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Outline

 Nonparametric Density Estimation

 Histogram Approach

 Parzen-window method

 Kn-Nearest-Neighbor Estimation

 Gaussian Mixture Models

 Expectation and Maximization
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Nonparametric Density Estimation

 The common parametric forms rarely fit the densities actually 

encountered in practice.

 Classical parametric densities are unimodal, whereas many 

practical problems involve multimodal densities. 

 We examine nonparametric procedures that can be used with 

arbitrary distribution and without the assumption that the 

parametric forms of the underlying densities are known. 
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Nonparametric Density Estimation

 There are several types of nonparametric methods: 

 Procedures for estimating the density functions from 

sample patterns (Likelihood estimation).

 Procedures for directly estimating a posteriori probability

 Nearest neighbor rule which bypass probability estimation, and go 

directly to decision functions.
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The Histogram Method: Example

 Assume (one dimensional) data

 Some points were sampled from a combination of two Gaussians:

 3 bins
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The Histogram Method: Example
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 7 bins

 11 bins



Density Estimation 

 The probability for x to fall into R is


 Suppose we have n i. i.d. samples x1 , … , xn drawn according to p(x) . 
The probability that k of them fall in R is 

 The expected value for k is                   and variance                                    . 
The relative part of samples which fall into R,  (k/n), is also a random 
variable for which

 When n is growing up, the variance is making smaller and       is 
becoming to be better estimator for  p.   
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Density Estimation

 𝑃𝑘 sharply peaks about the mean, 

 so the  𝑘/𝑛 is a good estimate of 𝑝.

 For small enough  R

 where x is within 𝑅 and 𝑽 is a volume enclosed by 𝑅.

 Thus 
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Histogram Approach

 Histogram is the simplest method of estimating a p.d.f.  

𝑗-th Bin 𝑏𝑗
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Histogram Approach

 The                 is constant over 𝑏𝑗

 Let us verify that                  is a density function:

 We can choose the number of bins in each axis, 𝑚 , and their starting 

points. Fixation of starting points is not critical, but 𝑚 is important. 

 It place a role of smoothing parameter.  Too big 𝑚 makes histogram 

spiky, for too little 𝑚 we loose a true form  of the density function
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Histogram Approach

 The histogram p.d.f. estimator is very effective. 

 We can do it online : all we should do is to update the counters 𝑘𝑗

during the run time, so we do not need to keep all the data which could 

be huge.

 But its usefulness is limited only to low dimensional vectors x, because 

the number of bins, 𝑁𝑏 , grows exponentially with dimensionality 𝑑 :

 This is the so called “curse of dimensionality”                                           
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Three  Conditions for Density Estimation

 Reducing the region by increasing the samples

 Let us take a growing sequence of samples 𝑛 = 1, 2, 3 …

 We take regions 𝑅𝑛 with reduced volumes 𝑉1 > 𝑉2 > 𝑉3 > ⋯

 Let 𝑘𝑛 be the number of samples falling in 𝑅𝑛

 Let 𝑝𝑛(𝑥) be the 𝑛th estimate for 𝑝(𝑥)

 If 𝑝𝑛(𝑥) is to converge to 𝑝(𝑥) , 3 conditions must be required: 

 resolution as big as possible (for smoothing)

 to preserve

 to guarantee convergence of 
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PARZEN WINDOW and KNN

 How to obtain the sequence 𝑅1 , 𝑅2 , ..? 

 There are 2 common approaches of obtaining sequences of regions 

that satisfy the convergence conditions: 

 Shrink an initial region by specifying the volume 𝑉𝑛 as some 

function of n , such as                  and show that 𝑘𝑛 and  𝑘𝑛/𝑛 behave 

properly i.e.  𝑝𝑛(𝑥) converges to 𝑝(𝑥). 

 This is Parzen-window  (or kernel ) method . 

 Specify 𝑘𝑛 as some function of 𝑛, such as                  Here the 

volume 𝑉𝑛 is grown until it encloses 𝑘𝑛 neighbors of 𝑥. 

 This is 𝒌𝒏 −nearest-neighbor method . 
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PARZEN WINDOWS 

 Assume that the region 𝑅𝑛 is a 𝑑 −dimensional hypercube.

 If ℎ𝑛 is the length of an edge of that hypercube, 

 then its volume is given by              

 Define the following window function:

 defines a unit hypercube centered at the origin.

 , if 𝑥𝑖 falls within the hypercube of volume
𝑉𝑛 centered at 𝑥, and is zero otherwise.

