Nonlinear Mapping

Universal Approximation Theorem Let ξ be a non-constant, bounded, and monotonically-increasing continuous activation function, $f:[0,1]^{d} \rightarrow \mathbb{R}$ continuous function, and $\epsilon>0$. Then, $\exists n$ and parameters $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{W} \in \mathbb{R}^{n \times d}$ s.t.

$$
\left|\sum_{i=1}^{n} a_{i} \xi\left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right)-f(\mathbf{x})\right|<\epsilon \quad \forall \mathbf{x} \in[0,1]^{d}
$$

Geometric Deep Learning on graph and manifolds, Michael Bronstein, SIAM 2018, Imperial College London

Nonlinear Mapping

Nonlinear Mapping

$$
T: X \rightarrow Y, y=\sigma(W x+b), f_{i}(x)={ }^{a_{i}^{T} y} / \Sigma_{j} a_{j}^{T} y \text { (softmax) }
$$

Feature Dimension Reduction: PCA \& LDA (I)

Jin Young Choi
Seoul National University

Outline

Feature Extraction
Introduction of PCA \& LDA
Principal Component Analysis (PCA)
Linear Discriminant Analysis (FLDA)
Multiple Discriminant Analysis (MDA)
Simple Enhancement of PCA/LDA

Feature Extraction

- Features

Weight, Height, Width, Volume, Head size, ...
Edge, Shape, Geometric Relations ...
RGB Color for each pixel
SIFT, SURF, HOG, ...

- Feature Extraction from Raw Data

Pixel Valued Vector is raw data vector
Raw data vector is redundant
The dimension should be reduced

Component Analysis and Discriminants

- How to reduce excessive dimensionality?
- Answer: Combine features highly dependent to each other.
- Linear methods project high-dimensional data onto lower dimensional space.
- Principal Components Analysis (PCA)
- seeks the projection which best represents the data in a leastsquare error sense.
- Linear Discriminant Analysis (LDA) or Fisher Linear Discriminant
- seeks the projection that best separates the data in a least-square discrimination error sense.

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Linear Discriminant Analysis

Linear Discriminant Analysis

n_{1}

PCA \& LDA

Principal Components Analysis (PCA)

- How to represent $n d$-dimensional vector samples $\left\{\mathbf{x}_{1}, . ., \mathbf{x}_{n}\right\}$ by a single vector \mathbf{x}_{0} ?
- Find \mathbf{x}_{0} that minimizes squared error correction function

$$
J_{0}\left(\mathbf{x}_{0}\right)=\sum_{k=1}^{n}\left\|\mathbf{x}_{0}-\mathbf{x}_{k}\right\|^{2}
$$

Principal Components Analysis (PCA)

- How to represent $n d$-dimensional vector samples $\left\{\mathbf{x}_{1}, . ., \mathbf{x}_{n}\right\}$ by a single vector \mathbf{x}_{0} ?
- Find \mathbf{x}_{0} that minimizes squared error correction function

$$
J_{0}\left(\mathbf{x}_{0}\right)=\sum_{k=1}^{n}\left\|\mathbf{x}_{0}-\mathbf{x}_{k}\right\|^{2}
$$

- The solution is sample mean

$$
\mathrm{x}_{0}=\mathrm{m}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}
$$

- This is zero-dimensional representation of the data set.
- One-dimensional representation by projecting the data onto a line through the sample mean reveals variability in the data.

Principal Components Analysis (PCA)

- This is zero-dimensional representation of the data set.

$$
\mathrm{x}_{0}=\mathrm{m}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}
$$

- One-dimensional representation by projecting the data onto a line through the sample mean reveals variability in the data.

