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Traffic Pattern Analysis
▪ Surveillance in crowded scenes
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Problem Statements

▪ Unsupervised Traffic Pattern Analysis
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Problem Statements

▪ Anomaly Detection using the Traffic Patterns
▪ Video summarization
▪ Prior motion model for tracking
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RQ1:  Semantic regions of normal pattern

▪ Clustering & Combining motion segments

▪ Optical flows

▪ Broken trajectories
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RQ2:  Speed information

▪ Discrimination ability of speed difference:

• Bikes running in pedestrian road

• Cars driving with over speed

• Cars stopping in a railroad crossing

• Pedestrians walking along the path of vehicles
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RQ3: Interaction of trajectory patterns
▪ Interaction of trajectory patterns

• Activity modeling often involves modeling of interactions 
(between cars, people and environment)

• Some activity can be normal or abnormal based on other co-
occurring activities

normal

Abnormal (conflict!)
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RQ4: Robust to crowded scene

▪ In crowded scenes, it is hard to extract motions of individual 
objects 

▪ Crowded scenes cause frequent tracking failures, producing 
many broken trajectories
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RQ5: Online Adaptation

▪ The model should be able to adapt itself to temporal 
changes of the scene (e.g. reversible lane, traffic volume 
changes).

▪ It can also save memory and computational load since the 
model does not need to keep old data.
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Motion and Trajectory Extraction

▪ Corner Point Detection on Foreground

▪ KLT tracking

VS.
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Input Data: Trajectories

▪ Trajectory collections

𝑡: time interval

𝑡 + 1

𝑡 + 2

𝑡 + 3

𝑗th trajectory
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Trajectory representation: Location

▪ Coarse-level (quantization)

▪ Trajectory Patterns: modelled as Topic

▪ Passing Regions(cells): modelled as Words

𝑐𝑡𝑗𝑖

𝑡: time interval
𝑗: trajectory index
𝑖: cell index



13

Trajectory representation: Speed
▪ Fine-level

• Average velocity for 𝑓-frames
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Generative model 

▪ Model learning w.r.t observations

▪ Test newly observed trajectories using the trained model 

H
argmax p(H



Graphical Inference Model



State Transition

𝑠𝑡 ∈ 1,… , 𝑆

State 1 State 2

State 3

From
To 1 2 3

1

2

3

𝜋

𝑀𝑢𝑙𝑡𝑖(𝑠𝑡|𝜋𝑠𝑡−1)

𝑝(𝑠1, 𝑠2, … , 𝑠𝑡)= 𝑝 𝑠2 𝑠1 𝑝 𝑠3 𝑠2 …𝑝(𝑠𝑡|𝑠𝑡−1)



Distribution of Topic Occurrence

▪ Topic proportion

State 1 State 2 State 3

𝜃𝑡 ∈ ℝ𝐾

𝐷𝑖𝑟(𝜃𝑡|𝛼𝑠𝑡)



Distribution of Topic Occurrence

▪ topic proportion

State 1 State 2 State 3

𝜃𝑡 ∈ ℝ𝐾

𝐷𝑖𝑟(𝜃𝑡|𝛼𝑠𝑡)



State 1 State 2 State 3

𝜃𝑡 ∈ ℝ𝐾

𝐷𝑖𝑟(𝜃𝑡|𝛼𝑠𝑡)

Distribution of Topic Occurrence

▪ topic proportion



Trajectory patterns

▪ Topic assignment: 𝑧𝑡𝑗 ∈ 1,2,… , 𝐾

𝜃𝑡 ∈ ℝ𝐾

𝑝(𝑧𝑡1, 𝑧𝑡2, … , 𝑧𝑡𝑀|𝜃𝑡) =ෑ

𝑗=1

𝑀

൯𝑝(𝑧𝑡𝑗 ∣ 𝜃𝑡

𝑀𝑢𝑙𝑡𝑖(𝑧𝑡𝑗|𝜃𝑡)

sequence of 𝑧𝑡𝑗is i.i.d.

non-conflict patterns



Association between Cell and Trajectory 

▪ Neglect temporal dependency among cells

𝑀𝑢𝑙𝑡𝑖(𝑐𝑡𝑗𝑖|𝜙𝑧𝑡𝑗)

