
Markov chain Monte Carlo(MCMC)

Jin Young Choi

1



Outline

 Monte Carlo : Sample from a distribution to estimate the distribution 

 Markov Chain Monte Carlo (MCMC)

‒ Applied to  Clustering, Unsupervised Learning, Bayesian Inference

 Importance Sampling

 Metropolis-Hastings Algorithm

 Gibbs Sampling

 Markov Blanket in Sampling for Bayesian Network

 Example: Estimation of Gaussian Mixture Model
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Markov chain Monte Carlo(MCMC)

 Monte Carlo : Sample from a distribution

- to estimate the distribution for GMM estimation, Clustering  

(Labeling, Unsupervised Learning)

- to compute max, mean

 Markov Chain Monte Carlo : sampling using “local” information

- Generic “problem solving technique”

- decision/inference/optimization/learning problem

- generic, but not necessarily very efficient
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Monte Carlo Integration

 General problem: evaluating

𝔼𝑃 ℎ 𝑋 = ∫ ℎ 𝑥 𝑃 𝑥 𝑑𝑥
can be difficult. (∫ ℎ 𝑥 𝑃 𝑥 𝑑𝑥 < ∞)

 If we can draw samples 𝑥(𝑠)~𝑃 𝑥 , then we can estimate

𝔼𝑃 ℎ 𝑋 ≈ തℎ𝑁 =
1

𝑁
෍

𝑠=1

𝑁

ℎ 𝑥 𝑠 .

 Monte Carlo integration is great if you can sample from the target 
distribution

• But what if you can’t sample from the target?

• Importance sampling: Use of a simple distribution
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Importance Sampling

 Idea of importance sampling:

Draw the sample from a proposal distribution 𝑄(⋅) and re-weight the integral 
using importance weights so that the correct distribution is targeted

𝔼𝑃 ℎ 𝑋 = ∫
ℎ 𝑥 𝑃 𝑥

𝑄 𝑥
𝑄 𝑥 𝑑𝑥 = 𝔼𝑄

ℎ 𝑋 𝑃 𝑋

𝑄 𝑋
.

 Hence, given an iid sample 𝑥 𝑠 from 𝑄, our estimator becomes

𝐸𝑄
ℎ 𝑋 𝑃 𝑋

𝑄 𝑋
=
1

𝑁
෍

𝑠=1

𝑁
ℎ 𝑥 𝑠 𝑃 𝑥 𝑠

𝑄 𝑥 𝑠
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Limitations of Monte Carlo

 Direct (unconditional) sampling

• Hard to get rare events in high-dimensional spaces  Gibbs sampling

 Importance sampling

• Do not work well if the proposal 𝑄 𝑥 is very different from target 𝑃 𝑥

• Yet constructing a 𝑄 𝑥 similar to 𝑃 𝑥 can be difficult  Markov Chain

 Intuition: instead of a fixed proposal 𝑄 𝑥 , what if we could use an adaptive
proposal?

• 𝑋𝑡+1 depends only on 𝑋𝑡, not on 𝑋0, 𝑋1, … , 𝑋𝑡−1
• Markov Chain
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Markov Chains: Notation & Terminology

 Countable (finite) state space Ω (e.g. N)

 Sequence of random variables 𝑋𝑡 on Ω for 𝑡 = 0,1,2, …

 Definition : 𝑋𝑡 is a Markov Chain if

𝑃 𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥𝑡, … , 𝑋0 = 𝑥0 = 𝑃 𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥𝑡

 Notation : 𝑃 𝑋𝑡+1 = 𝑖 | 𝑋𝑡 = 𝑗 = 𝑝𝑗𝑖

- Random Works

 Example.