PCA ; Projection

- Let \mathbf{e} be a unit vector in a direction of the line. The equation of the line

$$
\mathbf{x}=\mathbf{m}+a \mathbf{e}
$$

- Representing \mathbf{x}_{k} by $\mathbf{m}+a_{k} \mathbf{e}$ find "optimal" a_{k} set minimizing criterion function :

$$
J_{1}\left(a_{1}, \ldots, a_{n}, \mathbf{e}\right)=\sum_{k=1}^{n}\left\|\mathbf{m}+a_{k} \mathbf{e}-\mathbf{x}_{k}\right\|^{2}
$$

PCA ; Projection

- Representing \mathbf{x}_{k} by $\mathbf{m}+a_{k} \mathbf{e}$ find "optimal" a_{k} set minimizing criterion function :
from

$$
\begin{aligned}
& J_{1}\left(a_{1}, \ldots, a_{n}, \mathbf{e}\right)=\sum_{k=1}^{n}\left\|\mathbf{m}+a_{k} \mathbf{e}-\mathbf{x}_{k}\right\|^{2} . \\
& \partial J_{1} / \partial a_{k}=0
\end{aligned}
$$

we find $a_{k}=\mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)$

PCA ; Projection

- Representing \mathbf{x}_{k} by $\mathbf{m}+a_{k} \mathbf{e}$ find "optimal" a_{k}

$$
a_{k}=\mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)
$$

- How to find the best direction for e?

- The least square solution: project the vector \mathbf{x}_{k} onto the line in the direction of \mathbf{e}, passing through the sample mean.

$$
J_{1}\left(a_{1}, \ldots, a_{n}, \mathbf{e}\right)=\sum_{k=1}^{n}\left\|\mathbf{m}+a_{k} \mathbf{e}-\mathbf{x}_{k}\right\|^{2} . \quad a_{k}=\mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)
$$

- Minimize Jw.r.t e.

PCA ; Scatter matrix

- Substituting a_{k} into $J_{1}(a, \mathbf{e})$ we find

$$
\begin{aligned}
J_{1}(a, \mathbf{e}) & =\sum_{k=1}^{n} a_{k}{ }^{2}\|\mathbf{e}\|^{2}-2 \sum_{k=1}^{n} a_{k} \mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2} \\
= & \sum_{k=1}^{n} a_{k}{ }^{2}-2 \sum_{k=1}^{n} a_{k}{ }^{2}+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2}=-\sum_{k=1}^{n}\left[\mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)\right]^{2}+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2} \\
= & -\sum_{k=1}^{n} \mathbf{e}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)\left(\mathbf{x}_{k}-\mathbf{m}\right)^{t} \mathbf{e}+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2} \\
= & -\mathbf{e}^{t} \mathbf{S} \mathbf{e}+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2}
\end{aligned}
$$

- where a scatter matrix \mathbf{S} which is $(n-1)$ times of sample covariance matrix

$$
\mathbf{S}=\sum_{k=1}^{n}\left(\mathbf{x}_{k}-\mathbf{m}\right)\left(\mathbf{x}_{k}-\mathbf{m}\right)^{t} .
$$

PCA ; Scatter matrix

$$
J_{1}(a, \mathbf{e})=-\mathbf{e}^{t} \mathbf{S} \mathbf{e}+\sum_{k=1}^{n}\left\|\mathbf{x}_{k}-\mathbf{m}\right\|^{2}
$$

- Vector \mathbf{e} that minimizes J_{1} also maximizes $\mathbf{e}^{t} \mathbf{S e}$.
- So we find \mathbf{e}, which maximize $\mathbf{e}^{t} \mathbf{S e}$

$$
\text { subject to constraint }\|\boldsymbol{e}\|=1
$$

- Let λ be Lagrange multiplier. $L=\mathbf{e}^{t} \mathbf{S e}-\lambda\left(\mathbf{e}^{t} \mathbf{e}-1\right)$
- Differentiating L with respect to e: $\quad \partial L / \partial \mathbf{e}=2 \mathbf{S e}-2 \lambda \mathbf{e}$
- By setting to zero we see that \mathbf{e} is an eigenvector of S :

$$
\mathbf{S e}=\lambda \mathbf{e} \quad \mathbf{e}^{t} \mathbf{S} \mathbf{e}=\lambda
$$

