Bayesian Inference Application: Traffic Pattern Analysis

Jin Young Choi

Traffic Pattern Analysis

Surveillance in crowded scenes

Problem Statements

Unsupervised Traffic Pattern Analysis

Problem Statements

- Anomaly Detection using the Traffic Patterns
- Video summarization
- Prior motion model for tracking

RQ1: Semantic regions of normal pattern

- Clustering & Combining motion segments
- Optical flows

Broken trajectories

RQ2: Speed information

- Discrimination ability of speed difference:
 - Bikes running in pedestrian road
 - Cars driving with over speed
 - Cars stopping in a railroad crossing
 - Pedestrians walking along the path of vehicles

RQ3: Interaction of trajectory patterns

- Interaction of trajectory patterns
 - Activity modeling often involves modeling of interactions (between cars, people and environment)
 - Some activity can be normal or abnormal based on other cooccurring activities

normal Abnormal (conflict!)

RQ4: Robust to crowded scene

- In crowded scenes, it is hard to extract motions of individual objects
- Crowded scenes cause frequent tracking failures, producing many broken trajectories

RQ5: Online Adaptation

- The model should be able to adapt itself to temporal changes of the scene (e.g. reversible lane, traffic volume changes).
- It can also save memory and computational load since the model does not need to keep old data.

Motion and Trajectory Extraction

- Corner Point Detection on Foreground
- KLT tracking

VS.

Input Data: Trajectories

Trajectory collections

Trajectory representation: Location

- Coarse-level (quantization)
- Trajectory Patterns: modelled as Topic
- Passing Regions(cells): modelled as Words

C_{tji}

t: time interval *j*: trajectory index *i*: cell index

Trajectory representation: Speed

- Fine-level
 - Average velocity for *f*-frames

Generative model

Model learning w.r.t observations

argmax $p(\mathcal{H}|\mathcal{O})$ \mathcal{H}

 $\mathcal{O} = \{c_{tji}, v_{tjif} | \forall t, i, j, f\}$

Test newly observed trajectories using the trained model

Graphical Inference Model

State Transition

Distribution of Topic Occurrence

Topic proportion

Distribution of Topic Occurrence

topic proportion

Distribution of Topic Occurrence

topic proportion

Association between Cell and Trajectory

Neglect temporal dependency among cells

7.. = 3

Velocity v_{tjif} Modelling

Contains temporal information of observations

Velocity v_{tjif} Modelling

Contains temporal information of observations

Velocity v_{tjif} Modelling

Contains temporal information of observations

Bayesian Inference (Learning)

Online Inference (Learning)

- In case of distributed processing for online learning of topic models, Variational Inference (VI) is better than inference by sampling*
- Applying VI directly to our model is not trivial

*K. Zhai, J. Boyd-Graber, N. Asadi, and M. Alkhouja. Mr. LDA: A flexible large scale topic modeling package using variational inference in map-reduce. In ACM International Conference on World Wide Web, 2012.

Online Learning

Divide the model into tractable sub-models

Online Learning

Divide the model into tractable sub-models

Online Trajectory Clustering

- Online variational inference* for LDA (mini-batch)
- The updated parameter is utilized as an initial value in the next minibatch

Online Trajectory Clustering

- Online variational inference* for LDA (mini-batch)
- The updated parameter is utilized as an initial value in the next minibatch

Velocity modeling

- Gaussian parameters are learned for each cell, topic, and time
- Each model can generate previous position of a trajectory

Choose relative positions f-frame ahead using average velocities v_{tjif}

Online update of Gaussian parameters

$$\mu_{c_{tji}z_{tj}^{*}f} = (1 - \rho_{c_{tji}z_{tj}^{*}f})\mu_{c_{tji}z_{tj}^{*}f} + \rho_{c_{tji}z_{tj}^{*}f}v_{tjif}$$

$$Z_{c_{tji}z_{tj}^{*}f} = (1 - \rho_{c_{tji}z_{tj}^{*}f})Z_{c_{tji}z_{tj}^{*}f} + \rho_{c_{tji}z_{tj}^{*}f}v_{tjif}v_{tjif}^{T}$$

$$\Sigma_{c_{tji}z_{tj}^{*}f} = Z_{c_{tji}z_{tj}^{*}f} - \mu_{tjif}\mu_{tjif}^{T}$$

- EM approach is used to Infer parameters
- Use θ_t as a vector for clustering
- K-means clustering with K = S

$$\underset{\{\Theta_n\}_{n=1}^S}{\operatorname{arg\,min}} \sum_{n=1}^S \sum_{\overline{\theta}^*_t \in \Theta_n} \left\| \overline{\theta}^*_t - m_n \right\|^2$$

- EM approach is used to Infer parameters
- Use θ_t as a vector for clustering
- K-means clustering with K = S

 θ_t : K dimensional multinomial

$$\underset{\{\Theta_n\}_{n=1}^S}{\operatorname{arg\,min}} \sum_{n=1}^S \sum_{\overline{\theta}^*_t \in \Theta_n} \left\| \overline{\theta}^*_t - m_n \right\|^2$$

- EM approach is used to Infer parameters
- Use θ_t as a vector for clustering
- K-means clustering with K = S

S

 θ_t : K dimensional multinomial

$$m_1$$

$$\arg\min_{\{\Theta_n\}_{n=1}^S} \sum_{n=1} \sum_{\overline{\theta}^*_t \in \Theta_n} \left\| \overline{\theta}^*_t - m_n \right\|^2$$

- EM approach is used to Infer parameters
- Use θ_t as a vector for clustering
- K-means clustering with K = S

 $\boldsymbol{\theta}_t$: K dimensional multinomial

Anomaly Test

Use the distribution parameters inferred from the learning phase

Anomaly Test

 For the approximation, the same assumptions are used as in case of learning phase

An Examine the temporal relation among the typical patterns of trajectories

Online learning sequence

Online inference

Motion pattern model (qualitative result)

Motion pattern model (qualitative result)

Anomaly detection (qualitative result)

Interim Summary

- What is variational inference ?
- Kullback–Leibler divergence (KL-divergence) formulation
- Dual of KL-divergence
- Variational Inference for LDA
- Estimating variational parameters
- Estimating LDA parameters
- Application of VI to Generative Image Modeling
- Application of LDA toTraffic Pattern Analysis

Summary of Course