𝜙2𝜖ℝ
𝐶

𝑧𝑡𝑗 = 3𝑧𝑡𝑗 = 2

𝜙3

𝑝(𝑐𝑡𝑗1, 𝑐𝑡𝑗2, … , 𝑐𝑡𝑗𝑁𝑡𝑗
|𝑧𝑡𝑗 , 𝜙) =ෑ

𝑖=1

𝑁𝑡𝑗

൯𝑝(𝑐𝑡𝑗𝑖 ∣ 𝑧𝑡𝑗 , 𝜙



Velocity 𝑣𝑡𝑗𝑖𝑓 Modelling

▪ Contains temporal information of observations

𝒩(𝑣𝑡𝑗𝑖𝑓|𝜇𝑐𝑡𝑗𝑖𝑧𝑡𝑗𝑓, 𝛴𝑐𝑡𝑗𝑖𝑧𝑡𝑗𝑓)
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Velocity 𝑣𝑡𝑗𝑖𝑓 Modelling

▪ Contains temporal information of observations

𝒩(𝑣𝑡𝑗𝑖𝑓|𝜇𝑐𝑡𝑗𝑖𝑧𝑡𝑗𝑓, 𝛴𝑐𝑡𝑗𝑖𝑧𝑡𝑗𝑓)
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𝑓 = 5
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Bayesian Inference (Learning)

▪ To infer the latent variables and 
parameters from the given 

observations 𝑐𝑡𝑗𝑖 , 𝑣𝑡𝑗𝑖𝑓

where,
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Online Inference (Learning)

▪ In case of distributed processing for online learning of topic models, 
Variational Inference (VI) is better than inference by sampling* 

▪ Applying VI directly to our model is not trivial

*K. Zhai, J. Boyd-Graber, N. Asadi, and M. Alkhouja. Mr. LDA: A flexible large scale topic modeling package using variational
inference in map-reduce. In ACM International Conference on World Wide Web, 2012.
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▪ Divide the model into tractable sub-models 

Online Learning
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Online Learning

▪ Divide the model into tractable sub-models 

Infer 𝜃 and 𝑧

Trajectory clustering
(Latent Dirichlet Allocation) Velocity modeling

(Gaussian models)

Spatio-temporal relation among activities
(K-means clustering)
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Online Trajectory Clustering

▪ Online variational inference* for LDA (mini-batch)

▪ The updated parameter is utilized as an initial value in the next mini-
batch

*Hoffman, M., Blei, D.M., Bach, F.: Online learning for latent dirichlet allocation. In: NIPS (2010)
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Online Trajectory Clustering

▪ Online variational inference* for LDA (mini-batch)

▪ The updated parameter is utilized as an initial value in the next mini-
batch

*Hoffman, M., Blei, D.M., Bach, F.: Online learning for latent dirichlet allocation. In: NIPS (2010)

The results are utilized as an initial value 
in the next mini-batch
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Velocity modeling

▪ Gaussian parameters are learned for each cell, topic, and time

▪ Each model can generate previous position of a trajectory

▪ Online update of Gaussian parameters

Choose relative positions 𝑓-frame ahead
using average velocities 𝑣𝑡𝑗𝑖𝑓
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Spatio-temporal relation among activities

▪ EM approach is used to Infer parameters 

▪ Use 𝜃t as a vector for clustering

▪ K-means clustering with K = S

𝑠1 𝑠2 𝑠3 𝑠4 … 𝑠𝑡−1 𝑠𝑡 ……………. 𝑠𝑇
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Spatio-temporal relation among activities

▪ EM approach is used to Infer parameters 

▪ Use 𝜃t as a vector for clustering

▪ K-means clustering with K = S

Each row is 𝜃t

𝜃𝑡: K dimensional multinomial

m1

m2



34

Spatio-temporal relation among activities

▪ EM approach is used to Infer parameters 

▪ Use 𝜃t as a vector for clustering

▪ K-means clustering with K = S

Each row is 𝜃t

𝜃𝑡: K dimensional multinomial

Cluster assignment corresponds to 
the state

m1

m2
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Spatio-temporal relation among activities

▪ EM approach is used to Infer parameters 

▪ Use 𝜃t as a vector for clustering

▪ K-means clustering with K = S

Each row is 𝜃t

𝜃𝑡: K dimensional multinomial

mn implies representative patterns about 
spatial co-occurrences of trajectory 
patterns

Cluster assignment corresponds to 
the state

m1

m2
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Anomaly Test

▪ Use the distribution parameters inferred from the learning phase

𝜙𝑘

𝜇

Σ

𝑧𝑡𝑗

𝑐𝑡𝑗𝑖

𝑠𝑡
𝜋

𝑀

𝐹𝑡𝑗𝑖 𝐶 × 𝐾 × 𝐹
𝐾

𝛼

𝛽

𝑁𝑡𝑗

𝜃𝑡

𝜋
𝑠𝑡−1 𝑠𝑡+1

… …

𝑣𝑡𝑗𝑖𝑓

𝑆

?

?

