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Conditional probability

= Given an event occurred, just as probability changes to conditional
probability, the pmf of a random variable changes to the conditional
pmf, cpmf.

=  example: Xis the random variable corresponding to the number on a
playing card the opponent is putting face down; B is the event that
my hand consists of A(1), 3, 4, 8, and Q(12).

= Does the event B affect the pmf of X?




Conditional probability

= conditional pmf, cpmf:

Pyy (X, Y)
py (V)

X =x €A, Y=y€B

px|y (X|y) =

* not defined when p, (y)=0.




Conditional probability

= example: Xis the random variable corresponding to the number on a
playing card the opponent is putting face down; B is the event that
my hand consists of A(1), 3, 4, 8, and Q(12).

* |nthe above example, the pmf that is uniformly 1/13(=4/52) changes
to the cpmf that is 3/47 for 1, 3, 4, 8, 12 and 4/47 for the rest of the
values.




Conditional probability

= conditional pmf, cpmf:

px|yz (X‘y, Z) = pXYZ (X’ y’ Z)/ pYZ (y’ Z)

pxy|z (X’ y‘Z) — pXYZ (X1 y! Z)/ pZ (Z)
" independence

X,Y indep — px|y (X‘y) — px (X)




Conditional probability

= chainrule:
— Py (X, Y) = Py (X) Py x (Y]X)
— Px,..x, Koo %)
= Py, (%) P, x, (0 [X0) -+ Py, ey Ok [ X003 Xie 1)
— Pyyw (% Y[W) = Py (X[W) Py (Y| W, X)

T pxyz[w (X1 y’ y4 ‘W) — pxy[w (X’ y‘W) pZI\NXY (Z ‘W, X, y)




Conditional probability

= total probability law:
P(X =x)= Px (X) = Zy Pxy (X,y) = zy px|y (X‘y) Py (y)




Conditional probability

= example: X: life expectancy of a 70-year-old.
- blood condition after 70 years old
H : having high blood pressure, P(H) = 2/5
R : having normal blood pressure, P(R) =3/5

- at every year after 70 years old
survival probability of high blood person: 9/10

survival probability of normal blood person:19/20

- What is the probability that a person lives until 90 years old ?




Conditional probability

= example:
px (X) = px\H (X)P(H ) + px\R(X)P(R)

x-1

1(9

—(—) , X:1’2’...

Py (X)=110110 1 geo(1/10)
0, else

1 (19)“

| — , X:1’2,...

Pyr(X) =120\ 20 1 geo(l1/20)
0, else

Px (X) = Py COP(H) + P, o ()P(R)

_i(gjx‘l.gi(gjx‘le
10\ 10 5 20\ 20 5




Conditional probability

=  Meaning of conditional probability

When the conditioning event is of the form {X < D},
P(X =x, X € D)

Py iixepy (X) = P(X = X|X e D) = P(X < D)

{P(XX) X € D

P(X e D)’
0, else

px () ||\H||.|H H|\||“‘||\
- D >

pPx|{xep}(T) ‘ ‘ ‘ ‘ ‘




Conditional probability

= Bayes Rule

Pyy(x,y) Py1x ([x)Px (x)

Pxy (x|y) = Pr(y)  ZxPrx(1X)Px(X)

X =x €A, Y=y€B

= Learning and Inference ?




Information

= Discrete random variable X is defined in the sample set ¥
¥ ={x|k=0,%1,..,+ K}

= Event X =X, occurs with probability Px =P(X =X,)

= Information = surprise = uncertainty
The amount of information of the event is related to the
inverse of the probability of occurrence. That is, the lower
the probability p;, is, the more “surprise” there is, and the

{o: H V24 1
more “information”. 1 (x,) = log(—) =—log p,
k
LHE & Xt =0 pP. =1 : ZE2(x), surprise(x)
L 0l=0] =8t 336ttt pe << 1 8E2(o), surprise(o)




Information

base=2 = N E 2| bits
base=e = & 2 2| nats

_ 1
32 bit: ©F codel| HE = | (X)) =—log(—=3) =32

2

® 1(X)=0 for P, =1
@ 1(xX.)=0 for O<p =1
® I(Xk) = I(Xi) for P < P (§|'_TL|8-—I'7§>IE)

Entropy : a measure of the average amount of information conveyed per
message, i.e., expectation of Information

H(X)=E[1(X)]= D pl(x)=— > p, log p,

k=—K k=—K




Information

= Maximum entropy : when Pk is equiprobable.

