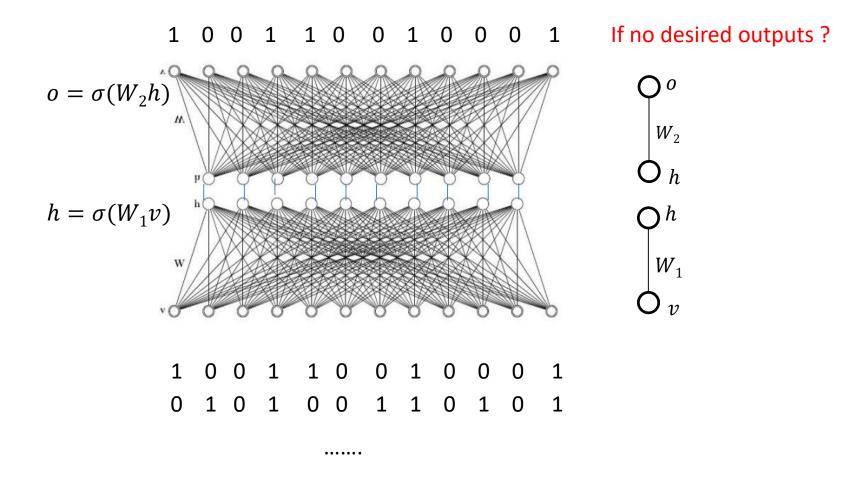
Bolzmann Machine

- Unsupervised Modelling of Binary Data
- What is Boltzmann Machine ?
- Restricted Boltzmann Machine (RBM)
- RBM Learning
- Contrast Divergence (CD)
- Example

Unsupervised Modelling of Binary Data



Modeling binary data

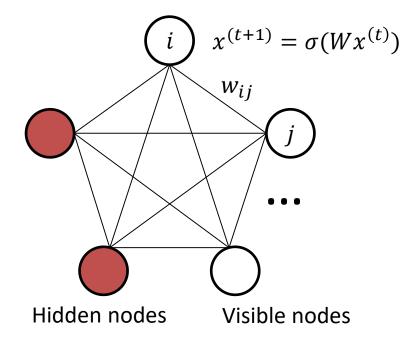
 Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter			
Alice	1	1	1	0	0	0)		
Bob	1	0	1	0	0	0	Prefer SF/fantasy		
Carol	1	1	1	0	0	0)		
David	0	0	1	1	1	0)		
Eric	0	0	1	1	0	0	Prefer Oscar win		
Fred	0	0	1	1	1	0			
$p(x) = \prod_{j} (x_{j}p_{j} + (1 - x_{j})(1 - p_{j}))$									
If component jIf componenof vector x is onof vector x is									

Modeling binary data

Modelling with Boltzmann Machine

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter
Alice	1	1	1	0	0	0
Bob	1	0	1	0	0	0
Carol	1	1	1	0	0	0
David	0	0	1	1	1	0
Eric	0	0	1	1	0	0
Fred	0	0	1	1	1	0



Prefer SF/fantasy

Prefer Oscar winner

- *w_{ij}* represents a correlation between nodes
- $p(v) = \sum_{h} p(h)p(v|h)$

Boltzmann Machine

Probability distribution on binary vectors x

$$P(x) = \frac{\exp(-E(x))}{Z}$$
$$E(x) = -\frac{1}{2}x^T W x - \theta^T x$$
$$= -\sum_{k < i} x_k w_{ki} x_i - \sum_k \theta_k x_k$$