 The number of samples in this hypercube is given by: 
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 PARZEN WINDOWS cont.

 Since

 Rather than limiting ourselves to the hypercube window, we can use a 
more general class of window functions. 

 The window function is being used for interpolation. Each sample 
contributing to the estimate in accordance with its distance from 𝒙.

 𝑝𝑛(𝒙) must: 

 be nonnegative 

 integrate to 1. 
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PARZEN WINDOWS cont.

 This can be assured by requiring the window function itself be a density 
function, i.e., 

 Effect of the window size ℎ𝑛 on 𝑝(𝑥)

 Define the function 

 then, we write 𝑝𝑛(𝒙) as the average 

 Since             ,  ℎ𝑛 affects both the amplitude and the width of 
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PARZEN WINDOWS cont.

 Examples of two-dimensional circularly symmetric normal Parzen
windows for 3 different values of ℎ.

 If ℎ𝑛 is very large, the amplitude of            is small, and 𝒙 must be far 
from 𝒙𝒊 since                 decreases slowly from       
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PARZEN WINDOWS cont.

 In this case 𝑝𝑛(𝒙) is the superposition of 𝑛 broad, slowly varying 

functions, and is very smooth "out-of-focus" estimate for 𝑝(𝒙).

 If ℎ𝑛 is very small, the peak value of                    is large, and occurs near 

𝒙 = 𝒙𝒊 .

 In this case, 𝑝𝑛(𝒙) is the superposition of n sharp pulses centered at 

the samples: an erratic, "noisy" estimate. 

 As ℎ𝑛 approaches zero,                    approaches a Dirac delta function 

centered at 𝒙𝒊 , and 𝑝𝑛(𝒙) approaches a superposition of delta 

functions centered at the samples. 
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PARZEN WINDOWS cont.

 3 Parzen-window density estimates using 5 samples, 
 The choice of ℎ𝑛 (or 𝑉𝑛) has an important effect on 𝑝𝑛(𝒙)
 If 𝑉𝑛 is too large the estimate will suffer from too little resolution      
 If 𝑉𝑛 is too small the estimate will suffer from too much       

statistical variability.
 If there is limited number of samples, then seek some 

acceptable    compromise.
 If we have unlimited number of samples, then let 𝑉𝑛 approach 

zero as 𝑛 increases, and have 𝑝𝑛(𝒙) converge to the unknown 
density 𝑝(𝒙).
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PARZEN WINDOWS cont.

 Example 1: 𝑝(𝒙) is a zero-mean, unit variance, univariate normal 
density. Let the widow function be of the same form:



 Let                      where       is a parameter 

 𝑝𝑛(𝒙) is an average of normal densities centered at the samples: 
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Examples cont.

 Generate a set of normally distributed random samples. 

 Vary 𝑛 and ℎ1.
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 The results depend both on 𝑛
and ℎ1. 

 For 𝑛 = 1, 𝑝𝑛(𝒙) is merely a 
single Gaussian centered 
about the first sample, which 
has neither the mean nor the 
variance of the true 
distribution. 

 For 𝑛 = 10 and ℎ1 = 0.1, the 
contributions of the individual 
samples are discernible. This is 
not the case for ℎ1 = 1 and 
ℎ1 = 0.5.
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Examples cont.
 Example 2:
 Let                       be the same as 

in Example 1.

 but let the unknown density be 
a mixture of uniform and a 
triangle density.

 The case 𝑛 = 1 tells more 
about the window function 
than it tells about the 
unknown density. 

 For 𝑛 = 16, none of the 
estimates is good. 

 For 𝑛 = 256, and ℎ1 = 1, the 
estimates are beginning to 
appear acceptable. 
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Examples cont.

 Classification 

 To make a classification we should:

 Estimate the density for each category using Parzen-window 

method.

 Classify a test point by the label corresponding to the 

maximum posterior.

 The decision regions for a Parzen-window classifier depend upon 

the choice of window function.
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Examples cont.

Small h: more complicated boundaries.    Large h: Less complicated boundaries. 
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Examples cont.

• A small ℎ would be appropriate for the higher density region, while a 

large ℎ for the lower density region.

• No single window width is ideal overall.

• In general, the training error can be made arbitrarily low by making the 

window width sufficiently small.

• Remember, the goal of creating a classifier is to classify novel patterns, 

and a low training error does not guarantee a small test error.
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Advantages of Nonparametric Techniques

• Generality: same procedure can be used for unimodal normal and 

multimodal mixture.

• We do not need to make assumption about the distribution ahead of 

time.