- So to maximize $\mathbf{e}^{t} \mathbf{S e}$ takes maximal λ

PCA ; Scatter matrix

- The result is easily extended to d' dimensional projection:

$$
\mathbf{x}_{k}^{\prime}=\mathbf{m}+\sum_{i=1}^{d^{\prime}} a_{k}^{i} \mathbf{e}_{i} \quad \text { where } \quad d^{\prime} \leq d
$$

- The criterion function

$$
J_{d^{\prime}}=\sum_{k=1}^{n}\left\|\left(\mathbf{m}+\sum_{i=1}^{d^{\prime}} a_{k}^{i} \mathbf{e}_{i}\right)-\mathbf{x}_{k}\right\|^{2}
$$

is minimized when vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{d}^{\prime}}$ are the eigenvectors having the largest eigenvalues.

- The coefficients $a_{k}^{i}=\mathbf{e}_{i}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)$ are principal components.

Error function

- If d' < d error which is made by dropping the last terms is

$$
\begin{array}{rlr}
J_{d^{\prime}} & =\sum_{k=1}^{n}\left\|\sum_{i=d^{\prime}+1}^{d} a_{k}^{i} \mathbf{e}_{i}\right\|^{2} & \mathbf{x}_{k}^{\prime}=\mathbf{m}_{k}+\sum_{i=1}^{d^{\prime}} a_{k}^{i} \mathbf{e}_{i} \\
& =\sum_{i=d^{\prime}+1}^{d} \mathbf{e}_{i}^{t} \sum_{k=1}^{n}\left(\mathbf{x}_{k}-\mathbf{m}\right)\left(\mathbf{x}_{k}-\mathbf{m}\right)^{t} \mathbf{e}_{i} & a_{k}^{i}=\mathbf{e}_{i}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right) \\
& =\sum_{i=d^{\prime}+1}^{d} \mathbf{e}_{i}^{t} \mathbf{S e}_{i}=\sum_{i=d^{\prime}+1}^{d} \lambda_{i} &
\end{array}
$$

- This is a sum of lowest eigenvalues.

PCA - the algorithm

- Input: $X^{(n)}=\left\{\mathbf{x}_{1}, . ., \mathbf{x}_{n}\right\}, \quad \mathbf{x}_{k}=\left\langle x_{1}^{k}, \ldots, x_{d}^{k}\right\rangle$
- Take $\quad d^{\prime}<d$
- Output: $A^{(n)}=\left\{\mathbf{a}_{1}, . ., \mathbf{a}_{n}\right\} \quad \mathbf{a}_{k}=\left\{a_{1}^{k}, . ., a_{d}^{k}\right\}$
- Algorithm:
- Compute the mean of the training set $\mathbf{m}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$.
- Compute the scatter matrix S.
- Find eigenvectors of \boldsymbol{S} and corresponding eigenvalues:

$$
S\left\{\mathbf{e}_{i}, \lambda_{i}\right\}_{i=1}^{d}, \forall i: \mathbf{S e}_{i}=\lambda \mathbf{e}_{i}, \lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{d}
$$

- Choose d^{\prime} eigenvectors, and for each sample \mathbf{x}_{k} point compute

$$
\mathbf{a}_{k}=\left\{\mathbf{e}_{i}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)\right\}_{i=1}^{d^{\prime}}
$$

Interim Summary

- Principal Component Analysis

$$
a_{k}^{i}=\mathbf{e}_{i}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right), i=1, \ldots, d
$$