• From the entropy maximization

$$\max_{P(x)} - \sum_{x} P(x) \ln P(x)$$

s.t $\sum_{x} P(x) = 1, \alpha = \sum_{x} P(x)E(x)$

• Z is the partition function that ensures $\sum_{x} P(x) = 1$

$$Z = \sum_{x} \exp(-E(x))$$

$$x^{(t+1)} = \sigma(Wx^{(t)})$$

Boltzmann Machine

$$x^{(t+1)} = \sigma(Wx^{(t)})$$

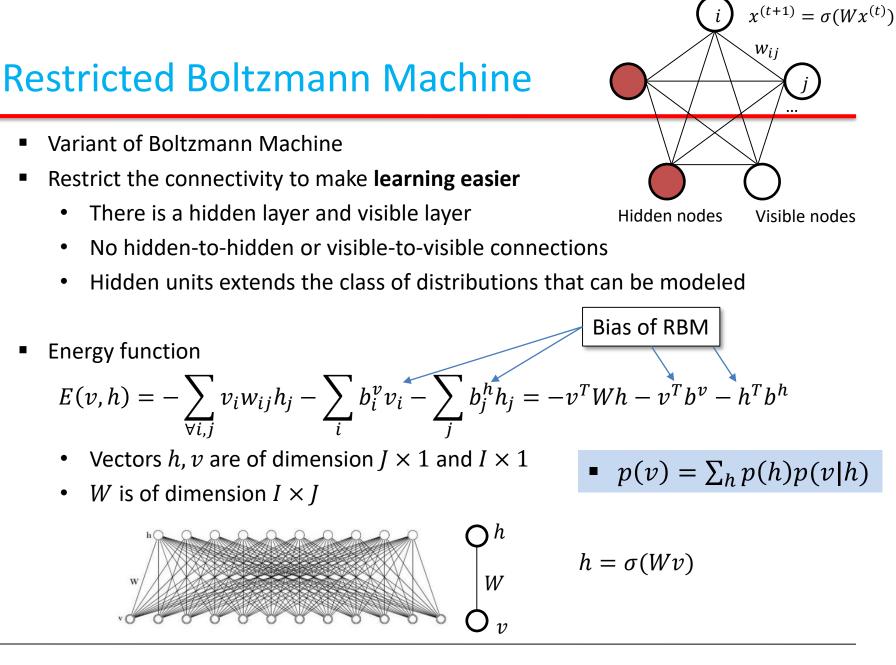
Wij

Probability distribution on binary vectors x

$$P(x) = \frac{\exp(-E(x))}{\sum_{k=1}^{Z} \sum_{k < j} x_k w_{kj} x_j - \sum_k \theta_k x_k}$$

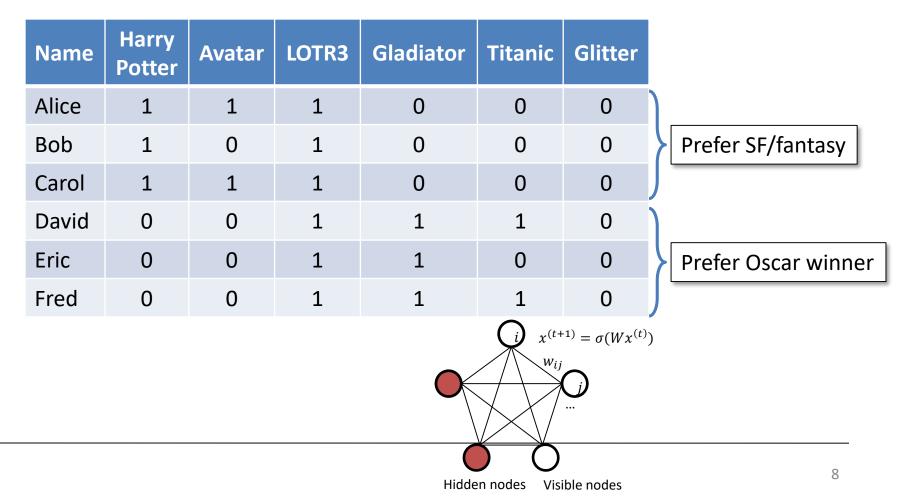
Gibbs Sampling

$$P(x_{i} = 1 | x_{-i}) = \frac{P(x_{i} = 1, x_{-i})}{P(x_{i} = 1, x_{-i}) + P(x_{i} = 0, x_{-i})}$$
(1)
$$= \frac{ex p(-E(x_{i} = 1, x_{-i}))}{ex p(-E(x_{i} = 1, x_{-i})) + ex p(-E(x_{i} = 0, x_{-i}))}$$
(1)
$$= \frac{1}{1 + ex p(-E(x_{i} = 0, x_{-i}) + E(x_{i} = 1, x_{-i}))}$$
$$= \frac{1}{1 + ex p(-\sum_{j \neq i} w_{ij} x_{j} - \theta_{i})} = \sigma(\sum_{j \neq i} w_{ij} x_{j} + \theta_{i})$$



