of a patient are given, then we can infer what is his decease.

•••••

Learning from Experience (Observations, Examples)

If birds are given, then we can learn their features such as # of legs, shape of mouth, etc. If cancer patients are given, then we can record their symptoms via diagnosis

If
$$y = y_1$$
, then $x = x_1$
If $y = y_2$, then $x = x_2$

y...x......
$$y_1$$
 x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} y_2 x_{21} x_{22} x_{23} x_{24} x_{25} x_{26}

Inference(Reasoning) for a Question

If features of something are given, then we can recognize what is it.

If symptoms of a patient are given, then we can infer what is his decease.

If
$$x = x_1$$
, then $y = y_1$

If
$$x = x_2$$
, then $y = y_2$

y...x......
$$y_1$$
 x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} y_2 x_{21} x_{22} x_{23} x_{24} x_{25} x_{26}

Symbolism

Search-based Inference Engine

Learning from Experience (Observations, Examples) If $y = y_1$, then $x = x_1$

If
$$y = y_2$$
, then $x = x_2$

$$p(x = x_i | y = y_j), p(y = y_j)$$

Inference(Reasoning) for a Question If $x = x_1$, then $y = y_1$ If $x = x_2$, then $y = y_2$

$$p(y = y_j | x = x_i) = \frac{\left(p(x = x_i | y = y_j)p(y = y_j)\right)}{p(x)},$$

$$p(x) = \sum_i p(x = x_i | y = y_j)p(y = y_j)$$

Density Estimation

Bayesian Theory

Deep Neural Networks for Learning and Inference

$$o = f(W, x)$$
, ex, $o_j = p(y = y_j | x = x_i)$

Training (learning) Find W to minimize the errors between o_j and d_j for given training data $\{(x_p, l_p)\}$

Inference(Reasoning) Calculate o_i via the deep network

Network Training Inference (feedforward)

Connectionism

Symbolism

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

Bayesian Theory

Convolutional Neural Networks

Supervised/Unsupervised Learning,

Generative/Discriminative Model

Generating images

Generative approach: Model p(z, x) = p(x|z)p(z)Use Bayes' theorem $p(z|x) = \frac{p(x|z)p(z)}{p(x)}$ Discriminative approach: Model p(z|x) directly

Unsupervised Learning,

Clustering: K-means, etc. Variational Auto-Encoder

> Encoder Decoder Associator 'ZERO' 'ZERO' ŧ∣ Encoder Decoder 'GO' 'GO' Associator ↓ I Encoder Decoder Imagination Sensory Concept Space Space Space

$$L_2 \text{ Loss}$$

 $L(d, f(W, x)) = ||d - f(W, x)||_2^2$

Total Loss

$$\mathcal{L}(W) = \int L(d, f(W, x)) dp(x, d)$$

where $p(x, d)$ is a joint PDF of x and d , but unknown

Empirical Total Loss

$$\mathcal{L}_{i}(W) = \frac{1}{N} \sum_{n=1}^{N} L(d_{n}, f(W, x_{n}))$$

$$I(x_k) = \log(\frac{1}{p_k}) \rightarrow \begin{cases} base \ 2 \rightarrow bits \\ base \ e \rightarrow nats \end{cases}$$

32 bits $\rightarrow p_k = 1/2^{32}$ for uniform distribution $\rightarrow I_k = 32$ bits
(1) $I(x_k) = 0$ for $p_k = 1$
(2) $I(x_k) \ge 0$ for $0 \le p_k \le 1$
(3) $I(x_k) \ge I(x_j)$ for $p_k \le p_j$

Entropy : a measure of the *average amount of information* conveyed per message, i.e., expectation of Information

$$H(x) = E[I(x_k)] = \sum_k p_k I(x_k) = -\sum_k p_k \log p_k$$

Entropy becomes maximum when p_k is equiprobable

32 bits $\rightarrow p_k = 1/2^{32}$ for uniform distribution $\rightarrow I_k = 32$ bits $\rightarrow 0 \le H(X) \le -\sum_{k=1}^{2^{32}} \frac{1}{2^{32}} \log \frac{1}{2^{32}} = 32$

 $\rightarrow H(X) = 0$ for an event $p_k = 1$ and $p_{j \neq k} = 0$

Cross Entropy Loss:

$$\mathcal{L}(W) = -\sum_{k}^{K} [t_k \log f_k(W, x) + (1 - t_k) \log (1 - f_k(W, x))]$$

$$f_k(W, x) = \frac{1}{1 + e^{-a_k}} (\text{sigmoid})$$

 t_k : target label (multi-hot: 00110100)

 o_k

Theorem (Gray 1990)

$$\sum_{k} p_k \log \frac{p_k}{q_k} \ge 0$$

Relative entropy (or Kullback – Leibler divergence)

$$D_{KL}(p \parallel q) = \sum_{k} p_{k} \log \frac{p_{k}}{q_{k}}$$
$$D_{KL}(p \parallel q) = 0 \text{ for } p \equiv q$$
$$p_{k} \text{ probability mass function}$$
$$q_{k} \text{ reference probability mass function}$$

Scene and Object Generation

$$\mathcal{L}(\theta, \phi) = \mathcal{L}_{ref} + \mathcal{L}_{pose} + \mathcal{L}_{id}.$$

$$\mathcal{L}_{ref} = \mathbb{E}_{q_{\phi}(z|x_{a}^{k},\varphi_{a}^{k})} [\log p_{\theta}(x_{a}^{k}|z)] - D_{KL} \left(q_{\phi}(z|x_{a}^{k},\varphi_{a}^{k}) \parallel p_{\theta}(z) \right).$$

$$\mathcal{L}_{pose} = \mathbb{E}_{q_{\phi}(z|x_{a}^{k},\varphi_{a}^{l})} [\log p_{\theta}(x_{a}^{l}|z)] - D_{KL} \left(q_{\phi}(z|x_{a}^{k},\varphi_{a}^{l}) \parallel p_{\theta}(z) \right) - \lambda_{u} \cdot D_{KL} \left(q_{\phi}(u|x_{a}^{l}) \parallel q_{\phi}(u|x_{a}^{k}) \right).$$

$$\mathcal{L}_{id} = \mathbb{E}_{q_{\phi}(z|x_{b}^{k'},\varphi_{a}^{k})} [\log p_{\theta}(x_{b}^{k'}|z)] - D_{KL} \left(q_{\phi}(z|x_{b}^{k'},\varphi_{a}^{k}) \parallel p_{\theta}(z) \right) - \lambda_{c} \cdot D_{KL} \left(q_{\phi}(c|\varphi_{b}^{k'}) \parallel q_{\phi}(c|\varphi_{a}^{k}) \right).$$

Motion Retargeting

Outline of ML techniques

Course Outline

Intro. AI, ML, and DL Intro. Linear Algebra Intro. Prob. & Information **Bayesian Decision Theory** Dim reduction PCA & LDA Learning Rules Support Vector Machine **Deep Convolutional Networks Bayesian Networks** Parametric pdf Estimation Non-Parametric pdf Estimation **Boltzman Machine** Markov Chain Monte Carlo Inference of Bayesian Net, MCMC Inference of Bayesian Net, VI Traffic Pattern Analysis, VI **Recent Papers Active Learning** -Imbalanced Data Learning -Out of Distribution Weakly Supervised Learning

- Etc.

- Describe the common things and differences among symbolism, connectionism, and Bayesian approach.
- 2. Explain supervised/weekly-supervised/ unsupervised learning.
- 3. What is the difference between discriminative and generative model?