Feature Extraction
 \checkmark Dimension Reduction

$$
\begin{aligned}
& J_{d^{\prime}}=\sum_{k=1}^{n} \|\left(\mathbf{m}+\sum_{i=1}^{d^{\prime}} a_{k}^{i} \mathbf{e}_{i}\right)- \\
& \mathbf{S}=\sum_{k=1}^{n}\left(\mathbf{x}_{k}-\mathbf{m}\right)\left(\mathbf{x}_{k}-\mathbf{m}\right)^{t} .
\end{aligned}
$$

$\mathbf{S e}=\lambda \mathbf{e}$

$$
\mathbf{a}_{k}=\mathrm{E}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)
$$

$$
\mathbf{e}^{t} \mathbf{S e}=\lambda
$$

$$
\left[\begin{array}{c}
a_{k}^{1} \\
a_{k}^{2} \\
\cdots \\
a_{k}^{d}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{e}_{1}{ }^{t} \\
\mathbf{e}_{2}{ }^{t} \\
\ldots \\
\mathbf{e}_{d}{ }^{t}
\end{array}\right]\left(\mathbf{x}_{k}-\mathbf{m}\right)
$$

$$
\text { cf) } \mathbf{y}_{k}=\mathbf{W}^{t}\left(\mathbf{x}_{k}-\mathbf{m}\right)
$$

Feature Dimension Reduction: PCA \& LDA (II)

Jin Young Choi
Seoul National University

Outline

Feature Extraction
Introduction of PCA \& LDA
Principal Component Analysis (PCA)
Linear Discriminant Analysis (FLDA)
Multiple Discriminant Analysis (MDA)
Simple Enhancement of PCA/LDA

Linear Discriminant Analysis: LDA

- We have $n d$-dimensional samples $\mathbf{x}_{1}, . ., \mathbf{x}_{n}, n_{1}$ in a subset D_{1}, labeled w_{1} and n_{2} in a subset D_{2}, labeled w_{2}.
- Find direction of line \mathbf{w}, that maximally separate the data.

- Let a difference between sample means be a measure of separation of projected points

Fisher Linear Discriminant cont.

- Project samples \mathbf{x}_{k} onto \mathbf{w}.

$$
\mathbf{y}_{k}=\mathbf{w}^{t} \mathbf{x}_{k}
$$

- n samples y_{k} are divided into the subsets Y_{1} and Y_{2}
- Let \mathbf{m}_{i} be the sample mean

$$
\mathbf{m}_{i}=\frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{x}
$$

- The sample mean for projected points

$$
\tilde{m}_{i}=\frac{1}{n_{i}} \sum_{\mathrm{y} \in \mathrm{Y}_{i}} \mathrm{y}=\frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{t} \mathbf{x}=\mathbf{w}^{t} \mathbf{m}_{i}
$$

- Distance between the projected means is

$$
\left|\tilde{m}_{1}-\tilde{m}_{2}\right|=\left|\mathbf{w}^{t}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right|
$$

Fisher Linear Discriminant cont.

- A scatter for projected samples labeled ω_{i}

$$
\tilde{s}_{i}^{2}=\sum_{\mathrm{y} \in Y_{i}}\left(\mathrm{y}-\tilde{m}_{i}\right)^{2}
$$

$(1 / n)\left(\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}\right)$ is an estimate of the variance of the pooled data.
$\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}$ is called total within-class scatter of the projected samples.

- The Fisher discriminant employs $\mathbf{w}^{t} \mathbf{x}$ for which criterion

$$
J(\mathbf{w})=\frac{\left|\tilde{m}_{1}-\tilde{m}_{2}\right|^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
$$

is maximum

Fisher Linear Discriminant cont.

- Define scatter matrices \mathbf{S}_{i} and \mathbf{S}_{w} by

$$
S_{i}=\sum_{x \in D_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}
$$

and

$$
S_{w}=S_{1}+S_{2}
$$

- Then

$$
\tilde{s}_{i}^{2}=\sum_{\mathbf{x} \in D_{i}}\left(\mathbf{w}^{t} \mathbf{x}-\mathbf{w}^{t} m_{i}\right)^{2}=\sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{t}\left(\mathbf{x}-m_{i}\right)\left(\mathbf{x}-m_{i}\right)^{t} \mathbf{w}=\mathbf{w}^{t} \mathbf{S}_{i} \mathbf{w}
$$

-

Thus

$$
\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}=\mathbf{w}^{t} \mathbf{S}_{w} \mathbf{w}
$$

Fisher Linear Discriminant cont.