• With enough samples, we are assured of convergence to an arbitrarily 

complicated target density
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Disadvantages of Nonparametric Techniques

 Number of samples needed may be very large (much larger than would 

be required if we knew the form of the unknown density) .

 Severe requirements for computation time and storage. 

 The large number of samples grows exponentially with the 

dimensionality of the feature space ("curse of dimensionality") 

 Sensitivity to the choice of the window size:

 Too small: most of the volume will be empty, and the estimate   

 𝑝𝑛(𝒙) will be very erratic.

 Too large: important variations may be lost due to averaging.

 It may be the case that a cell volume appropriate for one region of the 

feature space might be entirely unsuitable in a different region.
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𝐾𝑛-Nearest-Neighbor Estimation

 To estimate 𝑝(𝑥) from 𝑛 training samples, we center a cell about 𝑥 and 

let it grow until it captures 𝑘𝑛 samples, where 𝑘𝑛 is some specified 

function of 𝑛. 

 These samples are the 𝑘𝑛 nearest-neighbors of 𝑥. 

 If the density is high near 𝑥, the cell will be relatively small 

good resolution.
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𝐾𝑛-Nearest-Neighbor Estimation

 If we take                       we want                 when

 for            be a good estimate of probability

 But 𝑘𝑛 should grow sufficiently slow so that the volume of  the cell 

captured 𝑘𝑛 samples will shrink to zero.

 Thus                              is necessary and sufficient for 𝑝𝑛(𝑥) to converge 

to 𝑝 𝑥 .

 If              and assume that 𝑝𝑛(𝑥) is good approximation for 𝑝(𝑥), 

i.e.,                            .

 Thus                   but with                   determined by the nature of the data 
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Comparison of Density Estimators

 Parzen window estimates 

 require the storage of all the observations 

 n evaluations of the kernel function for each estimate

 Computational complexity: 𝑂(𝑑𝑛), parallel circuit

 Nearest neighbor estimates

 also require the storage of all the observations

 Computational complexity: 𝑂(𝑑𝑛), parallel circuit, 3 algorithms

 Histogram estimates 

 do not require storage for all the observations, 

 Just require storage for description of the bins. 

 But  the number of the bins grows exponentially with dimension.
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Interim Summary

Histogram

From histogram to density estimation

Convergence conditions

Parzen window

Parzen window Function (Kernel)

Cube kernel, Gaussian kernel

Window size and performance

Classification

𝐾𝑛 – Nearest Neighbor

lim𝑛→∞ 𝑝𝑛(𝑥) = 𝑝(𝑥).
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Interim Summary

Histogram

From histogram to density estimation

Convergence conditions

Parzen window

Parzen window Function (Kernel)

Cube kernel, Gaussian kernel

Window size and performance

Classification

𝐾𝑛 – Nearest Neighbor

lim
𝑛→∞

𝑝𝑛(𝑥) = 𝑝(𝑥).
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Classification with  K-NN and Parzen window: 
Estimation of a posteriori probabilities 

 The 𝑘-NN (and Parzen window) techniques can be used to estimate the 

a posteriori probabilities    from a set of 𝑛 labeled samples.

 Suppose that we place a cell of volume 𝑉 around 𝑥 and  capture 𝑘

samples:

• 𝑘𝑖 are labeled 𝜔𝑖

• 𝑘 − 𝑘𝑖 have other labels.

 A simple estimate for the joint probability density                is

 A reasonable estimate for                   is 
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Classification With Nearest Neighbor Rule 

 Let                           denote a set of 𝑛 labeled prototypes and let

 be the prototype nearest to a test point 𝑥 . Then

 The Nearest Neighbor Rule: assign the label of              

 This rule is suboptimal, but when the number of prototypes is large, its 

error is never worse than twice the Bayes rate.
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Classification With Nearest Neighbor Rule 

Voronoi cells
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Voronoi tessellation



Classification With the 𝑘-Nearest Neighbor Rule 

 The 𝑘-NN query starts at the test point and grows a spherical region 

until it encloses k training samples, and it labels by a majority vote of 

these samples. 

 Algorithm:

• For each sample point  Compute Distance (sample point, test point) 

• Sort the distances 

• Inspect the 𝑘 smallest distances 

• Label test point by a majority vote. 
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Classification With the 𝑘-Nearest Neighbor Rule 

 Question.

