Nonlinear Mapping

f(x)=a"y

T:X =Y, y =oc(Wx + b), f(x) =aly

)’1]
Yn

v

Universal Approximation Theorem Let ¢ be a non-constant,
bounded, and monotonically-increasing continuous activation function,
f:10,1]* — R continuous function, and € > 0. Then, 3n and paramg--
ters a,b € R?, W € R"*4 s .

3 (Wi x+ be) - F(x)
=1

<e€ vx € [0,1]%

Geometric Deep Learning on graph and manifolds, Michael Bronstein, SIAM 2018,
Imperial College London



https://www.dropbox.com/s/99eyutemrdb17kj/SIAM 2018.pdf?dl=0
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Nonlinear Mapping
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Feature Extraction

= Features
Weight, Height, Width, Volume, Head size, ...
Edge, Shape, Geometric Relations ...
RGB Color for each pixel
SIFT, SURF, HOG, ...

= Feature Extraction from Raw Data
Pixel Valued Vector is raw data vector
Raw data vector is redundant
The dimension should be reduced




Component Analysis and Discriminants

How to reduce excessive dimensionality?
* Answer: Combine features highly dependent to each other.

Linear methods project high-dimensional data onto lower dimensional
space.

Principal Components Analysis (PCA)

* seeks the projection which best represents the data in a least-
square error sense.

Linear Discriminant Analysis (LDA) or Fisher Linear Discriminant

* seeks the projection that best separates the data in a least-square
discrimination error sense.




Principal Component Analysis

¥ i X =X + XNy = [nl nz]x = Nx

Vv




Principal Component Analysis

% | X = xnq +x,n, =[Ny ny]Jx = Nx

Vv




Principal Component Analysis

X = xnq +x,n, =[Ny ny]Jx = Nx
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Principal Component Analysis

X = xnq +x,n, =[Ny ny]Jx = Nx
X =a.e; +a,e, =[e; e;]lJa=Ea

elx = a;efe; + ayele, = a4
t t t, —
e;X = ajezeq; + azeze, = a,

i R
/n

1




Linear Discriminant Analysis




Linear Discriminant Analysis

Maximize Between-Class Distance
Minimize Within-Class Distance

Vv




PCA & LDA




Principal Components Analysis (PCA)

= How to represent n d-dimensional vector samples {x,,.., x.} by a single
vector x, ?

Find x, that minimizes squared error correction function

Jo(xo) — Z“ Xo =Xy ”2 :
k=1




Principal Components Analysis (PCA)

= How to represent n d-dimensional vector samples {x,,.., x.} by a single
vector x; ?

* Find x, that minimizes squared error correction function
n
_ 2
Jo(xo) — Z“ Xo = Xy ” -
k=1

= The solution is sample mean

1 n
Xo= M= =) X,

N =1

= Thisis zero-dimensional representation of the data set.

= One-dimensional representation by projecting the data onto a line
through the sample mean reveals variability in the data.




Principal Components Analysis (PCA)

= This is zero-dimensional representation of the data set.
1 n
Xp—m M= — X
0 2 |, k
)

= One-dimensional representation by projecting the data onto a line
through the sample mean reveals variability in the data.

Vv




PCA ; Projection

= Let e be a unit vector in a direction of the line. The equation of the line

X=Mm+ae y
. H “" H ” *
= Representing x, by m+ace find “optimal” &, »
»
set minimizing criterion function : . *
n * Xy
2 »
J,(a,...,a,,e)= E Im+ae—x, |- .
k=1 »

Vv



PCA ; Projection

Representing x, by m+ae find “optimal” a,
set minimizing criterion function:
n
2
J(a,....a,,€)=> [[m+ae—x|P.
k=1
from 0J,/0a =0

we find a — gl (X, —m)




PCA ; Projection

= Representing x, by m+a,e find “optimal” @,
t
a'k =€ (Xk _m) » *

= How to find the best direction fore ? *

= The least square solution: project the vector x, onto the line in the

direction of e, passing through the sample mean.

5,(@na,8) =D Imrae—x . a =€ (x,~m)

k=1
= Minimize Jw.rt e.