- Similarly,

$$
\left(\tilde{m}_{1}-\tilde{m}_{2}\right)^{2}=\left(\mathbf{w}^{t} \mathbf{m}_{1}-\mathbf{w}^{t} \mathbf{m}_{2}\right)^{2}=\mathbf{w}^{t}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t} \mathbf{w}=\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}
$$

\mathbf{S}_{w} is called within-class scatter matrix (proportional to sample covariance matrix)
$\mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t}$ is called between-class scatter matrix.

- This gives the equivalent expression for Fisher's discriminant

$$
J(\mathbf{w})=\frac{\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}}
$$

- Which vector \mathbf{w} maximizes it?

$$
\nabla_{\mathbf{w}} J(\mathbf{w})=\frac{2 \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}}-\frac{\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}} \frac{2 \mathbf{S}_{W} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}}=0
$$

Fisher Linear Discriminant cont.

- Hence one gets

$$
\mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{S}_{W} \mathbf{w}, \quad \lambda=\frac{\mathbf{w}^{\prime} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\prime} \mathbf{S}_{W} \mathbf{w}},
$$

or equivalently

$$
\mathbf{S}_{W}^{-1} \mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{w},
$$

- Since for any $\mathbf{w}, \mathbf{S}_{B} \mathbf{w}$ is always in the direction of $\mathbf{m}_{1}-\mathbf{m}_{2}$:

$$
\mathbf{S}_{B} \mathbf{w}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t} \mathbf{w}=\alpha\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

- It is not necessary to determine the eigenvalues of $\mathbf{S}_{W}^{-1} \mathbf{S}_{B}$.
- One simply gets

$$
\mathbf{w} \propto S_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

- Scale factor for wis unimportant (why?).
- FLDA is one-dimensional projection

Fisher Linear Discriminant cont.

Matrix Norm

- Induced Norm

$$
\|A\|_{p}=\sup _{\|x\|_{p}=1}\|A x\|_{p} \quad\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \quad\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Spectral (maximum singular value) norm
- Schatten norm

$$
\|A\|_{p}=\left(\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{p}(A)\right)^{1 / p}
$$

- nuclear norm

$$
\|A\|_{*}=\operatorname{trace}\left(\sqrt{A^{*} A}\right)=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}(A)
$$

- Frobenius Norm

$$
\begin{aligned}
& f(A)=\|A\|_{2}=\sigma_{\max }(A)=\left(\lambda_{\max }\left(A^{T} A\right)\right)^{1 / 2} \\
& \begin{aligned}
\|A\|_{2} & =\sup _{\|x\|_{2}=1}\|A x\|_{2} \\
& =\sup _{\|x\|_{2}=1}\left(x^{T} A^{T} A x\right)^{1 / 2} \\
& =\sup _{\|x\|_{2}=1}\left(x^{T} U^{T} \Lambda U x\right)^{1 / 2} \\
& =\sup _{\|y\|_{2}=1}\left(y^{T} \Lambda y\right)^{1 / 2} \Leftarrow y^{T} y=x^{T} U^{T} U x=1
\end{aligned}
\end{aligned}
$$

$$
\|A\|_{\mathrm{F}}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{trace}\left(A^{\top} A\right)}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)}=\sup _{\|y\|_{2}=1}\left(\sum y_{i}^{2} \lambda_{i}\right)^{1 / 2}
$$