𝑝𝐴𝐴 = 𝑃 𝑋𝑡+1 = 𝐴 | 𝑋𝑡 = 𝐴 = 0.6
𝑝𝐴𝐸 = 𝑃 𝑋𝑡+1 = 𝐸 | 𝑋𝑡 = 𝐴 = 0.4
𝑝𝐸𝐴 = 𝑃 𝑋𝑡+1 = 𝐴 | 𝑋𝑡 = 𝐸 = 0.7
𝑝𝐸𝐸 = 𝑃 𝑋𝑡+1 = 𝐸 | 𝑋𝑡 = 𝐸 = 0.3
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Markov Chains: Notation & Terminology

 Let 𝑷 = 𝑝𝑖𝑗 - transition probability matrix

- dimension Ω × Ω

 Let 𝜋𝑡 𝑗 = 𝑃 𝑋𝑡 = 𝑗

- 𝜋0 : initial probability distribution

 Then   𝜋𝑡 𝑗 = σ𝑖 𝜋𝑡−1 𝑖 𝑝𝑖𝑗 = 𝜋𝑡−1𝑷 𝑗 = 𝜋0𝑷
𝑡 𝑗

𝜋𝑡 = 𝜋𝑡−1𝑷 = 𝜋𝑡−2𝑷
2 =∙∙∙= 𝜋0𝑷

𝑡
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Markov Chains: Fundamental Properties

 Theorem:

- If the limit lim
𝑡→∞

𝑃𝑡 = 𝑃 exists and  Ω is finite, then 

𝜋𝑃 𝑗 = 𝜋 𝑗 and σ𝑗 𝜋 𝑗 = 1

and such 𝜋 is an unique solution to 𝜋𝑷 = 𝜋 (𝜋 is called a stationary 
distribution)

- No matter where we start, after some time, we will be in any state 𝑗 with 
probability ~ 𝜋 𝑗
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Markov Chain Monte Carlo

MCMC algorithm feature adaptive proposals

- Instead of 𝑄 𝑥′ , they use 𝑄(𝑥′|𝑥) where 𝑥′ is the new state being 
sampled, and 𝑥 is the previous sample

- As 𝑥 changes, 𝑄 𝑥′|𝑥 can also change (as a function of 𝑥′)

- The acceptance probability is set to 𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′

- No matter where we start, after some time, we will be in any state 𝑗 with 
probability ~ 𝜋 𝑗
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Metropolis-Hastings

 Draws a sample 𝑥′ from 𝑄 𝑥′|𝑥 , where 𝑥 is the previous sample

 The new sample 𝑥′ is accepted or rejected with some probability 𝐴 𝑥′|𝑥

• This acceptance probability is 𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′

• 𝐴 𝑥′|𝑥 is like a ratio of importance sampling weights

•
𝑃 𝑥′

𝑄 𝑥′ 𝑥
is the importance weight for 𝑥′, 

𝑃 𝑥

𝑄 𝑥|𝑥′
is the importance weight for 𝑥

• We divide the importance weight for 𝑥′ by that of 𝑥

• Notice that we only need to compute 𝑃 𝑥′ /𝑃 𝑥 rather than 𝑃 𝑥′ or 𝑃 𝑥 separately

• 𝐴 𝑥′ 𝑥 ensures that, after sufficiently many draws, our samples will come 
from the true distribution 𝑃(𝑥)
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The MH Algorithm

 Initialize starting state 𝑥(0), 

 Burn-in: while samples have “not converged”

• 𝑥 = 𝑥(𝑡)

• 𝑡 = 𝑡 + 1

• Sample  𝑥∗~𝑄(𝑥∗|𝑥) // draw from proposal

• Sample 𝑢~Uniform 0,1 // draw acceptance threshold

• If 𝑢 < 𝐴 𝑥∗ 𝑥 = min 1,
𝑃 𝑥∗ 𝑄(𝑥|𝑥∗)

𝑃 𝑥 𝑄 𝑥∗|𝑥
, 𝑥(𝑡)= 𝑥∗ // transition

• Else   𝑥(𝑡) = 𝑥 // stay in current state

• Repeat until converging
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The MH Algorithm

Example:

• Let 𝑄 𝑥′|𝑥 be a Gaussian centered on 𝑥

• We’re trying to sample from a bimodal distribution 𝑃 𝑥

𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′
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Gibbs Sampling

 Gibbs Sampling is an MCMC algorithm that samples each random variable of a 
graphical model, one at a time