PCA ; Scatter matrix

= Substituting Ay into /1 (a, e) we find

(@)=Y 8l el -2 a8 (4 -m)+ Yl ~mf
=Y a2-2 a7+ Y —miP= -l (x, ~m)T + Yl
==Y ¢ (5, ~m)(x, ~m)'e+ D, -

n
=—e'Se+ ) K, —m|f’
k=1

» where a scatter matrix S whichis (n — 1) times of sample covariance
matrix

S= Zn:(xk —m)(x, —m)".




PCA ; Scatter matrix

J,(a,e) =—€'Se+ Zn:||xk —m]||
k=1
= Vector e that minimizes J, also maximizes €'Se.
= So we find e, which maximize €'Se
subject to constraint ||e]|=1
= LetA be Lagrange multiplier. L=¢e'Se—A(e'e-1)
= Differentiating L with respect to e: oL /oe=2Se—21e
= By setting to zero we see that e is an eigenvector of S:
Se=1e e'Se=A1

= Soto maximize e'Se takes maximal A




PCA ; Scatter matrix

= The result is easily extended to d’ dimensional projection:

d
« i '
. =M +§akei where d <d
i=1

= The criterion function ,

n

Jy :Z

k=1

[eri‘aikeiJ_xk /

is minimized when vectors €;,€,,...,€ . are the eigenvectors having the
largest eigenvalues.

= The coefficients @, =€\ (X, -M) are principal components.

v




Error function

If d’ < d error which is made by dropping the last terms is

,
n | @ i X, =M, +> ae,
i k k k
Jy = Z Z 3,8, =i
k=1 [li=d"+1 : .
d n a, =¢; (X, -m)
= Z e? (Xk _m)(xk _m)tei
i=d'+1 k=1
4. d
= > eSe, = > 4
i=d'+1 i=d'+1

This is a sum of lowest eigenvalues.




PCA —the algorithm

k

= Inputt X ={x,..x} X =(X...X)
= Take d <d
= Output: A"={a,..a} a ={a..a}
= Algorithm:
¢ Compute the mean of the training set m =Ezn:xk.
* Compute the scatter matrix S. =

* Find eigenvectors of S and corresponding eigenvalues:
S{ei,&}f':1 , Vi: Se,=4e , A4 >4, >..,

* Choose d' eigenvectors, and for each sample x, point compute

a, ={&' (x, —m) }?:1




Interim Summary

Principal Component Analysis
v'Feature Extraction
v'Dimension Reduction

J.=> (m+2a|i(ei}—xk

n
k=1

2

S= Zn:(xk —m)(x, —m)".

Se = Je

e'Se =1

a'=e'(x,—m),i=1,...
- - _ _
a, 1t
2 t
a, €,
— (Xk _m)
d' t
_ak N _ed' _|
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Linear Discriminant Analysis: LDA

= We have n d-dimensional samples x,,.., x,, n; in a subset D,
labeled w, and n, in a subset D,, labeled w, .

= Find direction of line w, that maximally separate the data.

1 eZ
e W,

Y2 = WoX

Maximize Between-Class Distance
Minimize Within-Class Distance

~ >
e &

= Let a difference between sample means be a measure of separation
of projected points




Fisher Linear Discriminant cont.

Project samplesX, onto w.
t
Yi =W X,

= nsamples Y« are divided into the subsets v, and v,

1
mi_n—Zx

i XEDi

= Letm, be the sample mean

= The sample mean for projected points /
m, :iZ“y:iZ“w’X:w*mI
}?; yeY; ﬂ;‘ x=D;

= Distance between the projected means is

| m, —m, |= w*f(ml -m,) |




Fisher Linear Discriminant cont.

= A scatter for projected samples labeled w;

§f = Z (Y- ﬁ?f)z
ver
(1/m)(57 +57) is an estimate of the variance of the pooled data.
5 +5, s called total within-class scatter of the projected samples.

= The Fisher discriminant employs W X for which criterion
‘?ﬁl _ﬁ?z
§)+5;

|2

J(w)=

IS maximum




Fisher Linear Discriminant cont.

