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Outline

=  Monte Carlo : Sample from a distribution to estimate the distribution
= Markov Chain Monte Carlo (MCMC)

— Applied to Clustering, Unsupervised Learning, Bayesian Inference

"  |mportance Sampling

=  Metropolis-Hastings Algorithm

= Gibbs Sampling

=  Markov Blanket in Sampling for Bayesian Network

=  Example: Estimation of Gaussian Mixture Model

p(x]0) = Xk p(xX|0x)p(0x|6)
=2z P(XZ|0) =27k P(X|Z = k,0)p(Z = k|0)

p(x|D) = Z P(6.2,01D) =7,p(zlx,6) =7,p(6]x,2) =7
Z,




Markov chain Monte Carlo(MCMC)

= Monte Carlo : Sample from a distribution
- to estimate the distribution for GMM estimation, Clustering
(Labeling, Unsupervised Learning)
- to compute max, mean

» Markov Chain Monte Carlo : sampling using “local” information
- Generic “problem solving technique”
- decision/inference/optimization/learning problem
- generic, but not necessarily very efficient




Monte Carlo Integration

=  General problem: evaluating
Ep[h(X)] = [ h(x)P(x)dx
can be difficult. (J |h(x)|P(x)dx < oo)

= |If we can draw samples x(9)~P(x), then we can estimate

Ep[A(0] ~ oy = z R(x®).

= Monte Carlo integration is great if you can sample from the target
distribution

* But what if you can’t sample from the target?
* Importance sampling: Use of a simple distribution




Importance Sampling

= |dea of importance sampling:

Draw the sample from a proposal distribution () and re-weight the integral
using importance weights so that the correct distribution is targeted

h h(X)P(X
Ep[h(X)] = [ (‘w()(x)dx = IEQ[ (Q)(Xg ) .

= Hence, given an iid sample x) from (), our estimator becomes
N
E h(X)P(X) 1 Zh(x(s))P(x(s))
L e | N4 W)




Limitations of Monte Carlo

= Direct (unconditional) sampling
* Hard to get rare events in high-dimensional spaces - Gibbs sampling

=  |mportance sampling
* Do not work well if the proposal Q(x) is very different from target P(x)
* Yet constructing a Q(x) similar to P(x) can be difficult = Markov Chain

= |ntuition: instead of a fixed proposal Q(x), what if we could use an adaptive
proposal?

* X:+1 depends only on X;, not on X, X1, ..., X¢_1
* Markov Chain




Markov Chains: Notation & Terminology

Countable (finite) state space () (e.g. N)

Sequence of random variables {X;} on Q fort = 0,1,2, ...

Definition : {X;} is a Markov Chain if

PXep1 =y | Xe = x4, 00, X0 = %0) = PXey1 =y | Xe = x¢)

Notation : P(Xp41 = i | X = j) = pji

- Random Works

Example.
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Markov Chains: Notation & Terminology

= letP = (pl-j) - transition probability matrix
- dimension |Q| X |Q]

" letw(j) = P(X; =)
- T : initial probability distribution

= Then m.(j) = X;me—1 (D) pij = (m—1P)(G) = (moPH ()

Ty = 7Tt_1P = ﬂt_zpz == 7T0Pt
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Markov Chains: Fundamental Properties

= Theorem:

- If the limit (llm P ) P exists and Q is finite, then

(P)() = n(j) and 3;7()) = 1

and such m is an unique solution to mP = m (m is called a stationary
distribution)

- No matter where we start, after some time, we will be in any state j with
probability ~ 7 (j)
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Markov Chain Monte Carlo

MCMC algorithm feature adaptive proposals

- Instead of Q(x"), they use Q(x'|x) where x' is the new state being
sampled, and x is the previous sample

- As x changes, Q(x'|x) can also change (as a function of x')
P(x")/Q(x11x)\

" P(x)/Q(x|x")

- No matter where we start, after some time, we will be in any state j with

importance

- The acceptance probability is set to A(x'|x) = min (1

probability ~ 7T(]) Q(x'|x) = Q(x'|x) for Gaussian Why?

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x'|x)
P(x) P(x)
Q(x) Q(x2|x")
o &0 :
x3 x1 x2 x|  x2  x3
P11 7 P12 py; P11 7 P12 py;
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Metropolis-Hastings

= Draws a sample x’ from Q(x'|x), where x is the previous sample
= The new sample x' is accepted or rejected with some probability A(x'|x)

P(x’)/Q(x'Ix)>
" P(x)/Q(x|x")

* This acceptance probability is A(x'|x) = min (1

« A(x'|x) is like a ratio of importance sampling weights

P(xr)

——— is the importance weight for x’, PCO
(*'x)

Q(x|xr)

is the importance weight for x

* We divide the importance weight for x’ by that of x
* Notice that we only need to compute P(x")/P(x) rather than P(x") or P(x) separately

* A(x'|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x)

Q(x'|x) = Q(x'|x) for Gaussian Why? E [h(0)] = [ %Q(x)dx = E, l

h(X)P(X)
Q(X)
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The MH Algorithm

= |nitialize starting state x(®,

= Burn-in: while samples have “not converged”

o x=®

e t=t+1

* Sample x*~Q(x"|x) // draw from proposal

* Sample u~Uniform(0,1) // draw acceptance threshold

e If u<A(x*|x) = min (1, F;J(g:))gg*lli))), x® = y*

// transition

* Else x(t) =X // stay in current state

* Repeat until converging

12



A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(@

P(x)

Q(x1|x0)




A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(@
1
Draw, accept x P (X)

Q(x1|x0)




A(x'|x) = min (1,

The MH Algorithm

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©@
Draw, accept x’
Draw, accept x?

