## Bolzmann Machine

- Unsupervised Modelling of Binary Data
- What is Boltzmann Machine ?
- Restricted Boltzmann Machine (RBM)
- RBM Learning
- Contrast Divergence (CD)
- Example


## Unsupervised Modelling of Binary Data



## Modeling binary data

- Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors
$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Name } & \begin{array}{c}\text { Harry } \\ \text { Potter }\end{array} & \text { Avatar } & \text { LOTR3 } & \text { Gladiator } & \text { Titanic } & \text { Glitter } \\ \hline \text { Alice } & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \text { Bob } & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline \text { Carol } & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right\}$ Prefer SF/fantasy.

$$
\begin{aligned}
& p(x)=\prod_{j}\left(x_{j} p_{j}+\left(\left(1-x_{j}\right)\left(1-p_{j}\right)\right)\right. \\
& =\begin{array}{c}
\text { If component } j \\
\text { of vector } x \text { is on }
\end{array}
\end{aligned} \quad \begin{gathered}
\text { If component } j \\
\text { of vector } x \text { is off }
\end{gathered}
$$

## Modeling binary data

- Modelling with Boltzmann Machine

| Name | Harry <br> Potter | Avatar | LOTR3 | Gladiator | Titanic | Glitter |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Alice | 1 | 1 | 1 | 0 | 0 | 0 |
| Bob | 1 | 0 | 1 | 0 | 0 | 0 |
| Carol | 1 | 1 | 1 | 0 | 0 | 0 |
| David | 0 | 0 | 1 | 1 | 1 | 0 |
| Eric | 0 | 0 | 1 | 1 | 0 | 0 |
| Fred | 0 | 0 | 1 | 1 | 1 | 0 |

Prefer SF/fantasy


Prefer Oscar winner

- $w_{i j}$ represents a correlation between nodes
- $p(v)=\sum_{h} p(h) p(v \mid h)$


## Boltzmann Machine

- Probability distribution on binary vectors $x$

$$
\begin{aligned}
& P(x)=\frac{\exp (-E(x))}{Z} \\
& E(x)=-\frac{1}{2} x^{T} W x-\theta^{T} x \\
&=-\sum_{k<j} x_{k} w_{k j} x_{j}-\sum_{k} \theta_{k} x_{k}
\end{aligned}
$$

- From the entropy maximization

$$
\begin{aligned}
& \max _{P(x)}-\sum_{x} P(x) \ln P(x) \\
& \text { s.t } \sum_{x} P(x)=1, \alpha=\sum_{x} P(x) E(x)
\end{aligned}
$$

$$
x^{(t+1)}=\sigma\left(W x^{(t)}\right)
$$



- $Z$ is the partition function that ensures $\sum_{x} P(x)=1$

$$
Z=\sum_{x} \exp (-E(x))
$$

## Boltzmann Machine

$$
x^{(t+1)}=\sigma\left(W x^{(t)}\right)
$$

- Probability distribution on binary vectors $x$

$$
\begin{aligned}
& P(x)=\frac{\exp (-E(x))}{Z} \\
& \bullet \\
& E(x)=-\sum_{k<j} x_{k} w_{k j} x_{j}-\sum_{k} \theta_{k} x_{k}
\end{aligned}
$$

- Gibbs Sampling

$$
\begin{aligned}
& P\left(x_{i}=1 \mid x_{-i}\right)=\frac{P\left(x_{i}=1, x_{-i}\right)}{P\left(x_{i}=1, x_{-i}\right)+P\left(x_{i}=0, x_{-i}\right)} \\
& =\frac{\exp \left(-E\left(x_{i}=1, x_{-i}\right)\right)}{\exp \left(-E\left(x_{i}=1, x_{-i}\right)\right)+\exp \left(-E\left(x_{i}=0, x_{-i}\right)\right)} \\
& =\frac{1}{1+\exp \left(-E\left(x_{i}=0, x_{-i}\right)+E\left(x_{i}=1, x_{-i}\right)\right)} \\
& =\frac{1}{1+\exp \left(-\sum_{j \neq i} w_{i j} x_{j}-\theta_{i}\right)}=\sigma\left(\sum_{j \neq i} w_{i j} x_{j}+\theta_{i}\right)
\end{aligned}
$$

## Restricted Boltzmann Machine

- Variant of Boltzmann Machine
- Restrict the connectivity to make learning easier
- There is a hidden layer and visible layer

- No hidden-to-hidden or visible-to-visible connections
- Hidden units extends the class of distributions that can be modeled
- Energy function

$$
E(v, h)=-\sum_{\forall i, j} v_{i} w_{i j} h_{j}-\sum_{i} b_{i}^{v} v_{i}-\sum_{j} b_{j}^{h} h_{j}=-v^{T} W h-v^{T} b^{v}-h^{T} b^{h}
$$