K

:
0 < HX) < — o —10g(2K +1
(X) Qédy«+1 Qo) —e9reK 1

H(X)=0 foranevent p, =1 o/w Px =0

= Theorem (Gray 1990)
> py log(->£) >0
k o 1

= Relative entropy (or Kullback — Leibler divergence)

Px (X)
Dp||q = )Z{ Px (TX) log [ q. () j

probability mass ftn. dyx (X) : reference pmf




Information

= Relative entropy (or Kullback — Leibler divergence)

Px (X)
p||q Z Px (X) Iog[ (X) j

XxeX

= Cross entropy

Cp||q(x; W) =—2xp(x) logq(x; W)

* Cross entropy for classification by deep learning

Cpjig(X; W) = —z_[p(xi) log q(x;; W) + (1 — p(x;)) log(1 — q(xi; W))]




Mutual Information

= Theorem (Gray 1990)
H(X‘Y)z H(X,Y)—H((Y)
0<H(X|Y)<H(X)

= Joint Entropy H (X) H(Y)
H(X,Y)==2 2> p(x, y)logp(x,y)

xeX yeY

—> Joint probability mass function




Mutual Information

= Mutual Information: Output Y 2| ZtF0f| 2|af & = U= X 2| uncertainty (A=)

1(X;Y)=H(X)—H(X|Y)
=H(X)+H()-H(X,Y)
=—>" p(x)log(p(x))—> p(y)log(p(y))

xe X yeY

+> > p(x,y)log(p(x,y))

xeX yeY

->y p(x,y)log[ X y) j

xeX yeY p(X) p(y)

QL-divergence
Independence ?

H(X)=1(X,X) H(X) H(Y)




Mutual Information

" Propertiesof 1(X,Y)
@ 1(Y; X)=1(X;Y)
@ 1(X;Y)=0

® 1(X;Y)=H()—-H(|X)

H(X) H(Y)




Mutual Information

=  Mutual Information for Continuous Random Variables

1OGY) =[] £y (% y)Iog( Fey (4 Y) jdxdy

fy (X) Ty (Y)

1(X;Y) =h(X)—h(X|Y) =h(Y)—h(Y|X)
— h(X)+h(Y)=h(X,Y)

1(X:Y) = 1(Y:X)
1(X:Y)>0

H (X) H(Y)




Mutual Information

Exercise:

= |n computer science(CS) department, the probability of dropping
the machine learning(ML) course in March is 1/6, that in April is
1/3, and the probability of taking ML course to the end without
dropping is 1/2, whereas those in Electrical engineering(EE)
department are 1/8, 1/8, and 3/4, respectively. Meanwhile, the
portions of CS & EE students in ML course are 1/5 & 4/5,
respectively. Letting X be the random variable on dropping or not
of a student, and Y be the random variable on the department of
a student, find the followings.

1. Conditional entropy H(X|Y).
2. Mutual information I(X;Y).




Mutual Information

1.

We get the joint distribution p(X,Y) = p(X|Y) X p(Y). Then, we
compute the conditional entropy H(X|Y) by H(X|Y) = H(X,Y) — H(Y).

HY) = —Zyeyp(y)logp(y) = —ilogi - glogg = 0.7219
H(X,Y) = —Zyex2yeyp(x,¥)logp(x,y)
HX,Y) = —2Zyex2Zyeyp(x|y) X p(0)logp(x|y) X p(y)

B S

1 4 1 4 1 4 1 4 3 4 3 4
—5*slog(5+5) —grslog(5e) —2xclog(5+3)
= 1.8628
Hence, the conditional entropy H(X|Y) is 1.1409




Mutual Information

2. Compute the mutual information I(X;Y) using the equation I(X;Y) =
1 4 2

1
_*_:_

H(X)+H(Y)—H(X,Y).Sincep(X=Marchdrop):%*E ko=

: 1 1 1 4 1 1 1,3 4 7

p(XzAprll d?"Op)=§>I<E+§>|<E:g,p(N0dr()p):E>|<E+Z>|<E:E
H(X) = —Zxexp(x)logp(x)

- [Zion(2)  ron(2) + () o] - 17

Using H(Y) and H(X,Y) calculated in (1), we compute I(X;Y) as below:
I(X;Y) = H(X) — H(X|Y) = 1.1786 — 1.1409 = 0.038
This means X and Y are dependent to each other.




Interim Summary

= Conditional Probability

= Chain Rule

= |ndependence

= Total Probability
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=  Mutual Information
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