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Feature Extraction  

 Features

Weight, Height, Width, Volume, Head size, …

Edge, Shape, Geometric Relations …

RGB Color for each pixel  

SIFT, SURF, HOG, … 

 Feature Extraction from Raw Data

Pixel Valued Vector is raw data vector

Raw data vector is redundant

The dimension should be reduced  



Component Analysis and Discriminants

 How to reduce excessive dimensionality? 

• Answer:  Combine  features highly dependent to each other.

 Linear methods project high-dimensional data onto lower dimensional 
space.

 Principal Components Analysis  (PCA) 

• seeks the projection which best represents the data in a least-
square error sense.

 Linear Discriminant Analysis (LDA) or Fisher Linear Discriminant  

• seeks the projection that best separates the data in a least-square 
discrimination error sense.



Principal Component Analysis 
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Principal Component Analysis 
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Principal Component Analysis 
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Principal Component Analysis 
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Linear Discriminant Analysis 
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Linear Discriminant Analysis 

Maximize Between-Class Distance
Minimize Within-Class Distance
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PCA & LDA  

PCA == LDA 

𝑛2

𝑛1

𝑒2

𝑒1

𝑎1 = 𝑒1
𝑡 𝑥



Principal Components Analysis  (PCA)

 How to represent n d-dimensional vector samples {x1,.., xn} by a single 

vector x0 ?

• Find x0 that minimizes squared error correction  function
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Principal Components Analysis  (PCA)

 How to represent n d-dimensional vector samples {x1,.., xn} by a single 

vector x0 ?

• Find x0 that minimizes squared error correction  function

 The solution is sample mean

 This is zero-dimensional representation of the data set.

 One-dimensional representation by projecting  the data onto a line 

through the sample mean reveals variability in the data.
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Principal Components Analysis  (PCA)

 This is zero-dimensional representation of the data set.

 One-dimensional representation by projecting  the data onto a line 

through the sample mean reveals variability in the data.
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PCA ; Projection

 Let e be a unit vector in a direction of the line. The equation of the line

 Representing xk by                  find “optimal” 

set minimizing criterion function :
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PCA ; Projection
 Representing xk by                  find “optimal” 

set minimizing criterion function :

from

we find                                   
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PCA ; Projection
 Representing xk by                  find “optimal” 

 How to find the best direction for e ?   

 The least square solution: project  the vector xk onto the line in the 

direction of e, passing through the sample mean.

 Minimize 𝐽w.r.t  e.

kam e ka

( )t

k ka   e x m

𝒙𝑘

2

1 1

1

( ,..., , ) || || .
n

n k k

k

J a a a


   e m e x

( )t

k ka   e x m



PCA ; Scatter matrix

 Substituting 𝑎𝑘 into 𝐽1(𝑎, 𝐞) we find

 where a scatter matrix  S which is  (𝑛 − 1) times of sample covariance 
matrix
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PCA ; Scatter matrix

 Vector e that minimizes  J1 also maximizes         .

 So we find e, which maximize          

subject to constraint  𝒆 =1 

 Let     be Lagrange multiplier.

 Differentiating  𝐿 with respect to e:

 By setting to zero we see that e is an eigenvector of  S:

 So to maximize               takes maximal
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PCA ; Scatter matrix

 The result is easily extended to d’ dimensional projection:

 The criterion function

is minimized when vectors                      are the eigenvectors having the   

largest eigenvalues.

 The coefficients                                 are principal components.
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Error function

 If d’ < d error which is made by dropping the last terms is

 This is a sum of lowest eigenvalues.
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PCA – the algorithm

 Input:   

 Take                 

 Output:  

 Algorithm:

• Compute the mean of the training set

• Compute the scatter matrix S.

• Find eigenvectors of S and corresponding eigenvalues:

• Choose      eigenvectors, and for each sample      point compute 

'd d

( )

1 1{ ,.., }, ,...,n k k

n k dX x x   x x x

'

( )

1 1{ ,.., }n k k

n k d
A a a   a a a

1 1 2{ , } , ,d

i i i i i dS i             e Se e

'd kx
'

1{ ( )t d

k i k i   a e x m

1

1
.

n

k

kn 

 m x



Interim Summary
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Linear Discriminant Analysis: LDA

 We have n d-dimensional samples x1,.., xn, n1 in a subset      ,     

labeled w1 and  n2  in a subset      , labeled w2 .

 Find direction  of line w , that maximally separate the data.

 Let a difference between sample means be a measure of separation  

of projected points

3

1D

2D

Maximize Between-Class Distance
Minimize Within-Class Distance



Fisher Linear Discriminant cont.