- Vectors $h, v$ are of dimension $J \times 1$ and $I \times 1$
- $W$ is of dimension $I \times J$
- $p(v)=\sum_{h} p(h) p(v \mid h)$


$$
h=\sigma(W v)
$$

## Modeling binary data

- Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors
$\left.\begin{array}{l|c|c|c|c|c|c|}\hline \text { Name } & \begin{array}{c}\text { Harry } \\ \text { Potter }\end{array} & \text { Avatar } & \text { LOTR3 } & \text { Gladiator } & \text { Titanic } & \text { Glitter } \\ \hline \text { Alice } & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \text { Bob } & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline \text { Carol } & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right\}$ Prefer SF/fantasy


## Restricted Boltzmann Machine

- Marginal distribution $P(v)$

$$
P(v)=\sum_{h} P(h) P(v \mid h)=\sum_{h} P(v, h)=\frac{\sum_{h} \exp (-E(v, h))}{Z}
$$

- $P(v, h)$ is a Boltzmann distribution with energy function $E(v, h)$
- And $P(v)$ is a Boltzmann distribution with a energy $F(v)$

$$
\begin{aligned}
& P(v)=\frac{\exp (-F(v))}{Z} \\
& F(v)=-\ln \sum_{h} \exp (-E(v, h))
\end{aligned}
$$

- the energy $F(v)$ cannot be represented as a quadratic form in $v$ (Why?)


## RBM Learning

- Maximize the product of probabilities assigned to training set $V$

$$
\arg \max _{W} \prod_{v \in \mathrm{~V}} P(v)
$$

- Or equivalently, maximize the sum of log probability of $V$ :

$$
\arg \max _{W} \sum_{v \in \mathrm{~V}} \ln P(v)
$$

- The model is updated after each training token or in batch mode

$$
w_{i j} \leftarrow w_{i j}+\left.\alpha \frac{\partial \ln P(v)}{\partial w_{i j}}\right|_{v=v^{1}}
$$

## RBM Learning

- Stochastic gradient ascent

$$
\begin{aligned}
& P(v)=\frac{\exp (-F(v))}{Z} \\
& F(v)=-\ln \sum_{h} \exp (-E(v, h))
\end{aligned}
$$

- Calculate the gradient of the log likelihood, given a training token $v^{1}$

$$
\begin{aligned}
\left.\frac{\partial \ln P(v)}{\partial w_{i j}}\right|_{v=v^{1}} & =-\left.\frac{\partial F(v)}{\partial w_{i j}}\right|_{v=v^{1}}-\frac{\partial \ln Z}{\partial w_{i j}} \\
& =v_{i}^{1} h_{j}^{1}-\frac{\partial}{\partial w_{i j}} \ln \sum_{v} \exp (-F(v)) \\
& =v_{i}^{1} h_{j}^{1}-\frac{1}{\sum_{v} \exp (-F(v))} \sum_{v} \exp (-F(v)) \frac{\partial F(v)}{\partial w_{i j}} \\
& =v_{i}^{1} h_{j}^{1}-\frac{1}{Z} \sum_{v} \exp (-F(v)) v_{i} h_{j} \\
& =v_{i}^{1} h_{j}^{1}-\sum_{v} P(v) v_{i} h_{j} \quad \text { Expectation of } v_{i} h_{j} \\
& =v_{i}^{1} h_{j}^{1}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}
\end{aligned}
$$

## RBM Learning

- Stochastic gradient ascent

$$
\begin{gathered}
F(v)=-\ln \sum_{h} \exp (-E(v, h)) \\
E(v, h)=-\sum_{\forall i, j} v_{i} w_{i j} h_{j} \\
\frac{\partial F(v)}{\partial w_{i j}}=-\frac{\partial}{\partial w_{i j}} \ln \sum_{h} \exp (-E(v, h)) \\
=-\frac{1}{\sum_{h} \exp (-E(v, h))} \sum_{h} \exp (-E(v, h))\left(-\frac{\partial E(v, h)}{\partial w_{i j}}\right) \\
=-v_{i} h_{j} \quad \text { for fixed } v, h
\end{gathered}
$$

## RBM Learning

$$
\left.\frac{\partial \ln P(v)}{\partial w_{i j}}\right|_{v=v^{1}}=v_{i}^{1} h_{j}^{1}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}
$$

- If there are $K$ iid training tokens $v^{1}, \ldots, v^{K}$

$$
\begin{aligned}
\frac{\partial}{\partial w_{i j}} \sum_{k} \ln P\left(v^{k}\right) & =\sum_{k} \frac{\partial \ln P\left(v^{k}\right)}{\partial w_{i j}} \\
& =\left(v_{i}^{1} h_{j}^{1}+\cdots+v_{i}^{K} h_{j}^{K}-K\left\langle v_{i} h_{j}\right\rangle_{\text {model }}\right)
\end{aligned}
$$