Multiple Discriminant Analysis

$$
\begin{array}{r}
\mathbf{S}_{w}=\sum_{i=1}^{c} \sum_{\mathbf{x}=D_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t} \\
\tilde{\mathbf{S}}_{w}=\sum_{i=1}^{c} \sum_{y \in Y_{i}}\left(\mathbf{y}-\tilde{\mathbf{m}}_{i}\right)\left(\mathbf{y}-\tilde{\mathbf{m}}_{i}\right)^{t} \\
\tilde{\mathbf{S}}_{B}=\sum_{i=1}^{c} n_{i}\left(\tilde{\mathbf{m}}_{i}-\tilde{\mathbf{m}}\right)\left(\tilde{\mathbf{m}}_{i}-\tilde{\mathbf{m}}\right)^{t} \\
\text { cf) } \mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t}
\end{array}
$$

Multiple Discriminant Analysis

- For the c-class problem we have c-1 discriminant functions.
- The projection from a d-dimensional space to a ($c-1$) dimension is accomplished by ($c-1$) discriminant functions (we assume $d \geq c$).
- Within-class scatter matrix is: $\mathbf{S}_{w}=\sum_{i=1}^{c} \mathbf{S}_{i}$
where $\mathbf{S}_{i}=\sum_{\mathbf{x} \in \rho_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}$
and

$$
\mathbf{m}_{i}=\frac{{ }^{x} \nu_{i}}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{x}
$$

- Define a total mean vector

$$
\mathbf{m}=\frac{1}{n} \sum_{\mathbf{x}} \mathbf{x}=\frac{1}{n} \sum_{i=1}^{c} n_{i} \mathbf{m}_{i}
$$

Multiple Discriminant Analysis

- And total scatter matrix

$$
\mathbf{S}_{T}=\sum_{\mathbf{x}}(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{t}
$$

- It can be transformed to

$$
\begin{aligned}
\mathbf{S}_{T} & =\sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}}\left(\mathbf{x}-\mathbf{m}_{i}+\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{x}-\mathbf{m}_{i}+\mathbf{m}_{i}-\mathbf{m}\right)^{t} \\
& =\sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}+\sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t} \\
& =\mathbf{S}_{W}+\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t}=\mathbf{S}_{W}+\mathbf{S}_{B}
\end{aligned}
$$

- The between-class scatter is:

$$
\mathbf{S}_{B}=\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t}
$$

Multiple Discriminant Analysis

- For the c-class problem we have ($c-1$) discriminant functions. The projection from a d-dimensional space to a ($c-1$) dimensional space is accomplished by ($c-1$) discriminant functions:

$$
\mathrm{y}_{i}=\mathbf{w}_{i}^{t} \mathbf{x} \quad i=1, \ldots,(c-1)
$$

- Taking d-by-(c-1) \mathbf{W} matrix which columns are vectors \mathbf{W}_{i}, we'll get in matrix form: $\quad \mathbf{y}=\mathbf{W}^{t} \mathbf{x}$
- Samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are projected to $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$.
- We define $\quad \tilde{\mathbf{m}}_{i}=\frac{1}{n_{i}} \sum_{y \in Y_{i}} \mathbf{y}, \quad \tilde{\mathbf{m}}=\frac{1}{n} \sum_{y \in Y_{i}} n_{i} \tilde{\mathbf{m}}_{i}$

Multiple Discriminant Analysis cont.

$$
\begin{aligned}
& \tilde{\mathbf{S}}_{W}=\sum_{i=1}^{c} \sum_{y \in Y_{i}}\left(\mathbf{y}-\tilde{\mathbf{m}}_{i}\right)\left(\mathbf{y}-\tilde{\mathbf{m}}_{i}\right)^{t} \\
& \tilde{\mathbf{S}}_{B}=\sum_{i=1}^{c} n_{i}\left(\tilde{\mathbf{m}}_{i}-\tilde{\mathbf{m}}\right)\left(\tilde{\mathbf{m}}_{i}-\tilde{\mathbf{m}}\right)^{t}
\end{aligned}
$$