?
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Anomaly Test
▪ For the approximation, the same assumptions are used as in case of 

learning phase

𝜙𝑘

𝜇

Σ

𝑧𝑡𝑗

𝑐𝑡𝑗𝑖

𝑠𝑡
𝜋

𝑀

𝐹𝑡𝑗𝑖 𝐶 × 𝐾 × 𝐹
𝐾

𝛼

𝛽

𝑁𝑡𝑗

𝜃𝑡

𝜋
𝑠𝑡−1 𝑠𝑡+1

… …

𝑣𝑡𝑗𝑖𝑓

𝑆



Anomaly Test

Test states and state transition 

Test trajectory 𝑧∗|𝜃𝑡 ~ 𝑀𝑢𝑙𝑡𝑖(𝑚𝑠
𝑡′
∗ )

Examine the temporal relation
among the typical patterns of 
trajectories

Test a cell 𝑐|𝑧∗, 𝜙𝑘 ~ 𝑀𝑢𝑙𝑡𝑖(𝜙𝑧∗)𝑐

Test relative positions 𝑓-frame ahead
𝑣|𝑧∗, 𝑐 ~ 𝒩(𝜇𝑐𝑧∗𝑓, Σ𝑐𝑧∗𝑓 )
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Anomaly Test

Test states and state transition 

Test trajectory 𝑧∗|𝜃𝑡 ~ 𝑀𝑢𝑙𝑡𝑖(𝑚𝑠
𝑡′
∗ )

Test a cell 𝑐|𝑧∗, 𝜙𝑘 ~ 𝑀𝑢𝑙𝑡𝑖(𝜙𝑧∗)𝑐

Test relative positions 𝑓-frame ahead
𝑣|𝑧∗, 𝑐 ~ 𝒩(𝜇𝑐𝑧∗𝑓, Σ𝑐𝑧∗𝑓 )

Examine the temporal relation
among the typical patterns of 
trajectories

Detect abnormal trajectory
violating the current state
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Anomaly Test

Test states and state transition 

Test trajectory 𝑧∗|𝜃𝑡 ~ 𝑀𝑢𝑙𝑡𝑖(𝑚𝑠
𝑡′
∗ )

Test a cell 𝑐|𝑧∗, 𝜙𝑘 ~ 𝑀𝑢𝑙𝑡𝑖(𝜙𝑧∗)𝑐

Test relative positions 𝑓-frame ahead
𝑣|𝑧∗, 𝑐 ~ 𝒩(𝜇𝑐𝑧∗𝑓, Σ𝑐𝑧∗𝑓 )

Examine the temporal relation
among the typical patterns of 
trajectories

Detect abnormal trajectory
violating the current state

Examine the overall path of the 
trajectory
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Anomaly Test

Test states and state transition 

Test trajectory 𝑧∗|𝜃𝑡 ~ 𝑀𝑢𝑙𝑡𝑖(𝑚𝑠
𝑡′
∗ )

Test a cell 𝑐|𝑧∗, 𝜙𝑘 ~ 𝑀𝑢𝑙𝑡𝑖(𝜙𝑧∗)𝑐

Test relative positions 𝑓-frame ahead
𝑣|𝑧∗, 𝑐 ~ 𝒩(𝜇𝑐𝑧∗𝑓, Σ𝑐𝑧∗𝑓 )

Examine the temporal relation
among the typical patterns of 
trajectories

Detect a trajectory with abnormal 
speed although its overall path is 
similar to one of the typical 
patterns
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Experimental Results

▪ Online learning sequence
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Experimental Results

▪ Motion pattern model (qualitative result)
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Experimental Results

▪ Motion pattern model (qualitative result)
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Experimental Results
▪ Anomaly detection (qualitative result)



Interim Summary

▪ What is variational inference ?

▪ Kullback–Leibler divergence (KL-divergence) formulation

▪ Dual of KL-divergence

▪ Variational Inference for LDA

▪ Estimating variational parameters

▪ Estimating LDA parameters

▪ Application of VI to Generative Image Modeling

▪ Application of LDA toTraffic Pattern Analysis



Summary of Course
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Bayes Rule Likelihood Posteriori Priori Bayes Decision

Learning

Parzen W.K-NN 

Lin. Classifier 

Discriminative ModelGenerative Model

Random Forest

GMM 

Bayesian Net 

GM ML(P)E Bayes. L 

Learning

SVM 

Histogram Entropy 

EM, MCMC

MCMC, VI

K-SVM K-SVDD 

LS Convex O.

Convex O.

Deep NN BP(GD) NMSA GA

Boltzm. MachineMLE VI 

Latent DAMCMC, VI

ICA 

PCA 

Linear DA 

K-L Divergence 

Max. Separa. 

Max. Scatter HMMEM