Modeling binary data

 Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors



Restricted Boltzmann Machine

• Marginal distribution P(v)

$$P(v) = \sum_{h} P(h)P(v|h) = \sum_{h} P(v,h) = \frac{\sum_{h} \exp(-E(v,h))}{Z}$$

- P(v, h) is a Boltzmann distribution with energy function E(v, h)
- And P(v) is a Boltzmann distribution with a energy F(v)

$$P(v) = \frac{\exp(-F(v))}{Z}$$
$$F(v) = -\ln\sum_{h}^{Z} \exp(-E(v,h))$$

 the energy F(v) cannot be represented as a quadratic form in v (Why?)

Maximize the product of probabilities assigned to training set V

$$\arg\max_{W}\prod_{v\in V}P(v)$$

• Or equivalently, maximize the sum of log probability of *V*:

$$\arg\max_{W}\sum_{v\in \mathbf{V}}\ln P(v)$$

• The model is updated after each training token or in batch mode $w_{ij} \leftarrow w_{ij} + \alpha \frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1}$

$$P(v) = \frac{\exp(-F(v))}{Z}$$
$$F(v) = -\ln\sum_{h}^{Z} \exp(-E(v,h))$$

- Stochastic gradient ascent
 - Calculate the gradient of the log likelihood, given a training token v^1 $\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} = -\frac{\partial F(v)}{\partial w_{ij}}\Big|_{v=v^1} - \frac{\partial \ln Z}{\partial w_{ij}}$ $= v_i^1 h_j^1 - \frac{\partial}{\partial w_{ij}} \ln \sum_{v} \exp(-F(v))$ $= v_i^1 h_j^1 - \frac{1}{\sum_{v} \exp(-F(v))} \sum_{v} \exp(-F(v)) \frac{\partial F(v)}{\partial w_{ij}}$ $= v_i^1 h_j^1 - \frac{1}{Z} \sum \exp(-F(v)) v_i h_j$ $= v_i^1 h_i^1 - \sum_{v} P(v) v_i h_i$ Expectation of $v_i h_j$ $= v_i^1 h_i^1 - \left\langle v_i h_j \right\rangle_{model}$ w

Stochastic gradient ascent

$$F(v) = -\ln \sum_{h} \exp(-E(v,h))$$
$$E(v,h) = -\sum_{\forall i,j} v_i w_{ij} h_j$$

$$\frac{\partial F(v)}{\partial w_{ij}} = -\frac{\partial}{\partial w_{ij}} \ln \sum_{h} \exp(-E(v,h))$$
$$= -\frac{1}{\sum_{h} \exp(-E(v,h))} \sum_{h} \exp(-E(v,h)) \left(-\frac{\partial E(v,h)}{\partial w_{ij}}\right)$$
$$= -v_i h_i \qquad \text{for fixed } v, h$$

$$\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} = v_i^1 h_j^1 - \left\langle v_i h_j \right\rangle_{model}$$

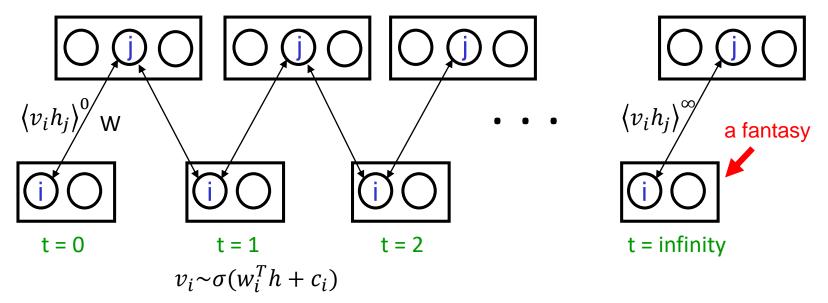
• If there are K iid training tokens v^1, \dots, v^K

$$\frac{\partial}{\partial w_{ij}} \sum_{k} \ln P(v^{k}) = \sum_{k} \frac{\partial \ln P(v^{k})}{\partial w_{ij}}$$
$$= \left(v_{i}^{1} h_{j}^{1} + \dots + v_{i}^{K} h_{j}^{K} - K \langle v_{i} h_{j} \rangle_{model} \right)$$