- It's easy to show that $\quad \tilde{\mathbf{S}}_{W}=\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}$ and $\tilde{\mathbf{S}}_{B}=\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}$
- The criterion function which should be maximized is:

$$
J(\mathbf{W})=\frac{\left|\tilde{\mathbf{S}}_{B}\right|}{\left|\tilde{\mathbf{S}}_{W}\right|}=\frac{\left|\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right|}{\left|\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right|}=\frac{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right)}=\frac{\sum_{i} \mathbf{w}_{i}^{t} \mathbf{S}_{B} \mathbf{w}_{i}}{\sum_{i} \mathbf{w}_{i}^{t} \mathbf{S}_{W} \mathbf{W}_{i}}
$$

- Every column \mathbf{w}_{i} of \mathbf{W} we should be solution of generalized eigenvalue problem

$$
\mathbf{S}_{W}{ }^{-1} \mathbf{S}_{B} \mathbf{w}_{i}=\lambda_{i} \mathbf{w}_{i}
$$

Multiple Discriminant Analysis cont.

- The criterion function which should be maximized is:

$$
J(\mathbf{W})=\frac{\left|\tilde{\mathbf{S}}_{B}\right|}{\left|\tilde{\mathbf{S}}_{W}\right|}=\frac{\left|\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right|}{\left|\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right|}=\frac{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right)}=\frac{\sum_{i} \mathbf{w}_{i}^{t} \mathbf{S}_{B} \mathbf{W}_{i}}{\sum_{i} \mathbf{W}_{i}^{t} \mathbf{S}_{W} \mathbf{W}_{i}}
$$

- Every column \mathbf{w}_{i} of \mathbf{W} we should be solution of generalized eigenvalue problem

$$
\begin{array}{ll}
\mathbf{S}_{W}^{-1} \mathbf{S}_{B} \mathbf{W}_{i}=\lambda_{i} \mathbf{W}_{i} & \mathbf{S}_{B} \mathbf{W}_{i}=\lambda_{i} \mathbf{S}_{W} \mathbf{W}_{i} \\
& \mathbf{S}_{B} \mathbf{W}=\mathbf{S}_{W} \mathbf{W} \Lambda \\
& \mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}=\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W} \Lambda \\
& \operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right)=\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right) \operatorname{tr}(\Lambda) \\
& \operatorname{tr}(\Lambda)=\sum_{i} \lambda_{i}=\frac{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{B} \mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{t} \mathbf{S}_{W} \mathbf{W}\right)}
\end{array}
$$

Multiple Discriminant Analysis cont.

- The MDA provides the way of reducing the dimensionality of the problem.
- The technique for finding probability density might not be feasible in the original space.
- The technique for finding probability density may work well after reducing the dimension of feature space.
- MDA may improve the separability of classes.

Simple Enhancement for PCA/LDA

- Significant pairs for between-class scatter matrix
- Non-boundary patterns with the different class labels
- Significant pairs for within-class scatter matrix
- Non-boundary patterns with the same class labels

Non-boundary Pattern Selection Algorithm

- Step 1. For each $\mathbf{x}_{i} \in \mathbf{X}$
- Find the neighborhood defined as follows.

$$
\text { Neighbors }\left(\mathbf{x}_{i}, k\right)=N\left(\mathbf{x}_{i}, k\right) \cup\left\{\mathbf{x}_{i}\right\}
$$

where $N\left(\mathbf{x}_{i}, k\right)$ is the set of k nearest samples to \mathbf{x}_{i} by L2-norm.

- Calculate voting probabilities of $\operatorname{Neighbors}\left(\mathbf{x}_{i}, k\right)$ to each class j.

$$
p_{j}\left(\mathbf{x}_{i}\right)=\frac{\sum_{\forall n \in \operatorname{Neighbors}\left(\mathbf{x}_{i}, k\right)} I_{j}(n)}{k+1}
$$

where $I_{j}(n)$ is 1 if the class of neighbor n is j, otherwise 0 .