- So that...

$$
\frac{\partial}{\partial w_{i j}} \mathbb{E}_{v}[\ln P(v)] \approx \frac{\partial}{\partial w_{i j}} \frac{1}{K} \sum_{k} \ln P\left(v^{k}\right)=\left\langle v_{i} h_{j}\right\rangle_{d a t a}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}
$$

- $\Delta w_{i j}=\eta\left(\left\langle v_{i} h_{j}\right\rangle_{d a t a}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}\right)$



## Model statistics

- $\left\langle v_{i} h_{j}\right\rangle_{\text {model }}$ can be estimated by using any MCMC algorithm
- But nobody knows $t_{\text {conv }}$ which indicates the step at which $\left\langle v_{i} h_{j}\right\rangle$ converges

$$
h_{j} \sim \sigma\left(w_{j}^{T} v+c_{j}\right)
$$



## Model statistics

- Contrast Divergence (CD) [Bengio, et al.]: Starting at the given training token $v^{(1)}, h^{(1)}$, run the Markov chain for $n$ steps:
- $v^{(1)}, h^{(1)} \rightarrow \cdots \rightarrow v^{(n+1)}, h^{(n+1)}$
- With the edge weight $\left[w_{i j}\right]$
- And we can approximate

$$
\left.\frac{\partial \ln P(v)}{\partial w_{i j}}\right|_{v=v^{1}} \approx v_{i}^{(1)} h_{j}^{(1)}-v_{i}^{(n+1)} h_{j}^{(n+1)}
$$

- CD-1 $\rightarrow$ weight change $\rightarrow$ CD-3 $\rightarrow \ldots \rightarrow$ CD-5 $\rightarrow \ldots \rightarrow$ CD-7 ... CD-9


## Example of RBM

- Train the RBM using following data (with CD-1)
- 6 visible units (each movies) with 2 hidden units
$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Name } & \begin{array}{c}\text { Harry } \\ \text { Potter }\end{array} & \text { Avatar } & \text { LOTR3 } & \text { Gladiator } & \text { Titanic } & \text { Glitter } \\ \hline \text { Alice } & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \text { Bob } & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline \text { Carol } & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \text { David } & 0 & 0 & 1 & 1 & 1 & 0 \\ \hline \text { Eric } & 0 & 0 & 1 & 1 & 0 & 0 \\ \hline \text { Fred } & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right\}$ Prefer SF/fantasy


## Example of RBM

- And... the network is trained by the following weights:
- $W=\left[\begin{array}{rrrrrr}4.97 & 2.27 & 4.11 & -4.01 & -5.60 & -2.92 \\ -7.09 & -5.18 & 2.52 & 6.75 & 3.25 & -2.82\end{array}\right]$

| Name | Harry <br> Potter | Avatar | LOTR3 | Gladiator | Titanic | Glitter |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Alice | 1 | 1 | 1 | 0 | 0 | 0 |
| Bob | 1 | 0 | 1 | 0 | 0 | 0 |
| Carol | 1 | 1 | 1 | 0 | 0 | 0 |
| David | 0 | 0 | 1 | 1 | 1 | 0 |
| Eric | 0 | 0 | 1 | 1 | 0 | 0 |
| Fred | 0 | 0 | 1 | 1 | 1 | 0 |

- The first hidden unit seems to correspond to the SF/fantasy , and the second hidden unit seems to correspond to the Oscar winners movies
- If the RBM is presented to a new user, George, who has $[0,0,0,1,1,0]$ as his preferences, then It turns the second hidden unit on


## Persistent CD

- A set of samples $v^{1}, \ldots v^{K}$ is drawn(observed) from the model distribution
- The set is maintained and updated whenever the model is updated
- $K$ Markov chains are run in parallel and, on every update, several steps of Gibbs sampling are performed in each chain
- The model statistics are derived by averaging over the samples:

$$
\left\langle v_{i} h_{j}\right\rangle_{\text {model }}=\frac{1}{K} \sum_{k} v_{i}^{k,(n+1)} h_{j}^{k,(n+1)}
$$

- Persistent CD generally works better than CD


## Interim Summary

- Boltzmann machines try to model a realistic brain learning mechanism (unsupervised model).
- Boltzmann machines and Restricted Boltzmann machines are based on the energy model
- Undirected Graph model such as Markov random field
- The RBM is the simple type of Boltzmann machine, and it can be easily learned
- We use the Contrastive Divergence (CD) to train the RBM
- Persistent Contrastive Divergence is the improved version of CD, and it lesson the problem that CD does not guarantee the fast convergence