• If a posteriori probabilities 𝑝 𝜔𝑖 𝒙 , 𝑖 = 1, 2 for two classes are 

known, for example

• What is a probability of choosing a class 𝜔1 for 𝑥 with the Bayes, 

the nearest neighbor, the 𝑘-NN classifiers?  
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Classification With the k-Nearest Neighbor Rule. 

 Answer

• Bayes:   always w1

• NN:       p(w1|x) 

• K-nn: 
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Exercise



답안



Gaussian Mixture Estimation
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 Parzen Window

 Gaussian Mixture
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Gaussian Mixture Estimation

 Gaussian Mixture Model 

where , 𝑝(𝑥|𝜃𝑘) are Gaussian density functions. 

 𝐾, 𝜃𝑘 , 𝑎𝑛𝑑 𝑝(𝜃𝑘) can be estimated from a data set 
using Expectation-Maximization (EM)algorithm

 Example of EM: 𝜃𝑘 = [𝜇𝑘 , Σ𝑘], fixed K

 Class conditional PDF

 𝑝 x|θ = σ𝑘 𝑝 x|𝜃𝑘 𝑝(𝜃𝑘|𝜃)

= σ𝑍 𝑝(x, 𝑍|𝜃) =σ𝑍=𝑘 𝑝(x|𝑍 = 𝑘, 𝜃)𝑝(𝑍 = 𝑘|𝜃)

 𝑝 x|θ = 𝑍׬ 𝑝 x, 𝑍, |𝜃 𝑑𝑍
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Expectation-Maximization (EM)
 EM aims to find parameter values that maximize likelihood,

where 𝑍 is latent variable.

 E-step: For given 𝜃𝑡 , 𝑋, find expectation of the likelihood 

on the conditional distribution of 𝑍 given 𝑋 𝑎𝑛𝑑 𝜃𝑡.

 M-step: Find 𝜃𝑡+1 maximizing 𝑄.

 Repeat E-step and M-step.
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Expectation-Maximization (EM)

 Likelihood of GMM

 E-step
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Expectation-Maximization (EM)

 E-step
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Expectation-Maximization (EM)

 M-step
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Expectation-Maximization (EM)
 EM aims to find parameter values that maximize likelihood,

where 𝑍 is latent variable.

 E-step: For given 𝜃𝑡 , 𝑋, find expectation of the likelihood 

on the conditional distribution of 𝑍 given 𝑋 𝑎𝑛𝑑 𝜃𝑡.

 M-step: Find 𝜃𝑡+1 maximizing 𝑄.

 Repeat E-step and M-step.
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Automatic Model Order Selection

 Constructive algorithm can be used to automatically determine the 
number of components in a mixture.

 The available data set is partitioned into disjoint training and validation 
sets.

 A mixture model is initialized with a small number of components, 
typically one.

 The likelihood for the validation set is computed after every iteration.

 The tasks of selecting and splitting components can be performed by 
utilizing the the likelihood for validation set 



Automatic Model Order Selection

 For each component    , define a total responsibility   as

 The component with the lowest total responsibility for the 
validation set is selected for splitting.

 Covariance matrices equal to 𝐶𝑘
 Means given by:

where is the largest eigenvalue of   𝐶𝑘 and 

𝑢1 is the corresponding eigenvector.
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Automatic Model Order Selection

1 1 1

( ) ( )
( ) ( )

( ) ( )

M M
m k k

k m K
m m j m j j

p x P
r k p x

p x P

 


   

  




Automatic Model Order Selection
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Automatic Model Order Selection

 Prior probabilities for the new components are set to

 denote the number of components in a model after iteration

 be the likelihood of the validation set given the model 

1. Apply EM for model with      components.

2. Compute      for validation set

3. If STOP.

4. Split component      with the lowest total responsibility

5. Set and

6. Go to 1.
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Adaptive EM for Non-stationary Distributions

 In the context of dynamic vision, data are often sampled from non-
stationary distributions.

 For example, the color of the object often changes gradually over time

 An algorithm for adaptively estimating such a mixture.

 At each frame, , a new set of data,       can be used to update the 
mixture model. 

 Let denote the sum of the posterior probabilities 
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Adaptive EM for Non-stationary Distributions

 The parameters are first estimated for each mixture 
component,     , using only the new data, k ( )tx X
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Interim Summary

 𝐾𝑛-Nearest Neighbor Method

 Nearest Neighbor Method

 𝑘 -Nearest Neighbor Method

 𝑘 -Nearest Neighbor Classifier

 Bayes, the nearest neighbor, the k-NN classifiers

 Gaussian Mixture Model

 EM Algorithm

 Automatic GMM selection

 Adaptive GMM