- Calculate the neighborhood entropy of x_{i}.

$$
\text { Neighbors_Entropy }\left(\mathbf{x}_{i}, k\right)=\sum_{j=1}^{l} p_{j}\left(\mathbf{x}_{i}\right) \log _{l} \frac{1}{p_{j}\left(\mathbf{x}_{i}\right)}
$$

- Step 2. Obtain boundary patterns $\mathbf{X}^{(B)}$ and non-boundary patterns $\mathbf{X}^{(N B)}$

$$
\begin{aligned}
& \mathbf{X}^{(N B)}=\{\mathbf{x} \mid \text { Neighbors_Entropy }(\mathbf{x}, k) \leq \theta(l), \mathbf{x} \in \mathbf{X}\} \\
& \mathbf{X}^{(B)}=\mathbf{X}-\mathbf{X}^{(N B)}
\end{aligned}
$$

PCA using NPS (LDA in the same manner)

- Select non-boundary patterns via BNPS.
- Non-boundary patterns make up significant pairs.
- Emphasize the significant pairs.

Whole data

$$
\begin{aligned}
& \mathbf{C}_{X}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\mathbf{m}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)^{\top} \\
& \mathbf{W}_{P C A}=\arg \max _{\mathbf{W}^{\top} \mathbf{W}=\mathbf{I}} \operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{C}_{X} \mathbf{W}\right) \\
& \widetilde{\mathbf{C}}_{X}=\frac{1}{n_{N B}-1} \sum_{i=1}^{l} \sum_{j: y_{j}=i}\left(\mathbf{x}_{j}^{(N B)}-\widetilde{\mathbf{m}}\right)\left(\mathbf{x}_{j}^{(N B)}-\widetilde{\mathbf{m}}\right)^{\top} \\
& \widetilde{\mathbf{W}}_{P C A}=\arg \max _{\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{W}}=\mathbf{I}} \operatorname{tr}\left(\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{C}}_{X} \widetilde{\mathbf{W}}\right)
\end{aligned}
$$

Toy Example

UCI Machine Learning Repository

Name	\# of data	\# of attributes	\# of classes	Missing attributes
Haberman	306	3	2	No
Hepatitis	155	19	2	Yes
Pima	768	8	2	No
Balance-scale	625	4	3	No
Liver-disorders	345	6	2	No
Iris	150	4	3	No
Glass	214	9	2	No
Wisconsin	699	9	2	Yes
Sonar	208	34	6	No
Dermatology	366			

PCA vs. NPS+PCA

LDA vs. NPS+LDA

Interim Summary

- Fisher Linear Discriminant Analysis

$$
J(\mathbf{w})=\frac{\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}} \quad \mathbf{S}_{W}^{-1} \mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{w}, \quad \mathbf{w} \propto S_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

- Multiple Discriminant Analysis

$$
\mathbf{S}_{B}=\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t} \quad \mathbf{S}_{W}{ }^{-1} \mathbf{S}_{B} \mathbf{W}_{i}=\lambda_{i} \mathbf{W}_{i}
$$

- Simple Enhancement for PCA/LDA

$$
\begin{aligned}
& \widetilde{\mathbf{W}}_{P C A}=\arg \max _{\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{W}}=\mathbf{I}} \operatorname{tr}\left(\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{C}}_{X} \widetilde{\mathbf{W}}\right) \\
& \widetilde{\mathbf{W}}_{L D A}=\arg \max _{\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{W}}=\mathbf{I}} \frac{\operatorname{tr}\left(\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{S}}^{(b)} \widetilde{\mathbf{W}}\right)}{\operatorname{tr}\left(\widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{S}}^{(w)} \widetilde{\mathbf{W}}\right)}
\end{aligned}
$$