 Project samples       onto w.

 n samples      are divided into the subsets and

 Let      be the sample mean

 The sample mean for projected points

 Distance between the projected means is
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Fisher Linear Discriminant cont.

 A scatter for projected samples labeled   𝜔𝑖

is an estimate of the variance of the pooled data. 

is called total within-class scatter of the projected   samples.

 The Fisher discriminant employs           for which criterion 

is maximum
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Fisher Linear Discriminant cont.

 Define scatter matrices      and       by

and

 Then

 Thus

6

iS wS

( )( )
i

t

i i i

x D

S


   x m x m

1 2wS S S 

22 ( ) ( )( )
i i

t t t t t

i i i i i

D D

s m m m
 

      
x x

w x w w x x w w S w%

2 2

1 2

t

ws s  w S w% %



Fisher Linear Discriminant cont.

 Similarly,

is called within-class scatter matrix (proportional to sample

covariance matrix )

is called between-class scatter matrix.

 This gives the equivalent expression for Fisher’s discriminant

 Which vector w maximizes it?
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Fisher Linear Discriminant cont.

 Hence one gets

or equivalently

 Since for any  w,            is always in the direction of m1-m2:

 It is not necessary to determine the eigenvalues of  

 One simply gets             

 Scale factor for w is unimportant   (why?).

 FLDA is one-dimensional  projection
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Fisher Linear Discriminant cont.
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Matrix Norm

10

 Induced Norm

 Spectral (maximum singular value) norm
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Multiple Discriminant Analysis
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Multiple Discriminant Analysis

 For the c -class problem we have c-1 discriminant functions. 

 The projection from a d-dimensional space to a (c-1) dimension is 

accomplished by (c-1) discriminant functions (we assume              ). 

 Within-class scatter matrix is:                 

where

and 

 Define a total mean vector 
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Multiple Discriminant Analysis

 And total scatter matrix 

 It can be transformed to

 The between-class scatter is:
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Multiple Discriminant Analysis

 For the c -class problem we have (c-1) discriminant functions. The 

projection from a d-dimensional space to a (c-1) dimensional space is 

accomplished by (c-1) discriminant functions:

 Taking d-by-(c-1)       matrix which columns are  vectors        , we’ll get in 

matrix form:

 Samples                    are projected to                 

 We define 
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Multiple Discriminant Analysis cont.

 It’s easy to show that

 The criterion function which should be maximized is:

 Every column      of W we should be solution of generalized eigenvalue 
problem 
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Multiple Discriminant Analysis cont.

 The criterion function which should be maximized is:

 Every column      of W we should be solution of generalized eigenvalue 
problem 
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Multiple Discriminant Analysis cont.

 The MDA provides the way of reducing the dimensionality of the 

problem. 

 The technique for finding probability density might not be feasible in 

the original space.

 The technique for finding probability density may work well after 

reducing the dimension of feature space.

 MDA may improve the separability of classes.

17



Simple Enhancement for PCA/LDA

 Significant pairs for between-class scatter matrix

• Non-boundary patterns with the different class labels

 Significant pairs for within-class scatter matrix

• Non-boundary patterns with the same class labels
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Non-boundary Pattern Selection Algorithm

 Step 1. For each             ,

 Find the neighborhood defined as follows.

where                is the set of     nearest samples to      by L2-norm.

 Calculate voting probabilities of to each class   .

where           is 1 if the class of neighbor      is   , otherwise 0.

 Calculate the neighborhood entropy of      .     

 Step 2. Obtain boundary patterns         and non-boundary patterns  



PCA using NPS (LDA in the same manner) 

 Select non-boundary patterns via BNPS.
 Non-boundary patterns make up significant pairs.
 Emphasize the significant pairs.

Whole data

Non-boundary pattern



Toy Example



UCI Machine Learning Repository

Name # of data # of attributes # of classes Missing 
attributes

Haberman 306 3 2 No

Hepatitis 155 19 2 Yes

Pima 768 8 2 No

Balance-scale 625 4 3 No

Liver-disorders 345 6 2 No

Iris 150 4 3 No

Glass 214 9 6 No

Wisconsin 699 9 2 Yes

Sonar 208 60 2 No

Dermatology 366 34 6 Yes



PCA vs. NPS+PCA

Leave-one-out
NN Classifier

10-fold cross validation
NN Classifier



LDA vs. NPS+LDA

Leave-one-out
NN Classifier

10-fold cross validation
NN Classifier



Interim Summary

 Fisher Linear Discriminant Analysis

 Multiple Discriminant Analysis

 Simple Enhancement for PCA/LDA
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