= Define scatter matrices S, and S, by
Si = Z (X_mi)(x_mi)t
xeD;
and

S, =5,+5S,

= Then

_ 2
S5 =) (Wx=wm) =) wi(x—m)(x-m)w=wSw
xeD, xeD;

= Thus S)+5.=w'S w




Fisher Linear Discriminant cont.

= Similarly,
(m, —m,)” =(Wm, —w'm,)” =w'(m, —m,)(m, —m,)' w=wS_w

S, is called within-class scatter matrix (proportional to sample

covariance matrix )
t. .
Sg =(m,—m,)(m,—m,)" is called between-class scatter matrix.

= This gives the equivalent expression for Fisher’s discriminant

J(w) =

SWW

=  Which vector w maximizes it?
2S;W  W'S;w 2S, W

=0
w'S,w  w'S,ww'S,w

vV, J(w)=




Fisher Linear Discriminant cont.

= Hence one gets :
W S;wW

w'S,w

S,y SW = Aw,

Sgw=A5,w, A=

or equivalently

= Sinceforany w, S_w is always in the direction of m;-m,:
S,w =(m,—m,)(m, —m,)'w =a(m,—m,)
= Itis not necessary to determine the eigenvalues of S 'S_ .
= Onesimply gets
W ec Swl(m1 - mz)
= Scale factor for wis unimportant (why?).
= FLDA is one-dimensional projection




Fisher Linear Discriminant cont.

p(x| ;) B
with =, w=2"(n —p,), Wo = Wyp —Woy

Wio = ;u?i_lm +InP(w;)

N
7

X1




Matrix Norm

= |nduced Norm

m n
I4ll, = sup llAxll,  llAll; = max > Jay| Ao = max > Jay]
l= ]:1

lxllp= 1=j=n 1<ism

= Spectral (maximum singular value) norm

= Schatten norm f (A) _ HAHZ —o (A=, (A A))Y2
min{m, n} i A|, = sup | Ax
Il = ( >, (A)) a x2=1H :
1=1 _ SUp(XT AT AX)1/2
= nuclear norm Ix],=L
min{m, n} — sU XTU TAUX 1/2
Al = trace(vA™A) =} 0i(4) ng( )
=1
=sup(y'Ay)"? <y 'y=x"U"Ux=1
= Frobenius Norm Iyl =
m n min{m,n} — Sup( in/ll )1/2
||A||F = qzz |a¢j|2 = \/trace(ATA) = J Z o‘?(A) Iy],=t Z
= — = (imw (XT X ))1/2




Multiple Discriminant Analysis

S = (y - ﬁl)(y _ﬁl-)r l Iﬁ3 SB = Zl:nf (mf - m)(mr _m)f
S, =2 m, (i, —r)(m, — M)
i=1

¢f) Sz=(m —m,)(m, _mz)!




Multiple Discriminant Analysis

= For the c -class problem we have c-1 discriminant functions.

= The projection from a d-dimensional space to a (c-1) dimension is

accomplished by (c-1) discriminant functions (we assume d > ¢).

C
= Within-class scatter matrix is: S, = Zsi

i=1

where S, =) (x—-m;)(x-m,)
and m, =in

ni xeDh,
= Define a total mean vector

1 1L
m_ﬁlex_ﬁi;nimi




Multiple Discriminant Analysis

= And total scatter matrix S; =) (x—m)(x—m)'

It can be transformed to

=X ¥ -m)(x-my) + > 3 (m, ~m)(m, ~m)

=S, +_n(m; —m)(m, -m)' =S, +S,

i=1

= The between-class scatter is:

Sg = ini (m; —m)(m, ~m)'




Multiple Discriminant Analysis

= For the c -class problem we have (c-1) discriminant functions. The
projection from a d-dimensional space to a (c-1) dimensional space is
accomplished by (c-1) discriminant functions:

y.=wXx i=1..,(c-1

= Taking d-by-(c-1) W matrix which columns are vectors W; , we’ll get in

matrix form: Yy =W'X

= Samples X;,---» X, are projectedto Y111 Y-
- | -1 -
= Wedefine m,=—>"y, m=—> nm,
7 n=

i YEL

¥




Multiple Discriminant Analysis cont.