P(x)

Q(2x")




A(x'|x) = min <1,

The MH Algorithm

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x? P(x)
Draw but reject; set x3=x2

° o
x1 x0 x2 x (rejected)
X3




A1) min<1 P(x’)/Q(x’Ix)>

"P(x)/Q(x|x")

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x
* We're trying to sample from a bimodal distribution P(x)

We reject because P(x')/P(x2) is very small,
Initialize x© hence A(x’[x?) is close to zero!

Draw, accept x’

Draw, accept x2

Draw but reject; set x3=x?

P(x)

Q(x|x2)

° o
x!' x0 x* x (rejected)
X3




A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'
Draw, accept x?
Draw but reject; set x3=x2
Draw, accept x*

P(x)
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A1) min(l P(x’)/Q(x’Ix)>

"P(x)/Q(x|x")

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x
* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x?

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x°

P(x)

Q(x3x?)




The MH Algorithm

A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:

* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x2

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x5

The adaptive proposal Q(x’|x) allows
us to sample both modes of P(x)!

QEC|x2)

P(x)
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Gibbs Sampling

= Gibbs Sampling is an MCMC algorithm that samples each random variable of a
graphical model, one at a time

 GSis aspecial case of the MH algorithm

= Consider a factored state space
» x € Qisavectorx = (X1, ..., X;p)
* Notation: x_; = {Xq, ..., Xj_1, Xj41) o) X}

21



Gibbs Sampling

A(x'|x) = min (1,

P(?C’)/Q(?C'IX))
P(x)/Q(x|x")

w N =

The GS algorithm:

Suppose the graphical model contains variables x4, ..., x,

Initialize starting values for x4, ...,

Do until convergence:

1. Pick a componenti € {1, ...,

nj

n

2. Sample value of z~P(x;|x_;), and update x; « z

When we update x;, we immediately use its new value for sampling other

variables Xj

P(x;|x_;) achieves the acceptance probability in MH algorithm.

A(xl x|z, x_y)

man(1,

min(1,

P(@z-)Q(zi, 7l 7

P(I z_;)Q(zl, v_;|x;, ;)
P(z!|z—,)P( |r_z})

" P(x;|z_;)P(zl|xz_:)

)
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Markov Blankets

* The conditional P(x;|x_;) can be obtained using Markov Blanket

* Let MB(x;) be the Markov Blanket of x;, then
P(x; | x—) = P(x;|MB(x;))

= For a Bayesian Network, the Markov Blanket of x; is the set containing its
parents, children, and co-parents

23



Gibbs Sampling: An Example

Ground Truth

al . - N Gaussian with mean (1,2), variance 2

-10

= Consider the GMM
* The data x (position) are extracted from two Gaussian distribution

* We do NOT know the class y of each data, and information of the Gaussian
distribution

* Initialize the class of each data at t = 0 to randomly
p(x|6) = X p(x|6x)p(6k[6)

=2z P(%Z|0) =2z, p(x|Z = k,0)p(Z = kI|6)

24



Gibbs Sampling: An Example

t=1

S 279861 -0136397 5
%/aar_?_'( 7 8076742)

L e

m an (1 5891, -0. 11834%
&am 48. %0 353345678791 5)
: . var=1(3.4138, 9.52

an = (1.5065, 0.0081079)
fifehd: 00&43963660)84467
ar-=(3.4116, 9.4064)

\ A

Sampling P(y; |x_;, y-

where

And update y; with P(y; |x_;, y_

Iteration of i atthe same t

i)att =1, we compute:
P(yl =0 |x—i1y—
P(yl =1 |x—i1y—

i) X N(xilﬂx_i,o» Ux_i,O)
i) X N(xil.ux_i,b O-x_i,l)

Ux_;k = MEAN (Xik), Ox_j,K = VAR(X;k)
XiK = {X] |x] € x_i,yj = K}

;) and repeat for all data
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Gibbs Sampling: An Example

n'= (1.2276, 0.78667)
(2.6689, 6.9218)

san = (2.5765, -1.5547)
(3:1685, 8/4035)

= (0.90114, 1.5067)
(1.9188, 4.7365)

.8023, 6.1392)

1= (2.9152, -2.2918)

(0.89665, 1.7813)
(1.8198, 3.4298)

(
2.1708, 4.6234)

2.9898, -2.7094

n = (0.93387, 2.0824)
617, 2.1732)

= (2.9146, -2.9307)
2.94,3.3719)
0 2 4 6 g 1‘0 12

Now t = 2, and we repeat the procedure to sample new class of each data

And similarly fort = 3,4, ...

26



Gibbs Sampling: An Example

t=0
6 .
Ground Truth
class1 T
4t
\_1
of S e = ) PH
e [}
: R Ry
> 2 : 1
4t
6
1ass0 \ I I I I I \
: : 345 99 487 533 546 302 133 382 505 847
8r - 1 data index
x ‘ | I Ground Truth [ Gibbs |
-4 2 0 2 4 6 8 10 12

= Datai’s class can be chosen with tendency of y;
* The classes of the data can be oscillated after the sufficient sequences
* We can assume the class of datum as more frequently selected class

= |n the simulation, the final class is correct with the probability of 94.9% at t =
100

27



Interim Summary

Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from
the true distribution P(x)

Metropolis-Hastings allows you to specify any proposal Q (x'|x)
* But choosing a good Q(x'|x) requires care

Gibbs sampling sets the proposal Q(x,"|x_) to the conditional distribution P(x; |x_1)
* Acceptance rate always 1.
* But remember that high acceptance usually entails slow exploration
* Infact, there are better MCMC algorithms for certain models
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