• GS is a special case of the MH algorithm

 Consider a factored state space

• 𝑥 ∈ Ω is a vector 𝑥 = 𝑥1, … , 𝑥𝑚
• Notation: 𝑥−𝑖 = 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑚
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Gibbs Sampling

 The GS algorithm:

1. Suppose the graphical model contains variables 𝑥1, … , 𝑥𝑛
2. Initialize starting values for 𝑥1, … , 𝑥𝑛
3. Do until convergence:

1. Pick a component 𝑖 ∈ 1, … , 𝑛

2. Sample value of 𝑧~𝑃 𝑥𝑖|𝑥−𝑖 , and update 𝑥𝑖 ← 𝑧

 When we update 𝑥𝑖, we immediately use its new value for sampling other 
variables 𝑥𝑗

 𝑃 𝑥𝑖|𝑥−𝑖 achieves the acceptance probability in MH algorithm.
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𝑃 𝑥′ /𝑄 𝑥′|𝑥
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Markov Blankets

 The conditional 𝑃 𝑥𝑖 𝑥−𝑖 can be obtained using Markov Blanket

• Let 𝑀𝐵(𝑥𝑖) be the Markov Blanket of 𝑥𝑖, then

𝑃 𝑥𝑖 | 𝑥−𝑖 = 𝑃 𝑥𝑖|MB 𝑥𝑖

 For a Bayesian Network, the Markov Blanket of 𝑥𝑖 is the set containing its 
parents, children, and co-parents
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Gibbs Sampling: An Example

 Consider the GMM

• The data 𝑥 (position) are extracted from two Gaussian distribution

• We do NOT know the class 𝑦 of each data, and information of the Gaussian 
distribution

• Initialize the class of each data at 𝑡 = 0 to randomly
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Gibbs Sampling: An Example

Sampling 𝑃 𝑦𝑖 𝑥−𝑖 , 𝑦−𝑖) at 𝑡 = 1, we compute:

𝑃 𝑦𝑖 = 0 |𝑥−𝑖 , 𝑦−𝑖 ∝ 𝒩 𝑥𝑖|𝜇𝑥−𝑖,0, 𝜎𝑥−𝑖,0
𝑃 𝑦𝑖 = 1 | 𝑥−𝑖 , 𝑦−𝑖 ∝ 𝒩 𝑥𝑖|𝜇𝑥−𝑖,1, 𝜎𝑥−𝑖,1

where
𝜇𝑥−𝑖,𝐾 = 𝑀𝐸𝐴𝑁 𝑋𝑖𝐾 , 𝜎𝑥−𝑖,𝐾 = 𝑉𝐴𝑅 𝑋𝑖𝐾
𝑋𝑖𝐾 = 𝑥𝑗 | 𝑥𝑗 ∈ 𝑥−𝑖 , 𝑦𝑗 = 𝐾

And update 𝑦𝑖 with 𝑃 𝑦𝑖 |𝑥−𝑖 , 𝑦−𝑖 and repeat for all data
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Gibbs Sampling: An Example

Now 𝑡 = 2, and we repeat the procedure to sample new class of each data

And similarly for 𝑡 = 3, 4, …
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Gibbs Sampling: An Example

 Data 𝑖’s class can be chosen with tendency of 𝑦𝑖
• The classes of the data can be oscillated after the sufficient sequences

• We can assume the class of datum as more frequently selected class

 In the simulation, the final class is correct with the probability of 94.9% at 𝑡 =
100
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Interim Summary

Markov Chain Monte Carlo methods use adaptive proposals 𝑄 𝑥′ 𝑥 to sample from 
the true distribution 𝑃 𝑥

Metropolis-Hastings allows you to specify any proposal 𝑄 𝑥′|𝑥

• But choosing a good 𝑄 𝑥′|𝑥 requires care

Gibbs sampling sets the proposal 𝑄 𝑥𝑖
′|𝑥−1 to the conditional distribution 𝑃 𝑥𝑖

′|𝑥−1
• Acceptance rate always 1.

• But remember that high acceptance usually entails slow exploration

• In fact, there are better MCMC algorithms for certain models

28