C

Sy =33 (y-m,)(y-m,)’

i=1 vek;
c

S, = n,(h, —m)(m, —m)’
i=1

—~

= It’seasy to showthat S, =W'S W and S, =W'S W

= The criterion function which should be maximized is:

_IWISW _ tr(W'S,W) _ D, WiSeW,
S, | [W'S,W| tr(W'S,W) > wsS,w,

= Every column w.of W we should be solution of generalized eigenvalue
problem

SW _1SBWi = }Z1Wi




Multiple Discriminant Analysis cont.

The criterion function which should be maximized is:

J(W)

IS, ] IW'S;W _ tr(W'S,W) ) WiSew,

IS, | TWIS, W tr(W'S, W) > wis,w,

Every column w.of W we should be solution of generalized eigenvalue

problem

SW_lsBWi = ﬂ’lwi

SgW,; = A4Sy W,

S,W =S, WA

W'S,W = W'S, WA
tr(W'S,W) =tr(W'S,, W)tr(A)

B _tr(W'S W)
tr(A)=2.4= tr(W'S,, W)




Multiple Discriminant Analysis cont.

= The MDA provides the way of reducing the dimensionality of the

problem.

= The technique for finding probability density might not be feasible in

the original space.

= The technique for finding probability density may work well after

reducing the dimension of feature space.

= MDA may improve the separability of classes.




Simple Enhancement for PCA/LDA

= Significant pairs for between-class scatter matrix

* Non-boundary patterns with the different class labels

= Significant pairs for within-class scatter matrix

* Non-boundary patterns with the same class labels

boundary region
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Non-boundary Pattern Selection Algorithm

o Stepl.Foreach x; € X
= Find the neighborhood defined as follows.
Neighbors(x;, k) = N(x;, k) U{x;}
where N (x;, k)is the set of & nearest samples tox; by L2-norm.

= Calculate voting probabilities of Neighbors(x;. k) to each class ;.

ZVnENeighbors(xi,k) Ij (n)
E—+1

pi(Xi) =

where [;(n) is 1 if the class of neighbor 1, is j, otherwise O.
m Calculate the neighborhood entropy of x?, :

Neighbors_Entropy(x;, k (x;) log

g Py ij [ D, (X%)

o Step 2. Obtain boundary patterns XP )and non boundary patterns X (NVB)
XNB) - — {x|Neighbors_Entropy(x, k) <|0(l),x € X}

X(B) — X _XWB)




Select non-boundary patterns via BNPS.
Non-boundary patterns make up significant pairs.
Emphasize the significant pairs.

i

i ; Z(Xﬁ —m)(x; — m)T

i=1

Whole data

Wpea = arg max tr(WTCXW)
W Iw=I

Non-boundary pattern Cx = nng — 1 z; Z
1 J: y_,'.—z

WPCA—&I‘g max tr(W CXW)
W W=I

PCA using NPS (LDA in the same manner)




Toy Example
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UCI Machine Learning Repository

# of data # of attributes # of classes Missing
attributes

Haberman

Hepatitis 155 19 2 Yes
Pima 768 8 2 No
Balance-scale 625 4 3 No
Liver-disorders 345 6 2 No
Iris 150 4 3 No
Glass 214 9 6 No
Wisconsin 699 9 2 Yes
Sonar 208 60 2 No

Dermatology 366 34 6 Yes




PCA vs. NPS+PCA

classification rate(%)
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LDA vs. NPS+LDA

classification rate(%)
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Interim Summary

= Fisher Linear Discriminant Analysis

w'S. w 1 -1
J(w)zthVE;W S, SgW =Aw, WS, (m,—m,)
= Multiple Discriminant Analysis
Sy =, (m, ~m)(m, ~m) Sy 'SeW, = AW,
i=1

= Simple Enhancement for PCA/LDA

Wpea = arg max tr(W Cx W)
W W=I

— T ~(b)—
__ tr(W S W)
Wirpa =arg max e oy —

W'w-I tr(W §"'W)