• So that... $\frac{\partial}{\partial w_{ij}} \mathbb{E}_{v}[\ln P(v)] \approx \frac{\partial}{\partial w_{ij}} \frac{1}{K} \sum_{k} \ln P(v^{k}) = \langle v_{i}h_{j} \rangle_{data} - \langle v_{i}h_{j} \rangle_{model}$ • $\Delta w_{ij} = \eta(\langle v_{i}h_{j} \rangle_{data} - \langle v_{i}h_{j} \rangle_{model})$ Data statistics
i unknown

Model statistics

- $\langle v_i h_j \rangle_{model}$ can be estimated by using any MCMC algorithm
 - But nobody knows t_{conv} which indicates the step at which $\langle v_i h_j \rangle$ converges $h_j \sim \sigma(w_j^T v + c_j)$



Model statistics

- Contrast Divergence (CD) [Bengio, et al.]: Starting at the given training token $v^{(1)}$, $h^{(1)}$, run the Markov chain for n steps:
 - $v^{(1)}, h^{(1)} \rightarrow \cdots \rightarrow v^{(n+1)}, h^{(n+1)}$
 - With the edge weight $[w_{ij}]$
- And we can approximate

$$\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} \approx v_i^{(1)} h_j^{(1)} - v_i^{(n+1)} h_j^{(n+1)}$$
CD-n

• **CD-1** \rightarrow weight change \rightarrow **CD-3** $\rightarrow \ldots \rightarrow$ **CD-5** $\rightarrow \ldots \rightarrow$ **CD-7** \ldots **CD-9**

Example of RBM

- Train the RBM using following data (with CD-1)
 - 6 visible units (each movies) with 2 hidden units

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter
Alice	1	1	1	0	0	0
Bob	1	0	1	0	0	0
Carol	1	1	1	0	0	0
David	0	0	1	1	1	0
Eric	0	0	1	1	0	0
Fred	0	0	1	1	1	0

Example of RBM

And... the network is trained by the following weights:

•	$W = \left[\right]$	4.97 	2.27 -5.18	4.11 2.52	-4.01 6.75	-5.60 3.25	-2.92 -2.82	
	Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter	
	Alice	1	1	1	0	0	0	
	Bob	1	0	1	0	0	0	Prefer SF/fantasy
	Carol	1	1	1	0	0	0	
	David	0	0	1	1	1	0	
	Eric	0	0	1	1	0	0	Prefer Oscar winner
	Fred	0	0	1	1	1	0	

- The first hidden unit seems to correspond to the SF/fantasy , and the second hidden unit seems to correspond to the Oscar winners movies
- If the RBM is presented to a new user, George, who has [0,0,0,1,1,0] as his preferences, then It turns the second hidden unit on

Persistent CD

- A set of samples v¹, ... v^K is drawn(observed) from the model distribution
 - The set is maintained and updated whenever the model is updated
 - *K* Markov chains are run in parallel and, on every update, several steps of Gibbs sampling are performed in each chain
 - The model statistics are derived by averaging over the samples:

$$\langle v_i h_j \rangle_{model} = \frac{1}{K} \sum_k v_i^{k,(n+1)} h_j^{k,(n+1)}$$

Persistent CD generally works better than CD

Interim Summary

- Boltzmann machines try to model a realistic brain learning mechanism (unsupervised model).
- Boltzmann machines and Restricted Boltzmann machines are based on the energy model
- Undirected Graph model such as Markov random field
- The RBM is the simple type of Boltzmann machine, and it can be easily learned
 - We use the Contrastive Divergence (CD) to train the RBM
- Persistent Contrastive Divergence is the improved version of CD, and it lesson the problem that CD does not guarantee the fast convergence